Monte Carlo Tree Search for Community Detection MCTS-CD - Archive ouverte HAL
Autre Publication Scientifique Année : 2023

Monte Carlo Tree Search for Community Detection MCTS-CD

Monte Carlo Tree Search pour la détéction de communautés MCTS-CD

Résumé

Real-world graph analysis and the study of complex networks encounter the common challenge of community detection(CD), encompassing diverse domains such as transportation networks, cyber-security, animal, and social media networks. This problem can be modeled as an NP-hard optimization problem. Inspired from [25] [24] that combined Monte Carlo Tree Search (MCTS) and Reinforcement Learning on large action-space environments, we adapt MCTS for the problem of Community Detection in Social Networks and propose MCTS-CD. MCTS-CD is an arm-bandit [2] anytime algorithm. We show that when compared to reference algorithms for CD such as Louvain [1], with allocating the same amount of resources, MCTS-CD acheives better results on many benchmark datasets such as Zachary Karate Club, Dolphin and the Pol Books datasets.
Fichier principal
Vignette du fichier
IEEE_MCTS_community_to_submit-1.pdf (311.3 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04288745 , version 1 (16-11-2023)
hal-04288745 , version 2 (17-11-2023)
hal-04288745 , version 3 (17-01-2024)

Licence

Identifiants

Citer

Imane Hamzaoui, Thanina Hamitouche, Nour El Houda Benazzoug, Fatmazohra Rezkellah, Alaa Dania Adimi, et al.. Monte Carlo Tree Search for Community Detection MCTS-CD. 2023, ⟨10.5281/zenodo.10182339⟩. ⟨hal-04288745v3⟩
87 Consultations
89 Téléchargements

Altmetric

Partager

More