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Abstract

Real-world graph analysis and the study of complex networks encounter the com-
mon challenge of community detection(CD), encompassing diverse domains such
as transportation networks, cyber-security, animal, and social media networks.
This problem can be modeled as an NP-hard optimization problem. Inspired from
[25] [24] that combined Monte Carlo Tree Search (MCTS) and Reinforcement
Learning on large action-space environments, we adapt MCTS for the problem
of Community Detection in Social Networks and propose MCTS-CD. MCTS-CD
is an arm-bandit [2] anytime algorithm. We show that when compared to refer-
ence algorithms for CD such as Louvain [1], with allocating the same amount of
resources, MCTS-CD acheives better results on many benchmark datasets such as
Zachary Karate Club, Dolphin and the Pol Books datasets.

Keywords— community detection, monte carlo, reinforcement learning, arm-bandit

1 Introduction

From social media networks to biological networks, community detection emerged as the identification of internal
communities inside these structures. It is an NP-hard optimization problem that requires a lot of computational
resources in order to find the optimal community partitioning. Community detection can be modeled as an
optimization problem with an objective function that measures the quality of the solution. Modularity[20]
and conductance[12] are among the most used metrics. These measures aim to maximize the connectivity
inter-community and minimize the connectivity intra-community, that is to say, it uses the graph structure to find
the best community partitioning and doesn’t use features such as the graph’s weights and labels: it only takes the
community structure in consideration. Few works have used tree search structures for the problem of community
detection, such as [18] on dynamic social networks. Recent advances in the applications of reinforcement
learning methods such as Monte Carlo Tree Search showed promising results in games like [25],[24], [10] and
in combinatorial optimization problems[11]. Monte Carlo Tree Search is an iterative algorithm that searches the
state space and builds statistical evidence about the decisions available in particular states and it is applicable
to MDPs[5]. The search is guided by Monte Carlo simulations, the selection of a node in the tree is viewed
as arm-bandit problem [23], it allows the expansion of the tree while balancing between the exploration and
exploitation of tree nodes. Monte Carlo simulations were used previously for the problem of community
detection on weighted brain graphs [7], which used Monte Carlo simulations to simulate the data. In MCTS-CD
we use these simulations to search for the solution.
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2 Definitions

2.1 Monte Carlo Tree Search

The search in a Monte Carlo Tree is guided by Monte Carlo simulations and a policy. The selection of a node in
the tree is viewed as a arm-bandit problem[26]. The selection allows the expansion of the tree while balancing
between the exploration and exploitation of tree nodes. MCTS is characterized by 4 phases:

• Selection: starting from the root node, the algorithm explores the search space according to a policy
until visiting all the nodes represented in the memory or reaching to a leaf node which represents a
final state in games.

• Expansion: adding a child node that represents a state reached after performing an action, if a terminal
state is reached then we can’t add a child node.

• Simulation: starting from a node, a random simulation of the game/problem is launched to estimate the
gain of the final state or the result of the game. A score is attributed to a node based on how promising
it is.

• Backpropagation: The score from the last visited node in the tree is propagated to the parents until
reaching the root node.

The exploration in MCTS is done via a tree policy like Upper Confidence Bound (UCB), and unlike epsilon
greedy algorithms, UCB algorithms construct a confidence interval of what each arm’s true performance might
be, factoring in the uncertainty caused by variance in the data and the fact that we’re only able to observe a
limited sample of pulls for any given arm. The algorithms then optimistically assume that each arm will perform
as well as its UCB, selecting the arm with the highest UCB.
The UCB formulas can be expressed as follows :

UCB1(i) =
Q(i)

N(i)
+ C

√
lnN(p)

N(i)
(1)

UCB2(i) =
Q(i)

N(i)
+ C

√
lnN(p)

N(i) + 1
(2)

• i represents the child node or action being considered.

• Q(i) represents the total reward accumulated by selecting action i.

• N(i) represents the number of times action i has been selected.

• N(p) represents the number of times the parent node has been visited.

• C is a constant that balances the exploration and exploitation trade-off.

2.2 Community Detection

Community detection is the process of identifying groups of nodes in a network that are more densely connected
to each other than to the rest of the network. It is a key aspect of understanding the structure and functionality
of complex networks, and it can be used to extract useful information from them [13]. A large number of
techniques have been suggested to find optimal communities in a reasonable time. Most of these techniques are
based on the optimization of objective functions. Modularity optimization so far is one of the most widely used
techniques among them. Modularity is defined in section (5.1).

3 Related works

MCTS is used in games [10] [24] [25] and other works have used it in combinatory optimization problems [23].
Among the classical algorithms that rely on modularity maximization we find the work of Neumann[21], the
famous Louvain[1], [6]. Other known methods are label propagation [22] and overlapping community detection
[9].
Different methods using genetic algorithms have been proposed such as [17], [15]. We also find algorithms
based on random walks such as [27] and the results were competitive.
Recent trends went towards deep learning based techniques. [29] used Node embedding such as Walktrap and
Node2Vec. [19] proposed Ucode that uses graph convolutional neural networks, this method showed interesting
results on both overlapping and non overlapping community structures.
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4 Our method

We define a Monte Carlo Tree Node as follows:

• community_list is the partitioning of the communities on the nodes of the graph, where
community_list[i] represents the community of node i.

• gain is the parent’s reward minus the current node’s reward.

• parent is the parent node of the current node.

• children represents the children of the current node.

• visits represents the number of visits of the node

Note that a node in the tree doesn’t represent a node in the community. Each node carries a community list as
described above.
We start by considering each node as a community and launch the simulation for a number of iterations,
interrupting it when the stopping criterion is met. The stopping criteria is either to reach a solution that improves
the simulated node’s modularity with at least τ and if τ isn’t reached, the simulation continues for a defined
number of iterations that we’ll call cpt.
During this phase of simulation, at each iteration, we will assign a node to one of its neighbors randomly with a
probability of p = 1/2 and to the best neighbor with a probability 1− p = 1/2 which is more greedy. This step
is different from the Louvain algorithm [1] that can disconnect a central node in a community and cause the
problem of disconnected communities [28]. This problem is often escaped due to the selection policy and the
other parameters that lead to more diversification in the search space
The τ parameter decays with the following equation:

τ = τ ∗ exp−it/λ (3)

because as long as we move through the search tree we will get better solutions, thus reaching an improvement
of τ will be harder. 1/λ is the learning rate for tau .

Algorithm 1 Community Partition Algorithm
Require: Graph
Ensure: Best community parition of the graph

1: Initialisation: Affect each node to its own community
2: Create MCTS root node where each graph node is assigned to a community.
3: for nbIter do
4: Select the node to simulate according to the policy
5: Simulate the node and estimate its gain:
6: Assign 1/2 of random nodes to the best neighbour’s community to them and assign 1/2

of the remaining nodes to a random neighbour’s community.
7: Update the learning rate τ .
8: Append children nodes with the resulting communities.
9: Backpropagate and update the reward.

10: end for
11: return best community partition

The MCTS-CD phases for the Selection and Backpropagation are the same as the classical MCTS, our modifica-
tion lays in the alternation between the simulation phase and the expansion phase. The simulation phase’s results
are appended as children nodes to the simulated node. And this is what makes up the expansion.

Figure 1: Steps of the MCTS-CD.
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5 Metrics

5.1 Modularity

Modularity measures the strength of the division of a graph into communities [20]. We aim to maximize
the connectivity between the nodes of the same community and minimize the connections between separate
communities. The modularity takes values between −1/2 and 1.

5.2 Normalized Mutual Information NMI

The Normalized Mutual Information(NMI) is a measure that assesses the similarity between two partitions
based on the information mutually contained on them[4]. The values of the NMI can vary from 0 (no mutual
information) to 1 (perfect correlation).

6 Experiments and results

We test our method on benchmark real-world and synthetic datasets : we test on the Girvan–Newman (GN) [8]
and Lancichinetti–Fortunato–Radicchi (LFR)[14] graphs which are synthetic graphs generated according to
some parameters such as µ (Fraction of inter-community edges incident to each node), node degree. The first
real-world benchmark we test on is the Zachary Karate Club’s network[8]. The second one is the Dolphin[16]
and the Pol Books dataset. The results of MCTS-CD are computed and then compared to the results produced
by Louvain[1], and HGT [3]. The comparaison is made through the NMI in TABLE I and through modularity
in TABLE II. We did a calibration of the following parameters through a random search and used the best
combination: τ and λ in equation (3), p in section [4], nbIter in algorithm (1), C in equations (1) and (2).

Table 1: NMI comparaison

Benchmark Louvain HGT MCTS UCB2 MCTS UCB1
GN* µ = 0.2 0.9748 0.9748 0.9748 0.9748
GN* µ = 0.4 0.41 0.56 0.6 0.64

Zachary Karate 0.56 0.69 1 1
Football 0.69 0.917 0.81 0.87
Dolphin 0.57 0.497 0.58 0.63
Books 0.53 0.47 0.64 0.552

∗ GN stands for Girvann Neumann benchmark graph

Table 2: Modularity comparaison

Benchmark Louvain HGT MCTS UCB2 MCTS UCB1
GN µ = 0.2 0.65 0.65 0.65 0.65

Zachary Karate 0.41 0.42 0.36 0.4
Football 0.55 0.58 0.55 0.59
Dolphin 0.51 0.51 0.46 0.44
Books 0.5 0.5 0.46 0.52

We also tested it on a LFR benchmark graph with a µ = 0.2 of 6000 and 12000 nodes, and acheived an NMI of
0.83 and 0.76 respectively with MCTS-CD compared to 0.7 and 0.6 for Louvain [1] respectively.

Conclusion

This paper presented a method to adapt Monte Carlo Tree Search for the problem of community detection.
Through this hybridisation, we made use of the power of reinforcement learning in order to make the search
more efficient, locating through the simulations of Monte Carlo Tree Search interesting regions of the tree, and
learning through the backpropagation how to guide the search to these regions. The diversification that the
simulations allow, and the intensification the expansion and the learning provided made MCTS-CD produce
good NMIs for the benchmarks tested on, and this, in very reasonable computational time. It is suggested that
to refine MCTS-CD, another layer of Machine Learning should be introduced : a clustering layer that would
modify the original structure of the network in order for the MCTS-CD to be able to act on what would be
considered as big networks, always in reasonable times.
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