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Abstract

The problem addressed in this paper is the reconstruction of 
a continuous-time stationary random process from noisy sampled 
observations coming from different sources. An optimal solution in 
terms of linear filtering of observed samples i s derived and the ex-
pression of the corresponding minimum reconstruction error power 
is given. Moreover, two equivalent reconstruction schemes are 
given. The first o ne i s r ecursive, i nvolving t wo fi lter ba nks. Its 
main interest is that adding or suppressing an input does not af-
fect the whole scheme. The second scheme is symmetric and uses 
only one filter b ank. However, to add a  new input requires a  com-
plete modification o f a ll t he fi lter tr ansfer fu nctions. Simulation 
examples are given to prove the application of the reconstruction 
scheme.

Key words and phrases: Sampling, signal reconstruction, linear 
minimum mean square reconstruction

1 Introduction

Within the frame of radio communications, a method to overcome the
effects of fading and circuit failures is to use some diversity techniques



[1]. The basic principle of diversity techniques is to send several ver-
sions of the same signal in order to obtain reliability and signal improve-
ment. The receiver then combines the received signals that originate
from two or more independent sources that have been modulated with
identical information-bearing signals. Different methods can be used to
provide the receiver with L independently fading replicas of the same
information-bearing signal. One method is to employ frequency diver-
sity, i.e., the same signal is transmitted on L carriers, sufficiently distant
to be well-separated by the transmission channel. Another method is
to transmit the signal in L different time slots, sufficiently distant to
remain uncorrelated. As a consequence, whatever the diversity trans-
mission method, the receiver has to retrieve the original information
coming from different distorted versions of the same signal. The present
paper is related to this kind of problem. Indeed, it addresses the prob-
lem of recovering a continuous-time random process from sampled noisy
observations coming from several sources. The observations are modeled
as follows:

Uk (n) = Z (n) + Bk (n) , n ∈ Z, k = 1, . . . , L (1)

where L represents the number of observed sources, Z = {Z (t) , t ∈ R}
denotes the random process under interest and Bk = {Bk (t) , t ∈ R} ,
k = 1, . . . , L the L different random processes modeling the L different
noise sources. Note that the case L = 1 is well-known in the literature
for many years [2, p.132]. However, the present paper deals with the
L-fold extension (L 6= 1) of this model. The assumptions and notations
required for the present study are summarized below:

• The random process Z = {Z (t) , t ∈ R} is a zero mean station-
ary process with finite second order moment. Its Power Spectral
Density (PSD) sZ (ω) is defined by [3]

KZ (τ) = E [Z (t) Z∗ (t− τ)] =
∫

R
sZ (ω) eiωτdω (2)

where E [.] denotes the mathematical expectation, the superscript
∗ holds for complex conjugate, and KZ (τ) denotes the random pro-
cess autocorrelation function. Note in particular that the random
process finite power is given by

E
[
|Z (t) |2

]
< +∞. (3)



• The random noise processes Bk = {Bk (t) , t ∈ R} , k = 1, . . . , L
are zero mean stationary uncorrelated processes, uncorrelated with
Z, with respective PSD sBk

(ω) as defined in (2).

• Without any loss of generality, the sampling period is assumed to
be unitary, without any hypothesis on the signal and noise spectral
bands.

• Each one of the L sampled noisy sequences defined in (1) is the
sum of both sampled sequences Z̃ = {Z(n), n ∈ Z} and B̃k =
{Bk(n), n ∈ Z} , k = 1, . . . , L where the superscript .̃ is used to
distinguish random processes from sequences of random variables.
The respective PSD of these sequences s̃Z (ω) and s̃Bk

(ω) are de-
fined in the same manner (to simplify, only s̃Z (ω) definition is
given) [4]

E [Z (n) Z∗ (n−m)] =
∫ +π

−π
s̃Z (ω) eiωmdω, (n, m) ∈ Z2. (4)

Sampling theory derives the relation between the continuous-time
PSD and the folded one [5, p.426]

s̃Z (ω) =
∑
n∈Z

sZ (ω + 2πn) . (5)

(the same relation holds between s̃Bk
(ω) and sBk

(ω)).

The problem developed in this paper consists of deriving the linear
minimum mean square estimator (LMMSE) of Z(t) from the L noisy
sampled processes Ũk = {Uk(n), n ∈ Z}, k = 1, . . . , L defined in (1).
This LMMSE, denoted as Ẑ(t), is a linear combination of the observed
samples which minimizes the mean square error (MSE)

σ2
t = E

[∣∣∣Z(t)− Ẑ(t)
∣∣∣2] . (6)

One of the main mathematical tools used in this paper is the Hilbert
space geometry in L2 (Ω). The reader can refer directly to [3] or to [6],
which contains the L2-theoretical background for these aspects. (How-
ever, in [6], only bandlimited random processes are studied.)
The paper is organized as follows: Section 2 derives the expression of the



LMMSE. A suboptimal estimator is presented in section [3]. In section
4, it is shown that timing jitter can also be considered as a special case
of application of the problem studied in this paper. Section 5 gives some
examples and simulations highlight how the results of the Section 2 can
be applied. Conclusions are reported in Section 6. Appendices are given
in order to detail some theoretical developments necessary to derive the
results of Section 2.

2 LMMSE derivation

The LMMSE of Z(t) belongs to the Hilbert space spanned by the set of
observed random variables [3] and is defined by the orthogonal projection
of Z(t) onto this Hilbert space. Thus, Ẑ(t) is defined by

Ẑ (t) = pr
⊕HŨk

[Z (t)] (7)

where pr [.] denotes an orthogonal projection and HŨk
, k = 1, . . . , L,

the Hilbert spaces spanned respectively by Ũk = {Uk(n), n ∈ Z}, k =
1, . . . , L. The main problem of this projection arises from the fact that
the different Hilbert spaces are not orthogonal. Thus, the projection on
the sum of spaces is not the sum of projections on the different spaces.
Therefore, before any projection, an orthogonalization is achieved, lead-
ing to derive L orthogonal random sequences C̃k = {Ck(n), n ∈ Z}, k =
1, . . . , L from the L initial sequences Ũk = {Uk(n), n ∈ Z}, k = 1, . . . , L
such that their corresponding Hilbert spaces HC̃k

, k = 1, . . . , L are or-
thogonal and verify

L
⊕

k=1
HŨk

=
L
⊕

k=1
HC̃k

. (8)

2.1 Orthogonalization

The orthogonalization procedure is analog to a Gram-Schmidt one and
is iterative. First, consider that:

C̃1 = Ũ1. (9)

Then, the second random sequence C̃2 is defined by

C2 (n) = U2 (n)− Φ1 [C1] (n) , n ∈ Z (10)



where Φ1 [C1] (n) denotes the output of a linear time-invariant filter ex-
cited by the random sequence C̃1. The transfer function Φ1 (ω) of this
filter is such that both Hilbert spaces HC̃1

and HC̃2
are orthogonal. This

is derived in Example 1, [2, p.132]

Φ1 (ω) =
s̃Z (ω)

s̃Z (ω) + s̃B1 (ω)
. (11)

Then, the random sequences C̃k, k = 2, . . . , L are defined in an iterative
manner

Ck (n) = Uk (n)−
k−1∑
m=1

Φm [Cm] (n) k = 2, . . . , L, (12)

where Φm [Cm] (n) denotes the output of a linear time-invariant filter
excited by C̃m. Appendix A shows that the transfer function Φk (ω) of
the kth filter is such that

Φk (ω) =
s̃Z (ω)
s̃Bk

(ω)
1

1 +
∑k

m=1 s̃Z (ω) /s̃Bm (ω)
for k = 1, . . . , L. (13)

Hence, based on the observation of L (non-orthogonal) sequences Ũ1,...,
ŨL, this orthogonalization procedure leads to derive a set of orthogonal
sequences C̃1, . . . , C̃L with respective PSD (see Appendix A)

s̃Ck
(ω) = s̃Bk

(ω) +
s̃Z (ω)

1 +
∑k−1

m=1 s̃Z (ω) /s̃Bm (ω)
for k = 2, . . . , L.

(14)

2.2 Projection

The above orthogonalization procedure allows for the construction of a
set of orthogonal sequences as a function of the observed ones Ũ1, . . . , ŨL

such that (8) is verified. Therefore, the projection (7) can be done on

this sum of orthogonal spaces
L
⊕

k=1
HC̃k

and yields

Ẑ (t) =
L∑

k=1

pr
HC̃k

[Z (t)] . (15)



Let us consider the different projections on each Hilbert space and denote

Ẑk (t + n) = pr
HC̃k

[Z (t + n)] , t ∈ R, n ∈ Z. (16)

Appendix B shows that this projection can be viewed as the output of
a linear time-invariant filter, t being fixed, characterized by its transfer
function

µk (t, ω) = eiωt s̃Zt (ω)
s̃Bk

(ω)
1

1 +
∑k

m=1 s̃Z (ω) /s̃Bm (ω)
(17)

where s̃Zt (ω) is the PSD corresponding to the random sequence Z̃t =
{Z(t + n), n ∈ Z}, t being fixed. The overall reconstruction pro-
cedure is represented in Fig.1, including both orthogonalization and
projection steps. Both steps, orthogonalization and projection, corre-
spond to two filter banks characterized by {Φk (ω) , k = 1, . . . , L} and
{µk (t, ω) , k = 1, . . . , L}.
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Figure 1: LMMSE of Z(t + n) from the observations of U1(n), U2(n), ...,
UL(n).

Note that
µk (0, ω) = Φk (ω) . (18)



This means that, in the case of a reconstruction of the random process
on Z rather than on R, the scheme presented in Fig.1 is simplified. Since
the projection filters are identical to the orthogonalization ones, only one
filter bank is needed. Therefore, in Fig.1, the projection filter bank (µk)
can be suppressed and the output of the orthogonalization filter bank
(Φk) can be directly linked to the L-term sum yielding Ẑ (n), as shown
in Fig.2.
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Figure 2: LMMSE of Z(n) from the observations of U1(n), U2(n), ...,
UL(n).

Moreover, it is interesting to note that the general scheme of Fig.1
is recursive. Therefore, if a new source ŨL+1 is available, the scheme
can be modified easily by adding a new line with two filters and without
changing the other filters. However, this recursive property of the general
scheme allows one to assume that an equivalent symmetric scheme can
be found. Appendix C derives this equivalent scheme, presented in Fig.3.
In this equivalent scheme, only one filter bank is necessary, characterized
by its transfer function

Γk (t, ω) = eiωt s̃Zt (ω)
s̃Bk

(ω)
1

1 +
∑L

m=1 s̃Z (ω) /s̃Bm (ω)
for k = 1, . . . , L,

(19)
as shown in Appendix C. The main advantage of this symmetric scheme is
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Figure 3: LMMSE derivation symmetric scheme.

to take into account only one bank of linear time-invariant filters (t being
fixed) to be applied directly on the observed sequences Ũ1, . . . , ŨL, in
order to yield the LMMSE of Z(t). However, the outputs of the different
filters are correlated. But the main drawback of this symmetric scheme is
that the different filters depend on the number L of observed sources. To
add or suppress a new observed source leads to complete modification
of all the involved filters. This is not the case when dealing with the
recursive scheme of Fig.1.

2.3 Reconstruction error power

The reconstruction error power (6) is given by

σ2
t =

∫ +π

−π
s̃Z (ω)−

L∑
k=1

|µk (t, ω)|2 s̃Ck
(ω)

)
dω. (20)

Appendix B shows that this MSE can be viewed as the sum of two terms(
σ2

t

)
1

and
(
σ2

t

)
2

where

(
σ2

t

)
1

=
∫ +π

−π
s̃Z (ω)− (s̃Zt (ω))2

s̃Z (ω)

)
dω (21)

represents the error due to aliasing effects (no aliasing yields
(
σ2

t

)
1

= 0)
and (

σ2
t

)
2

=
∫ +π

−π

(s̃Zt (ω))2

s̃Z (ω)
1

1 +
∑L

m=1 s̃Z (ω) /s̃Bm (ω)
dω (22)

the error due to the presence of noise in the observations (1). If one of
the noise sources is negligible, this second term equals zero.



3 A suboptimal procedure

A suboptimal procedure can be proposed, rather than the optimal one
given in Fig.1. The idea is to use the optimal reconstruction of {Z (n) ,

n ∈ Z} presented in Fig.2. This reconstructed sequence
{

Ẑ (n) , n ∈ Z
}

spans a Hilbert space, denoted as HẐ. An estimation of Z (t) can be
defined by

Ẑsubopt (t) = pr
HẐ

[Z (t)] . (23)

The main interest of this method compared to the optimal one is its
reduced computational cost. Indeed, in this case, L time-invariant linear
filters (the Φk of Fig.2) and one linear filter depending on t (the one
derived from (23)) are needed. This must be compared with the optimal
reconstruction which requires L − 1 time-invariant linear filters and L
linear filters depending on t. However, this method is suboptimal, ex-
cept for L = 1. In this case,

{
Ẑ (n) , n ∈ Z

}
is the output of the filter

Γ1 (0, ω) = Φ1 (ω) given in (11). Then, the projection (23) is equivalent
to a linear filter characterized by the following transfer function:

GL=1 (t, ω) = eiωt s̃Zt (ω)
s̃Z (ω)

. (24)

Both steps are equivalent to the optimal filter Γ1 (t, ω). This property is
no more true for L > 1.

4 Special case of timing jitter

Consider a case where the observations are not of the form given by (1),
but are corrupted by timing jitter. In this case, the observations can be
written as

Uk (n) = Z (n−Ak (n)) , n ∈ Z, k = 1, . . . , L (25)

where timing jitter is modeled by random sequences Ãk = {Ak(n), n ∈ Z},
k = 1, . . . , L mutually independent and independent of Z. The jitter is
assumed to be stationary in the sense that the following characteristic
functions [7] are independent of n:

Ψk (ω) = E
[
eiωAk(n)

]
(26)

Λk (m,ω) = E
[
eiω(Ak(n)−Ak(n−m))

]
.



Since sampling rates become higher and higher, the jitter effect on system
performance can no longer be neglected. This may be the reason why
the problem of signal reconstruction in the presence of timing jitter has
received an increasing attention in recent years: see for example [8], [9],
[10]. In [11] and [12], it has been shown that the jittered observations
can be written in an orthogonal decomposition form

Uk (n) = Gk (n) + Bk (n) (27)

where Gk (n) is the output of a linear time-invariant filter, Ψ∗
k (ω) being

the transfer function of this filter and Z the input. Moreover, Bk (n)
is linked to the timing jitter and can be viewed as an additive noise,
independent of Z. Therefore, the problem of recovering the original
process based on observations corrupted by timing jitter (25) can be
viewed as the problem (1) under interest in this paper. The LMMSE
derived in (2) can be applied. This will lead the recovering of a filtered
version of Z. Then, some inverse filtering method must be used in order
to reconstruct the original process Z.

5 Simulation results

5.1 Random process under the sampling condition

This first simulation example considers the case where the sampling con-
dition is verified. In order to derive easily analytical expressions of the
reconstruction filters given in (64), the random processes involved in the
observed sequences in (1) are chosen as pure white processes on (−π,+π),
i.e.,

sZ (ω) = 1
2π and sBk

(ω) = 1
2πbk

for ω ∈ (−π,+π) and k = 1, . . . , L

sZ (ω) = sBk
(ω) = 0 for ω /∈ (−π,+π) and k = 1, . . . , L

(28)
and with bk > 0 for k = 1, . . . , L. Note that this parameter bk represents
the inverse of the noise variance σ2

k. In this case, the expression of the
reconstruction filters of the equivalent scheme of Fig.3 is given by

Γk (t, ω) = eiωt bk

1 +
∑L

m=1 bm

for k = 1, . . . , L. (29)

It is important to note that, when the sampling condition is verified, the
reconstruction filters are time-invariant related to the sampled sequences



Ũk. In the present example, the impulse response of these filters is of
the form

γk (t) =
bk

1 +
∑L

m=1 bm

sinc (πt) for k = 1, . . . , L (30)

where the notation sinc(x) is used for sin(x)
x . Using (60) and (62), the

MSE is directly linked to the noise variances

σ2
t =

(
σ2

t

)
2

=
1

+
∑L

m=1 bm

. (31)

Figure.4 shows this MSE as a function of one of the noise variance in
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Figure 4: MSE as a function of variance of one noise source.

order to highlight the fact that this MSE tends to zero when any noise
source variance tends to zero. In this figure, the source number is chosen
equal to L = 3, two noise variances are fixed and the third one varies from
0 to 0.5. Both theoretical (31) and simulated MSE are presented. The
simulated MSE is computed first by generating 1024 noisy observations
(1), then by estimating the reconstructed random process as the output
of the reconstruction filters given by (30) and finally by estimating the
reconstruction error variance. Moreover, the expression of the MSE in
(31) shows that the MSE has to decrease when the number of noise
sources increases. This is confirmed by simulations in Fig.5.
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5.2 NRZ random process

The aim of the second example is to consider a case where aliasing is
present. Therefore, the random process Z is assumed to be a NRZ pro-
cess [1] and the noise sequences B̃k are assumed to be white sequences

sZ (ω) =
1
2π

sinc2
(ω

2

)
, (32)

s̃Bk
(ω) =

1
2πbk

bk > 0 and k = 1, . . . , L.

The Poisson summation formula [13] allows to derive the expression of
s̃Zt (ω) given in (57). Indeed, using the Poisson formula,

eitω
∑
k∈Z

ei2πkt sinc2

(
ω + 2πk

2

)
=
∑
n∈Z

F (t + n) e−inω (33)

where
F (t) =

∫
R

eitω sinc2
(ω

2

)
dω. (34)

Hence,

s̃Zt (ω) =
e−iωt

2π

[
(1− t) eiωt + teiω(1+t)

]
(35)



where t and t denote respectively the entire and fractional parts of the
real instant t. The expression of the reconstruction filters (64) is given
by

Γk (t, ω) =
bk

1 +
∑L

m=1 bm

[
(1− t) eiωt + teiω(1+t)

]
for k = 1, . . . , L.

(36)
These time-varying filters leads to a reconstruction of the form

Ẑ(t) =
L∑

k=1

(1− t) Uk

(
t
)

+ tUk

(
t + 1

)
. (37)

In this case, the MSE is the sum of two terms, as shown in section 2.3
with a first term due to the aliasing effect(

σ2
t

)
1

= 2t (1− t) (38)

and a second one due to the noisy effect(
σ2

t

)
2

=
1

1 +
∑L

m=1 bm

(1− 2t (1− t)) . (39)
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Figure 6: MSE as a function of time instant.
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Figure 7: Portion of reconstructed signal (continuous line), given the
observed samples (L = 3 + for each sampling time) and the original
NRZ process (dotted line).

The overall MSE is periodic with a unit time period. Figure.6 shows
this MSE and its two components as a function of the time instant t.
As waited, the MSE is maximum when the considered instant t is in
the middle of two consecutive samples. In order to clearly illustrate the
result of the reconstruction, Fig.7 presents a portion of the reconstructed
signal. This result has to be compared with the NRZ realization which
is represented with a dotted line, taking into account that the observed
samples are represented by ”+”. In this simulation example, L = 3.

6 Conclusion

This paper has considered the problem of reconstruction of a continuous-
time random process when several noisy sampled versions of this process
are available. This kind of problem can be found in telecommunications
when diversity techniques are used. The linear minimum mean square
estimator is derived in this paper. Two implementation schemes are
given. The first one is recursive and involves two filter banks; the main
interest of this scheme is its recursive property, i.e., adding or suppress-



ing an input does not affect the whole scheme. The second equivalent
scheme is symmetric and is composed solely of one filter bank. How-
ever, any change in the input number leads to modify the whole filter
bank. Simulation results have shown the performances of the proposed
estimator.

References

[1] J.G. Proakis, Digital communications, McGraw-Hill, 2001.

[2] A.M. Yaglom, An introduction to the theory of stationary random
functions, Dover Publications Inc., New York, 1973.

[3] H. Cramer and M. R. Leadbetter, Stationary and related stochastic
processes, New York: Wiley, 1967.

[4] A. Jerri, The Shannon sampling theorem - Its various extensions and
applications: a tutorial review, Proc. IEEE, 65, no.11, 1565-1596,
1977.

[5] A. Papoulis and S.U. Pillai, Probability, random variables and
stochastic processes, Mc Graw Hill, 4th Ed., 2002.

[6] B. Lacaze and C. Mailhes, Interlaced sampling corrupted by noise,
STSIP, 1, no.3, 185-205, 2002.

[7] E. Lukacs, Characteristic functions, London: Griffin, 3rd ed., 1970.

[8] G. Tong and T. M. Souders, Compensation of Markov estimator er-
ror in Time-jittered sampling of nonmonotonic signals, IEEE Trans.
Instrum. Meas., 42, no.5, 931-935, 1993.

[9] G. Vandersteen and R. Pintelon, Maximum likelihood estimator for
jitter noise models, IEEE Trans. Instrum. Meas., 49, no.6, 1282-
1284, 2000.

[10] P. Marziliano and M. Vetterli, Reconstruction of irregularly sampled
discrete-time bandlimited signals with unknown sampling locations,
IEEE Trans. Signal Processing, 48, no.12, 3462-3471, 2000.

[11] B. Lacaze, Stationary clock changes on stationary processes, Signal
Processing, 55, no.2, 191-205, 1996.
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Appendix A: Orthogonalization procedure

The definition of the second sequence C̃2 given by (10) leads to derive a
linear filter such that

E [(U2 (n)− Φ1 [C1] (n)) C∗
1 (k)] = 0, ∀ (k, n) ∈ Z2. (40)

Noting that this problem is exactly the one derived in Example 1, [2,
p.132], the expression of this first filter can be directly given

Φ1 (ω) =
s̃Z (ω)

s̃Z (ω) + s̃B1 (ω)
. (41)

The PSD of the sequence C̃2 defined in (10) is computed via

E [C2 (n) C∗
2 (n−m)] (42)

= E [(Z (n) + B2 (n)− Φ1 [Z + B1] (n))
(Z (n−m) + B2 (n−m)− Φ1 [Z + B1] (n−m))∗]

=
∫ +π

−π
eiωm (s̃Z (ω)− 2Φ1 (ω) s̃Z (ω) + s̃B2 (ω)

+Φ2
1 (ω) (s̃Z (ω) + s̃B1 (ω))

)
dω

=
∫ +π

−π
eiωm

(
s̃B2 (ω) +

s̃Z (ω)
1 + s̃Z (ω) /s̃B1 (ω)

)
dω.

Therefore
s̃C2 (ω) = s̃B2 (ω) +

s̃Z (ω)
1 + s̃Z (ω) /s̃B1 (ω)

. (43)

The expression of the filters Φ2 (ω) , . . . ,ΦL−1 (ω) necessary to define the
next orthogonal sequences C̃3, . . . , C̃L is derived by induction. Assume
that m orthogonal sequences are defined such that

C1 (n) = U1 (n) (P(1))

Ck (n) = Uk (n)−
k−1∑
j=1

Φj [Cj ] (n) k = 2, . . . ,m (P(k))



with

Φj (ω) =
s̃Z (ω)
s̃Bj (ω)

1

1 +
∑j

k=1 s̃Z (ω) /s̃Bk
(ω)

for j = 1, . . . ,m− 1.

(44)
The next sequence C̃m+1 is defined as the previous ones such that

E

Um+1 (n)−
m∑

j=1

Φj [Cj ] (n)

C∗
r (k)

 = 0 (45)

for r = 1, . . . ,m,∀ (k, n) ∈ Z2.

Noting that

Cm+1 (n) = Cm (n)−Bm (n) + Bm+1 (n)− Φm [Cm] (n) , (46)

(45) is true for r = 1, . . . ,m − 1. For r = m, this equation (45) is
equivalent to

E [(Z (n)− Φm [Cm] (n)) C∗
m (k)] = 0. (47)

The expression of E [Z (n) C∗
m (k)] can be found by induction. Indeed,

obviously,

E [Z (n) C∗
1 (k)] = E [Z (n) Z∗ (k)] =

∫ +π

−π
eiω(n−k)s̃Z (ω) dω. (48)

Then, taking into account this first result,

E [Z (n) C∗
2 (k)] = E [Z (n) (Z (k) + B2 (k)− Φ1 [C1] (k))∗] (49)

=
∫ +π

−π
eiω(n−k)s̃Z (ω) (1− Φ1 (ω)) dω.

In the same manner,

E [Z (n) C∗
3 (k)] = E [Z (n) (Z (k) + B3 (k)− Φ1 [C1] (k)− Φ2 [C2] (k))∗]

=
∫ +π

−π
eiω(n−k)s̃Z (ω) (1− Φ1 (ω)) (1− Φ2 (ω)) dω. (50)

Therefore, it can be easily deduced by induction that

E [Z (n) C∗
m (k)] =

∫ +π

−π
eiω(n−k)s̃Z (ω)

m−1∏
j=1

(1− Φj (ω)) dω (51)



with
m−1∏
j=1

(1− Φj (ω)) =
1

1 +
∑m−1

k=1 s̃Z (ω) /s̃Bk
(ω)

. (52)

Furthermore, using orthogonal properties of the sequences,

E [Cm (n) C∗
m (k)] = E [Um (n) C∗

m (k)] (53)
= E [Z (n) C∗

m (k)] + E [Bm (n) B∗
m (k)] .

This leads to derive the expression of the PSD of the sequence C̃m

s̃Cm (ω) = s̃Bm (ω) +
s̃Z (ω)

1 +
∑m−1

k=1 s̃Z (ω) /s̃Bk
(ω)

. (54)

As a result, (47) yields the expression of the mth filter

Φm (ω) =
s̃Z (ω)

∏m−1
j=1 (1− Φj (ω))
s̃Cm (ω)

(55)

which can be written as in (13).

Appendix B: Orthogonal projection

Let Wk,t (n) denotes the orthogonal projection of Z (t + n) on the Hilbert
space HC̃k

and µk (t, ω) the transfer function of the equivalent linear filter
such that Wk,t (n) is the output of this filter excited by the sequence C̃k.
Therefore, Wk,t (n) verifies

E [(Wk,t (n)− Z (t + n)) C∗
k (m)] = 0 ∀ (n, m) ∈ Z2. (56)

The correlation term E [Z (t + n) C∗
k (m)] can be derived as (51). The

only difference is that it involves the inter-spectrum corresponding to the
intercorrelation function between the random sequence Z̃t = {Z(t + n),
n ∈ Z}, t being fixed and Z̃ = {Z(n), n ∈ Z} rather than the PSD of Z̃.
Let s̃Zt (ω) denote this interspectrum. It can be shown that

s̃Zt (ω) =
∑
k∈Z

ei2πktsZ (ω + 2πk) . (57)



Taking this into account, (56) yields∫ +π

−π

(
eiω(n−m)µk (t, ω) s̃Ck

(ω)− eiω(n−m+t) s̃Zt (ω)

1+
∑m−1

k=1 s̃Z(ω)/s̃Bk
(ω)

)
dω = 0

(58)

∀ (n, m) ∈ Z2.

This leads to the expression of the filter µk (t, ω) given in (17).
This orthogonal projection allows to minimize the reconstruction er-

ror power given by (20). Using (17) and (54), it can be shown that∫ +π
−π |µk (t, ω)|2 s̃Ck

(ω) dω =
∫ +π
−π

(s̃Zt (ω))2

s̃Z(ω) ×(
1

1+
∑k−1

j=1 s̃Z(ω)/s̃Bj
(ω)

− 1
1+

∑k
j=1 s̃Z(ω)/s̃Bj

(ω)

)
dω.

(59)

Therefore (20) reduces to

σ2
t =

∫ +π

−π
s̃Z (ω)− (s̃Zt (ω))2

s̃Z (ω)
1− 1

1 +
∑L

j=1 s̃Z (ω) /s̃Bj (ω)

))
dω.

(60)

Appendix C: Equivalent symmetric scheme

The LMMSE derivation of Z(t+n) is summarized on the Fig.1. However,
this scheme presents an iterative structure, leading to find a symmetric
equivalent scheme as the one presented in Fig.3 Comparing both schemes
(Fig.1 and Fig.3) yields immediately

ΓL (t, ω) = µL (t, ω) = eiωt s̃Zt (ω)
s̃BL

(ω)
1

1 +
∑L

m=1 s̃Z (ω) /s̃Bm (ω)
. (61)

Taking into consideration the contribution of UL−1 (n) in the Fig.1 allows
to isolate the part illustrated in Fig. 8, which must be taken into account
to derive the expression of ΓL−1 (t, ω).

ΓL−1 (t, ω) = µL−1 (t, ω)− φL−1 (ω) µL (t, ω) . (62)

Given the expressions of the different filters (13) and (17),

ΓL−1 (t, ω) = eiωt s̃Zt (ω)
s̃BL−1

(ω)
1

1 +
∑L

m=1 s̃Z (ω) /s̃Bm (ω)
. (63)



µL-1

ΦL-1

µL

+
UL-1(n) +

-

Figure 8: Contribution of UL−1 (n) for the LMMSE derivation.

This leads us to propose the following expression for any Γk (t, ω) filter
of Fig.3:

Γk (t, ω) = eiωt s̃Zt (ω)
s̃Bk

(ω)
1

1 +
∑L

m=1 s̃Z (ω) /s̃Bm (ω)
for k = 1, . . . , L.

(64)
This can be proved by induction. It has already been shown that the
result (64) holds for k = L and k = L− 1. Now, assume that the result
holds for k + 1, . . . , L. Thus, the contribution of Uk (n) in Fig.1 can
be represented as illustrated on Fig.9. The expression of the equivalent

µk

Φk

+
Uk(n)

-

Γk+1

Γk+2

ΓL

.

.

.

+

Figure 9: Contribution of Uk (n) in the LMMSE derivation.



filter Γk (t, ω) is therefore given by:

Γk (t, ω) = µk (t, ω)− φk (ω)
L∑

m=k+1

Γm (t, ω) . (65)

Inserting the different filter expressions yields the expression of Γk (t, ω)
of the form given by (64).


