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The problem addressed in this paper is the reconstruction of a continuous-time stationary random process from noisy sampled observations coming from different sources. An optimal solution in terms of linear filtering o f observed s amples i s d erived a nd t he expression of the corresponding minimum reconstruction error power is given. Moreover, two equivalent reconstruction schemes are given. The first o ne i s r ecursive, i nvolving t wo fi lter ba nks. Its main interest is that adding or suppressing an input does not affect the whole scheme. The second scheme is symmetric and uses only one filter b ank. However, to add a new input requires a complete modification o f a ll t he fi lter tr ansfer fu nctions. Simulation examples are given to prove the application of the reconstruction scheme.

Introduction

Within the frame of radio communications, a method to overcome the effects of fading and circuit failures is to use some diversity techniques [START_REF] Proakis | Digital communications[END_REF]. The basic principle of diversity techniques is to send several versions of the same signal in order to obtain reliability and signal improvement. The receiver then combines the received signals that originate from two or more independent sources that have been modulated with identical information-bearing signals. Different methods can be used to provide the receiver with L independently fading replicas of the same information-bearing signal. One method is to employ frequency diversity, i.e., the same signal is transmitted on L carriers, sufficiently distant to be well-separated by the transmission channel. Another method is to transmit the signal in L different time slots, sufficiently distant to remain uncorrelated. As a consequence, whatever the diversity transmission method, the receiver has to retrieve the original information coming from different distorted versions of the same signal. The present paper is related to this kind of problem. Indeed, it addresses the problem of recovering a continuous-time random process from sampled noisy observations coming from several sources. The observations are modeled as follows:

U k (n) = Z (n) + B k (n) , n ∈ Z, k = 1, . . . , L (1) 
where L represents the number of observed sources, Z = {Z (t) , t ∈ R} denotes the random process under interest and B k = {B k (t) , t ∈ R} , k = 1, . . . , L the L different random processes modeling the L different noise sources. Note that the case L = 1 is well-known in the literature for many years [2, p.132]. However, the present paper deals with the L-fold extension (L = 1) of this model. The assumptions and notations required for the present study are summarized below:

• The random process Z = {Z (t) , t ∈ R} is a zero mean stationary process with finite second order moment. Its Power Spectral Density (PSD) s Z (ω) is defined by [START_REF] Cramer | Stationary and related stochastic processes[END_REF] 

K Z (τ ) = E [Z (t) Z * (t -τ )] = R s Z (ω) e iωτ dω (2) 
where E [.] denotes the mathematical expectation, the superscript * holds for complex conjugate, and K Z (τ ) denotes the random process autocorrelation function. Note in particular that the random process finite power is given by

E |Z (t) | 2 < +∞. (3) 
• The random noise processes B k = {B k (t) , t ∈ R} , k = 1, . . . , L are zero mean stationary uncorrelated processes, uncorrelated with Z, with respective PSD s B k (ω) as defined in (2).

• Without any loss of generality, the sampling period is assumed to be unitary, without any hypothesis on the signal and noise spectral bands.

• Each one of the L sampled noisy sequences defined in (1) is the sum of both sampled sequences

Z = {Z(n), n ∈ Z} and Bk = {B k (n), n ∈ Z} , k = 1, . . . , L
where the superscript . is used to distinguish random processes from sequences of random variables.

The respective PSD of these sequences sZ (ω) and sB k (ω) are defined in the same manner (to simplify, only sZ (ω) definition is given

) [4] E [Z (n) Z * (n -m)] = +π -π sZ (ω) e iωm dω, (n, m) ∈ Z 2 . ( 4 
)
Sampling theory derives the relation between the continuous-time PSD and the folded one [5, p.426]

sZ (ω) = n∈Z s Z (ω + 2πn) . (5) 
(the same relation holds between sB k (ω) and s B k (ω)).

The problem developed in this paper consists of deriving the linear minimum mean square estimator (LMMSE) of Z(t) from the L noisy sampled processes Ũk = {U k (n), n ∈ Z}, k = 1, . . . , L defined in [START_REF] Proakis | Digital communications[END_REF]. This LMMSE, denoted as Ẑ(t), is a linear combination of the observed samples which minimizes the mean square error (MSE)

σ 2 t = E Z(t) -Z(t) 2 . ( 6 
)
One of the main mathematical tools used in this paper is the Hilbert space geometry in L 2 (Ω). The reader can refer directly to [START_REF] Cramer | Stationary and related stochastic processes[END_REF] or to [START_REF] Lacaze | Interlaced sampling corrupted by noise[END_REF], which contains the L 2 -theoretical background for these aspects. (However, in [START_REF] Lacaze | Interlaced sampling corrupted by noise[END_REF], only bandlimited random processes are studied.)

The paper is organized as follows: Section 2 derives the expression of the LMMSE. A suboptimal estimator is presented in section [START_REF] Cramer | Stationary and related stochastic processes[END_REF]. In section 4, it is shown that timing jitter can also be considered as a special case of application of the problem studied in this paper. Section 5 gives some examples and simulations highlight how the results of the Section 2 can be applied. Conclusions are reported in Section 6. Appendices are given in order to detail some theoretical developments necessary to derive the results of Section 2.

LMMSE derivation

The LMMSE of Z(t) belongs to the Hilbert space spanned by the set of observed random variables [START_REF] Cramer | Stationary and related stochastic processes[END_REF] and is defined by the orthogonal projection of Z(t) onto this Hilbert space. Thus, Ẑ(t) is defined by

Ẑ (t) = pr ⊕H Ũk [Z (t)] (7) 
where pr [.] denotes an orthogonal projection and H Ũk , k = 1, . . . , L, the Hilbert spaces spanned respectively by

Ũk = {U k (n), n ∈ Z}, k = 1, . . . , L.
The main problem of this projection arises from the fact that the different Hilbert spaces are not orthogonal. Thus, the projection on the sum of spaces is not the sum of projections on the different spaces. Therefore, before any projection, an orthogonalization is achieved, leading to derive L orthogonal random sequences Ck = {C k (n), n ∈ Z}, k = 1, . . . , L from the L initial sequences Ũk = {U k (n), n ∈ Z}, k = 1, . . . , L such that their corresponding Hilbert spaces H Ck , k = 1, . . . , L are orthogonal and verify

L ⊕ k=1 H Ũk = L ⊕ k=1 H Ck . (8) 

Orthogonalization

The orthogonalization procedure is analog to a Gram-Schmidt one and is iterative. First, consider that:

C1 = Ũ1 . (9) 
Then, the second random sequence C2 is defined by

C 2 (n) = U 2 (n) -Φ 1 [C 1 ] (n) , n ∈ Z (10) 
where Φ 1 [C 1 ] (n) denotes the output of a linear time-invariant filter excited by the random sequence C1 . The transfer function Φ 1 (ω) of this filter is such that both Hilbert spaces H C1 and H C2 are orthogonal. This

is derived in Example 1, [2, p.132] Φ 1 (ω) = sZ (ω) sZ (ω) + sB 1 (ω) . (11) 
Then, the random sequences Ck , k = 2, . . . , L are defined in an iterative manner

C k (n) = U k (n) - k-1 m=1 Φ m [C m ] (n) k = 2, . . . , L, (12) 
where Φ m [C m ] (n) denotes the output of a linear time-invariant filter excited by Cm . Appendix A shows that the transfer function Φ k (ω) of the kth filter is such that

Φ k (ω) = sZ (ω) sB k (ω) 1 1 + k m=1 sZ (ω) /s Bm (ω) f or k = 1, . . . , L. (13) 
Hence, based on the observation of L (non-orthogonal) sequences Ũ1 ,..., ŨL , this orthogonalization procedure leads to derive a set of orthogonal sequences C1 , . . . , CL with respective PSD (see Appendix A)

sC k (ω) = sB k (ω) + sZ (ω) 1 + k-1 m=1 sZ (ω) /s Bm (ω) f or k = 2, . . . , L. (14) 

Projection

The above orthogonalization procedure allows for the construction of a set of orthogonal sequences as a function of the observed ones Ũ1 , . . . , ŨL such that ( 8) is verified. Therefore, the projection ( 7) can be done on this sum of orthogonal spaces

L ⊕ k=1
H Ck and yields

Ẑ (t) = L k=1 pr H Ck [Z (t)] . (15) 
Let us consider the different projections on each Hilbert space and denote

Ẑk (t + n) = pr H Ck [Z (t + n)] , t ∈ R, n ∈ Z. (16) 
Appendix B shows that this projection can be viewed as the output of a linear time-invariant filter, t being fixed, characterized by its transfer function

µ k (t, ω) = e iωt sZt (ω) sB k (ω) 1 1 + k m=1 sZ (ω) /s Bm (ω) (17) 
where sZt (ω) is the PSD corresponding to the random sequence Zt = {Z(t + n), n ∈ Z}, t being fixed. The overall reconstruction procedure is represented in Fig. 1, including both orthogonalization and projection steps. Both steps, orthogonalization and projection, correspond to two filter banks characterized by {Φ k (ω) , k = 1, . . . , L} and {µ k (t, ω) , k = 1, . . . , L}.

Φ 1 + + - + + - + + - + + - + + - + + - … µ 1 + … Z(t+n) Û1 (n) U 2 (n) U 3 (n) Φ 2 µ 2 Φ 3 µ 3 + + - + + - U 4 (n) Φ 4 + + - µ 4 U L (n) + + - µ L Φ L-1 + + - Figure 1: LMMSE of Z(t + n) from the observations of U 1 (n), U 2 (n), ..., U L (n). Note that µ k (0, ω) = Φ k (ω) . ( 18 
)
This means that, in the case of a reconstruction of the random process on Z rather than on R, the scheme presented in Fig. 1 is simplified. Since the projection filters are identical to the orthogonalization ones, only one filter bank is needed. Therefore, in Fig. 1, the projection filter bank (µ k ) can be suppressed and the output of the orthogonalization filter bank (Φ k ) can be directly linked to the L-term sum yielding Ẑ (n), as shown in Fig. 2.

Φ 1 + + - + + - + + - + + - + + - + + - … + … Z(n) Û1 (n) U 2 (n) U 3 (n) Φ 2 Φ 3 + + - + + - U 4 (n) Φ 4 + + - U L (n) + + - Φ L Φ L-1 + + - Figure 2: LMMSE of Z(n) from the observations of U 1 (n), U 2 (n), ..., U L (n).
Moreover, it is interesting to note that the general scheme of Fig. 1 is recursive. Therefore, if a new source ŨL+1 is available, the scheme can be modified easily by adding a new line with two filters and without changing the other filters. However, this recursive property of the general scheme allows one to assume that an equivalent symmetric scheme can be found. Appendix C derives this equivalent scheme, presented in Fig. 3. In this equivalent scheme, only one filter bank is necessary, characterized by its transfer function

Γ k (t, ω) = e iωt sZt (ω) sB k (ω) 1 1 + L m=1 sZ (ω) /s Bm (ω) f or k = 1, . . . , L, (19) 
as shown in Appendix C. The main advantage of this symmetric scheme is to take into account only one bank of linear time-invariant filters (t being fixed) to be applied directly on the observed sequences Ũ1 , . . . , ŨL , in order to yield the LMMSE of Z(t). However, the outputs of the different filters are correlated. But the main drawback of this symmetric scheme is that the different filters depend on the number L of observed sources. To add or suppress a new observed source leads to complete modification of all the involved filters. This is not the case when dealing with the recursive scheme of Fig. 1.

U 2 (n) . . . U 1 (n) U L (n) Γ L Γ 2 Γ 1 + Z(t+n) .

Reconstruction error power

The reconstruction error power ( 6) is given by

σ 2 t = +π -π sZ (ω) - L k=1 |µ k (t, ω)| 2 sC k (ω) dω. ( 20 
)
Appendix B shows that this MSE can be viewed as the sum of two terms σ 2 t 1 and σ 2 t 2 where

σ 2 t 1 = +π -π sZ (ω) - (s Zt (ω)) 2 sZ (ω) dω (21) 
represents the error due to aliasing effects (no aliasing yields σ 2 t 1 = 0) and

σ 2 t 2 = +π -π (s Zt (ω)) 2 sZ (ω) 1 1 + L m=1 sZ (ω) /s Bm (ω) dω ( 22 
)
the error due to the presence of noise in the observations [START_REF] Proakis | Digital communications[END_REF]. If one of the noise sources is negligible, this second term equals zero.

A suboptimal procedure can be proposed, rather than the optimal one given in Fig. 1. The idea is to use the optimal reconstruction of {Z (n) , n ∈ Z} presented in Fig. 2. This reconstructed sequence Ẑ (n) , n ∈ Z spans a Hilbert space, denoted as H Ẑ. An estimation of Z (t) can be defined by

Ẑsubopt (t) = pr H Ẑ [Z (t)] . (23) 
The main interest of this method compared to the optimal one is its reduced computational cost. Indeed, in this case, L time-invariant linear filters (the Φ k of Fig. 2) and one linear filter depending on t (the one derived from ( 23)) are needed. This must be compared with the optimal reconstruction which requires L -1 time-invariant linear filters and L linear filters depending on t. However, this method is suboptimal, except for L = 1. In this case, Ẑ (n) , n ∈ Z is the output of the filter Γ 1 (0, ω) = Φ 1 (ω) given in [START_REF] Lacaze | Stationary clock changes on stationary processes[END_REF]. Then, the projection ( 23) is equivalent to a linear filter characterized by the following transfer function:

G L=1 (t, ω) = e iωt sZt (ω) sZ (ω) . (24) 
Both steps are equivalent to the optimal filter Γ 1 (t, ω). This property is no more true for L > 1.

Special case of timing jitter

Consider a case where the observations are not of the form given by ( 1), but are corrupted by timing jitter. In this case, the observations can be written as

U k (n) = Z (n -A k (n)) , n ∈ Z, k = 1, . . . , L (25) 
where timing jitter is modeled by random sequences Ãk = {A k (n), n ∈ Z}, k = 1, . . . , L mutually independent and independent of Z. The jitter is assumed to be stationary in the sense that the following characteristic functions [START_REF] Lukacs | Characteristic functions[END_REF] are independent of n:

Ψ k (ω) = E e iωA k (n) (26) Λ k (m, ω) = E e iω(A k (n)-A k (n-m)) .
Since sampling rates become higher and higher, the jitter effect on system performance can no longer be neglected. This may be the reason why the problem of signal reconstruction in the presence of timing jitter has received an increasing attention in recent years: see for example [START_REF] Tong | Compensation of Markov estimator error in Time-jittered sampling of nonmonotonic signals[END_REF], [START_REF] Vandersteen | Maximum likelihood estimator for jitter noise models[END_REF], [START_REF] Marziliano | Reconstruction of irregularly sampled discrete-time bandlimited signals with unknown sampling locations[END_REF]. In [START_REF] Lacaze | Stationary clock changes on stationary processes[END_REF] and [12], it has been shown that the jittered observations can be written in an orthogonal decomposition form

U k (n) = G k (n) + B k (n) ( 27 
)
where G k (n) is the output of a linear time-invariant filter, Ψ * k (ω) being the transfer function of this filter and Z the input. Moreover, B k (n) is linked to the timing jitter and can be viewed as an additive noise, independent of Z. Therefore, the problem of recovering the original process based on observations corrupted by timing jitter (25) can be viewed as the problem (1) under interest in this paper. The LMMSE derived in (2) can be applied. This will lead the recovering of a filtered version of Z. Then, some inverse filtering method must be used in order to reconstruct the original process Z.

Simulation results

Random process under the sampling condition

This first simulation example considers the case where the sampling condition is verified. In order to derive easily analytical expressions of the reconstruction filters given in (64), the random processes involved in the observed sequences in (1) are chosen as pure white processes on (-π, +π), i.e.,

s Z (ω) = 1 2π and s B k (ω) = 1 2πb k for ω ∈ (-π, +π) and k = 1, . . . , L s Z (ω) = s B k (ω) = 0
for ω / ∈ (-π, +π) and k = 1, . . . , L (28) and with b k > 0 for k = 1, . . . , L. Note that this parameter b k represents the inverse of the noise variance σ 2 k . In this case, the expression of the reconstruction filters of the equivalent scheme of Fig. 3 is given by

Γ k (t, ω) = e iωt b k 1 + L m=1 b m f or k = 1, . . . , L. (29) 
It is important to note that, when the sampling condition is verified, the reconstruction filters are time-invariant related to the sampled sequences Ũk . In the present example, the impulse response of these filters is of the form

γ k (t) = b k 1 + L m=1 b m sinc (πt) f or k = 1, . . . , L (30) 
where the notation sinc(x) is used for sin(x)

x . Using (60) and ( 62), the MSE is directly linked to the noise variances order to highlight the fact that this MSE tends to zero when any noise source variance tends to zero. In this figure, the source number is chosen equal to L = 3, two noise variances are fixed and the third one varies from 0 to 0.5. Both theoretical (31) and simulated MSE are presented. The simulated MSE is computed first by generating 1024 noisy observations (1), then by estimating the reconstructed random process as the output of the reconstruction filters given by (30) and finally by estimating the reconstruction error variance. Moreover, the expression of the MSE in (31) shows that the MSE has to decrease when the number of noise sources increases. This is confirmed by simulations in Fig. 5. 

σ 2 t = σ 2 t 2 = 1 + L m=1 b m . ( 31 

NRZ random process

The aim of the second example is to consider a case where aliasing is present. Therefore, the random process Z is assumed to be a NRZ process [START_REF] Proakis | Digital communications[END_REF] and the noise sequences Bk are assumed to be white sequences

s Z (ω) = 1 2π sinc 2 ω 2 , (32) 
s B k (ω) = 1 2πb k b k > 0 and k = 1, . . . , L.
The Poisson summation formula [13] allows to derive the expression of s Zt (ω) given in (57). Indeed, using the Poisson formula,

e itω k∈Z e i2πkt sinc 2 ω + 2πk 2 = n∈Z F (t + n) e -inω (33) 
where

F (t) = R e itω sinc 2 ω 2 dω. (34) 
Hence,

s Zt (ω) = e -iωt 2π (1 -t) e iωt + te iω(1+t) (35) 
where t and t denote respectively the entire and fractional parts of the real instant t. The expression of the reconstruction filters (64) is given by

Γ k (t, ω) = b k 1 + L m=1 b m
(1 -t) e iωt + te iω(1+t) f or k = 1, . . . , L.

(36) These time-varying filters leads to a reconstruction of the form

Z(t) = L k=1 (1 -t) U k t + tU k t + 1 . (37) 
In this case, the MSE is the sum of two terms, as shown in section 2.3 with a first term to the aliasing effect

σ 2 t 1 = 2t (1 -t) (38) 
and a second one due to the noisy effect The overall MSE is periodic with a unit time period. Figure .6 shows this MSE and its two components as a function of the time instant t. As waited, the MSE is maximum when the considered instant t is in the middle of two consecutive samples. In order to clearly illustrate the result of the reconstruction, Fig. 7 presents a portion of the reconstructed signal. This result has to be compared with the NRZ realization which is represented with a dotted line, taking into account that the observed samples are represented by "+". In this simulation example, L = 3.

σ 2 t 2 = 1 1 + L m=1 b m (1 -2t (1 -t)) . (39) 

Conclusion

This paper has considered the problem of reconstruction of a continuoustime random process when several noisy sampled versions of this process are available. This kind of problem can be found in telecommunications when diversity techniques are used. The linear minimum mean square estimator is derived in this paper. Two implementation schemes are given. The first one is recursive and involves two filter banks; the main interest of this scheme is its recursive property, i.e., adding or suppress-ing an input does not affect the whole scheme. The second equivalent scheme is symmetric and is composed solely of one filter bank. However, any change in the input number leads to modify the whole filter bank. Simulation results have shown the performances of the proposed estimator.

[12] B. Lacaze, Processus Aléatoires pour les communications numériques, Hermes, 2000.

[13] W.Feller, An introduction to probability theory and its applications, Wiley, 1950.

Appendix A: Orthogonalization procedure

The definition of the second sequence C2 given by ( 10) leads to derive a linear filter such that

E [(U 2 (n) -Φ 1 [C 1 ] (n)) C * 1 (k)] = 0, ∀ (k, n) ∈ Z 2 . ( 40 
)
Noting that this problem is exactly the one derived in Example 1, [2, p.132], the expression of this first filter can be directly given

Φ 1 (ω) = sZ (ω) sZ (ω) + sB 1 (ω) . ( 41 
)
The PSD of the sequence C2 defined in ( 10) is computed via

E [C 2 (n) C * 2 (n -m)] (42) 
= E [(Z (n) + B 2 (n) -Φ 1 [Z + B 1 ] (n)) (Z (n -m) + B 2 (n -m) -Φ 1 [Z + B 1 ] (n -m)) * ] = +π -π e iωm (s Z (ω) -2Φ 1 (ω) sZ (ω) + sB 2 (ω) +Φ 2 1 (ω) (s Z (ω) + sB 1 (ω)) dω = +π -π e iωm sB 2 (ω) + sZ (ω) 1 + sZ (ω) /s B 1 (ω) dω. Therefore sC 2 (ω) = sB 2 (ω) + sZ (ω) 1 + sZ (ω) /s B 1 (ω) . (43) 
The expression of the filters Φ 2 (ω) , . . . , Φ L-1 (ω) necessary to define the next orthogonal sequences C3 , . . . , CL is derived by induction. Assume that m orthogonal sequences are defined such that Noting that e iω(n-k) sZ (ω) (1 -Φ 1 (ω)) dω.

C 1 (n) = U 1 (n) (P(1)) C k (n) = U k (n) -
C m+1 (n) = C m (n) -B m (n) + B m+1 (n) -Φ m [C m ] (n) , (46) 
In the same manner, 

E [Z (n) C * 3 (k)] = E [Z (n) (Z (k) + B 3 (k) -Φ 1 [C 1 ] (k) -Φ 2 [C 2 ] ( k 
Furthermore, using orthogonal properties of the sequences,

E [C m (n) C * m (k)] = E [U m (n) C * m (k)] (53) = E [Z (n) C * m (k)] + E [B m (n) B * m (k)] .
This leads to derive the expression of the PSD of the sequence Cm sCm (ω) = sBm (ω) + sZ (ω) 1 + m-1 k=1 sZ (ω) /s B k (ω)

. ( 54 
)
As a result, (47) yields the expression of the mth filter

Φ m (ω) = sZ (ω) m-1 j=1 (1 -Φj (ω)) sCm (ω) (55) 
which can be written as in (13).
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  k=1 sZ (ω) /s B k (ω)f or j = 1, . . . , m -1. (44)The next sequence Cm+1 is defined as the previous ones such thatE = 1, . . . , m, ∀ (k, n) ∈ Z 2 .

(

  45) is true for r = 1, . . . , m -1. For r = m, this equation (45) is equivalent toE [(Z (n) -Φ m [C m ] (n)) C * m (k)] = 0. (47)The expression ofE [Z (n) C * m (k)] can be found by induction. Indeed, obviously,E [Z (n) C * 1 (k)] = E [Z (n) Z * (k)] = +π -π e iω(n-k) sZ (ω) dω.(48)Then, taking into account this first result,E [Z (n) C * 2 (k)] = E [Z (n) (Z (k) + B 2 (k) -Φ 1 [C 1 ] (k)) * ] (49) = +π -π

e( 1 -

 1 iω(n-k) sZ (ω) (1 -Φ 1 (ω)) (1 -Φ 2 (ω)) dω. (50)Therefore, it can be easily deduced by induction thatE [Z (n) C * m (k)] = +π -π e iω(n-k) sZ (ω) Φj (ω)) = 1 1 + m-1 k=1 sZ (ω) /s B k (ω).

Appendix B: Orthogonal projection

Let W k,t (n) denotes the orthogonal projection of Z (t + n) on the Hilbert space H Ck and µ k (t, ω) the transfer function of the equivalent linear filter such that W k,t (n) is the output of this filter excited by the sequence Ck . Therefore, W k,t (n) verifies

The correlation term

] can be derived as (51). The only difference is that it involves the inter-spectrum corresponding to the intercorrelation function between the random sequence Zt = {Z(t + n), n ∈ Z}, t being fixed and Z = {Z(n), n ∈ Z} rather than the PSD of Z. Let sZt (ω) denote this interspectrum. It can be shown that sZt (ω) = k∈Z e i2πkt s Z (ω + 2πk) .

(57)

Taking this into account, (56) yields

This leads to the expression of the filter µ k (t, ω) given in ( 17). This orthogonal projection allows to minimize the reconstruction error power given by (20). Using ( 17) and (54), it can be shown that

dω.

(59) Therefore (20) reduces to

Appendix C: Equivalent symmetric scheme

The LMMSE derivation of Z(t+n) is summarized on the Fig. 1. However, this scheme presents an iterative structure, leading to find a symmetric equivalent scheme as the one presented in Fig. 3 Comparing both schemes (Fig. 1 and Fig. 3) yields immediately

Taking into consideration the contribution of U L-1 (n) in the Fig. 1 allows to isolate the part illustrated in Fig. 8, which must be taken into account to derive the expression of Γ L-1 (t, ω).

Given the expressions of the different filters (13) and (17),

This leads us to propose the following expression for any Γ k (t, ω) filter of Fig. 3:

f or k = 1, . . . , L.

(64) This can be proved by induction. It has already been shown that the result (64) holds for k = L and k = L -1. Now, assume that the result holds for k + 1, . . . , L. Thus, the contribution of U k (n) in Fig. 1 can be represented as illustrated on Fig. 9. The expression of the equivalent filter Γ k (t, ω) is therefore given by: Γ k (t, ω) = µ k (t, ω) -φ k (ω) (65)

Inserting the different filter expressions yields the expression of Γ k (t, ω) of the form given by (64).