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Abstract (246/250 words)  
Dyadic social interactions often require one to adapt to the fluctuating cooperative or 

competitive intentions of others, which can change over time without being explicitly 

signaled. This ability is a critical component of theory of mind (ToM), which develops 

gradually during childhood. However, the computations underlying this ability remain 

to be described at a mechanistic level. Here, we used a combination of experimental 

and modeling approaches in children (3 to 9 years old) to elucidate the computational 

mechanisms underlying this ability and to identify how these computations develop 

during childhood. We implemented a card-matching task in which 192 children (100 

females) thought they were playing with another player. In fact, they played with an 

algorithm that alternated between cooperative and competitive strategies across blocks 

of trials without warning. Behavior of younger children (kindergarten, age 3-5)  was 

more compatible with a simple decision process that tracked the probability that the 

other agent would choose a particular card, based on their previous actions. By 8 years 

of age, most children mainly followed a mixed-intentions influence learning (MIIL) 

model, that arbitrates between cooperative and competitive intentions to adapt their 

decisions. These results show that the combination of the simulation of one’s own 

influence on others and of an arbitration process between cooperative and competitive 

strategies is an important developmental milestone occurring at about 8 years of age. 

Our findings characterize the development of the computations required to adapt to the 

fluctuating cooperative or competitive intentions of others during childhood. 

Significance statement (114/120 words) 
This study identifies the computations required for strategic interactions in children using a 
formal computational approach. We characterize the nature and milestones of the 
development of computational mechanisms involved in adapting to the intentions of others in 
children which is part of Theory-of-Mind. Most children become able to mentalize their 
influence on another’s decision and adapt to another’s intentions at about 8 years old. The 
model accounting best for behavior around this age was a model that arbitrated between a 
mixture of a competitive and a cooperative version of an influence learning model. This 
influence learning model is a reinforcement learning model that also integrates the influence 
of its decision on the other’s outcome.  

 

Introduction (1146 words) 

Often considered as an essential requirement for sophisticated social interactions, 

Theory-of-Mind (ToM) is the ability to attribute mental states, such as emotions, beliefs, or 

desires, to other individuals1. Different milestones have been proposed in the development of 

ToM from birth to early adulthood 2,3. Its most basic form, perception–goal psychology, 

emerges from around 9 months of age and allows agents to represent that others may have 

different perceptual perspectives on the world and act accordingly. Meta-representations 

emerge from around 4 years of age, in the form of belief–desire psychology, and involves an 

appreciation that others subjectively represent the world in fine-grained aspectual ways that 

may be incompatible with one’s own view and that may be false 4–7. At around 7 years of age 

emerges further key concepts that further refine children’s meta-representational 

understanding, sometimes referred to as Advanced Theory-of-Mind (AToM) 5,7–11. It describes 



multiple aspects of an advanced understanding of the minds of others, including social 

reasoning 5,8. 

Here, we specifically focused on the ability to adapt to fluctuating cooperative versus 

competitive intentions of others, which may be an important cognitive component required for 

the social reasoning component of AToM. The ability to track how others’ behavior might 

change over time, and to adapt to the hidden intentions of others that fluctuate between 

competitive and cooperative strategies, is essential to keep an advantage in social interactions. 

In such contexts, deciphering intentions not only requires the representation of beliefs about 

other’s intentions, as in cooperative or competitive contexts alone, but it also requires deciding 

whether the other is competing or cooperating to deploy an appropriate behavioral response12. 

Although formal computational models of ToM functions have been proposed in adults 12–18, it 

is unclear whether these models apply to children and how they evolve with development 

during childhood from 3 to 9 years of age. 

Characterizing the computational mechanisms underlying the ability to adapt to the 
fluctuating cooperative or competitive intentions of others is important because it may help 
build a mechanistic understanding of how this important component of ToM develops in 
childhood5. Different models of strategic interactions may account for the computational 
mechanisms engaged in this ability. To elucidate the computations underlying strategic 
decision making in children, we compared the predictions of different computational models. 
A simple and straightforward strategy may be to use simple heuristics to make decisions, such 
as the Win-Stay/Lose-Switch strategy, that consists of persisting with one’s choices when 
winning, and switching choices after a loss19.  

A popular theory is that the learning and decision processes are explained by a model-
free reinforcement learning (RL) algorithm, such as a Q-learning model, that is able to learn 
the value of an action in a particular state. This algorithm allows to compute and update a Q-
value that is derived from a prediction error that corresponds to the difference between the 
predicted value of the model and the actual feedback20. A more sophisticated candidate model 
is the influence learning model17,18 that not only employs RL mechanisms to track outcome 
probabilities upon choice, but also accounts for a mentalizing process that computes the 
influence of one’s choice on another’s decision. A different class of algorithm relies on 
Bayesian inferences. Based on probabilistic representations of the world, it uses the results of 
its observations and priors on the environment to infer optimal actions21,22. According to this 
latter class of model, children might learn and decide based on purely Bayesian learning 
strategies that do not rely on any mentalizing process. Finally, a recent promising 
computational model, known as the Mixed-Intention Influence Learning (MIIL) model 12, not 
only accounts for the influence of one’s choice on another’s decisions, but also ponders 
between competitive and cooperative opponent’s decision strategies. The MIIL model 
outperforms other learning models in predicting social choice behavior in adults when they had 
to alternate between a cooperative and a competitive game. It relies on and arbitrates between 
a competitive and a cooperative expert to make strategic decisions, one assessing competitive 
intentions and the other assessing cooperative intentions. A controller then weights between 
these experts according to their relative reliabilities. This sophisticated neurocomputational 
mechanism may be absent or only partially developed in younger children.  

In the current study, we sought to identify whether distinct computational mechanisms 
appear during children’s development before they develop a deeper theory of mind. We 
therefore used a computational modeling approach and a strategic decision task similar to the 
one developed by Philippe et al in adults 12. Briefly, pairs of children completed a task in which 
they played a card-matching game on a tablet (Fig.1). Each child from these pairs played 
facing a same-gender child (Fig.1.a & b). Both were told that they were playing with each 
other, but were not allowed to communicate. Unbeknownst to them, they were in fact playing 
with an Artificial Agent (AA) that switched between cooperative and competitive trial blocks 
(two modes, see Fig.1.d). The goal of the participating children was to score as many points 
as possible in the game by guessing the correct color. The more points they scored the more 
reward they would obtain at the end of the experiment. This task allowed us to investigate the 



computations used by children during social interactions and to identify at what developmental 
age they are able to adapt to fluctuating intentions of others while the modes of interaction 
(cooperation vs competition) were not indicated.  

We first identified the computational processes that described the children’s decision 
process in this dyadic social interaction task. Then, after fitting each of the candidate models 
to the collected data, we compared them to determine the best fitting model at the group level 
at different ages. We then analyzed the learning parameters of this winning model to 
characterize the evolution of its hidden states in our different age groups: Kindergarten (KG) 
from 3 to 5 years old, Early Primary Schoolers (EPS), 6-7 years old, and Mid-Primary 
Schoolers (MPS), 8-9 years old. This allowed us to describe at a mechanistic level how 
adaptation to changing intentions of others develop and change between different age groups. 

At the behavioral level, we expected the ability to differentiate between the competitive 

vs cooperative blocks to increase with age. Children around the age of 8 should adapt to the 

hidden cooperative or competitive intentions of a partner based on the previous sequences of 

choices and outcomes. At the computational level, these expected results mean that younger 

age groups of children should be better fitted by simpler, less sophisticated models. We 

hypothesized that sophistication of the computational models describing the decision process 

should increase with age. According to this hypothesis, the most sophisticated model, i.e. the 

MIIL model, should appear in the oldest age group. Alternatively, if the same model fits all age 

groups best, the learning parameters of such model should lead to better performance and 

discrimination between competitive vs cooperative blocks in older children. 

  



Methods 

Participants 

192 participants (aged 3.4 – 9 years old, M = 6.5, SD = 1.5, 100 females) were recruited from 

one primary school and one kindergarten in China, Guangzhou city and Nanjing city. 

114 participants (aged 6-9, M = 7.5, SD = 1.1, 60 females; 58 aged 6-7, M = 6.5, SD = 0.3, 30 

females; 56 aged 8-9, M = 8.5, SD = 0.3, 28 females) were recruited from one primary school 

in Nanjing, Jiangsu province, China. These participants had normal or corrected-to-normal 

vision and were naive with regard to the purpose of the experiment. They and their parents 

gave written informed consent prior to participation.  

78 participants (aged 3.4-6, M = 5.0, SD = 0.8, 40 females) were recruited from a kindergarten 

in Guangzhou city, Guangdong province, China. These participants had normal or corrected-

to-normal vision and were naive with regard to the purpose of the experiment. Their parents 

gave written informed consent prior to participation. 

The study was approved by the Ethical Review Board of Nanjing and Guangzhou Universities. 

 

Mixed intentions task 

Participants performed a task comprising 154 trials on computer tablets (MS Surface 

Pro). They were led to believe that they were interacting with another child sitting in front of 

them, and who was playing the same game with them. In fact, both were playing against an 

artificial agent (AA) managed by a computer program. This simulated social interaction allowed 

us to investigate the dynamics and mechanisms arbitrating between multiple learning 

algorithms. The experimenter conveyed the hierarchy to the 2 children when they first 

presented them to each other. In addition to their names, the experimenter also clearly stated 

the school grade of each of them. Males played with males, and females with females. The 

tablet screens showed each participant four cards, two face-down (the other player's cards) 

and two face-up (their own cards). Participants were informed that to win, they had to choose 

the card of the same color as the one the other person was going to choose. Experimenters 

were careful not to specify whether the other player was an opponent or a partner i.e. whether 

the other player had the same victory condition (to match cards) or whether they would win if 

the cards did not match. Participants were also told that both they and the other player had to 

make their choices in two seconds (Fig.1). If the Artificial Agent (AA) played before the 

participant, one of the two face-down cards was removed from the playing field. If the 

participant chose first, only the selected card remained on the playing field. Then, when both 

had chosen, the cards were revealed. The participant scored points if the card colors matched, 

otherwise they received nothing. Participants were led to believe that their final payoff would 

be increased if they scored more points. No information about the other's payoff was given to 

the participants, they only knew that after an interaction, the other ‘participant’ would see the 

same screen but with their own outcomes which could be different for each of them. 

Importantly, unbeknownst to the participants, the artificial agent alternated between 

Competitive and Cooperative trial blocks. During this mixed-intentions task, the AA’s strategy 

was determined by alternating 20 trials of a coordination game (Cooperative blocks), and then 

10 trials of a hide and seek (HS) task (Competitive blocks). The artificial agent algorithm was 

designed to predict the color that would be chosen by the participant on the basis of a 

probabilistic analysis of the two previous choices and outcomes (see Supplementary 

Methods for the algorithm). Here we defined a competitive choice, made by the AA, as 

choosing the card of the color the participant was expected not to play, and a cooperative 



choice as choosing the card with the same color that the participant was expected to play. 

Thus, the artificial agent exploited the bias of the participants in stochastically, such that the 

more predictable the participant was, the more the algorithm made correct competitive or 

cooperative choices (see Supplementary Methods). Participants were not informed of the 

switches between cooperative and competitive interaction by the algorithm. 

 

Artificial Agent 

The AA calculated the probability p for the participant to select a particular target color based 

on the history of the two previous choices and their outcomes. It then chose the target that it 

deemed the most probable to be chosen by the participant in the cooperative mode, and the 

target that was the least probable in the competitive mode.  

 

Behavioral analysis 

Logistic regression: For the logistic regressions, we reported significant marginal effects of 

a given variable under the name “estimate” (for example: Cooperativity signaturet-1 : estimate). 

ln (
𝑝

1 − 𝑝
) = 𝑥0 + 𝑥1𝑋1 + 𝑥2𝑋2 +⋯ 

Xi represents independent variables and xi the associated weights in the logistic regression. P 

represents the probability of a given event. The marginal effect of the variable X1 is defined as: 

𝑦1̂ = 𝑚𝑒𝑎𝑛(𝑙𝑜𝑔𝑖𝑡−1(𝑥1)) 

The mean is computed across all observed data. Thus, the marginal effect called “estimate” 

can easily be interpreted as the discreet change of the dependent variable given a unitary 

change of an independent variable. For the linear regressions, reported “estimate” represents 

xi, i.e., the regression coefficient. Indeed, in a linear regression, the marginal effect of a variable 

is equal to the estimated coefficient. 

 

Information theoretic metrics: To quantify the consistency in the adopted strategy in 

response to reward feedback, we utilized our previously developed metrics based on 

information theory 23,24. These include entropy of choice strategy (H(Str)), mutual information 

between reward outcome and strategy (MIRS), and conditional entropy of reward-dependent 

strategy (ERDS). Intuitively, the entropy of choice strategy (H(Str)) captures the randomness 

or uncertainty in the adopted strategy, trial-by-trial. Thus, it signals the overall stochasticity in 

the choice behavior. MIRS and ERDS values further aim to constrain the extent to which the 

agent’s choice strategy can be predicted by the reward outcome prior to that decision. 

Importantly, in our dyadic game settings, the reward feedback is directly predicated upon the 

other player’s action and therefore could signal additional social value.  

Specifically, the Shannon entropy of choice strategy, H(Str), is computed using the following 

equation: 

𝐻(𝑆𝑡𝑟) = −(𝑃(𝑠𝑡𝑎𝑦) ⋅ log2 𝑃(𝑠𝑡𝑎𝑦) + 𝑃(𝑠𝑤𝑖𝑡𝑐ℎ) ⋅ log2 𝑃(𝑠𝑤𝑖𝑡𝑐ℎ)), 



where Str is the agent’s adopted strategy, coded as stay (1), if the agent selects the same 

target as the previous trial, or switch (0) otherwise. Therefore H(Str) measures the level of 

uncertainty or surprise choice behavior in terms of stay or switch.  

Mutual information between reward and strategy (MIRS) is calculated as follows: 

𝑀𝐼𝑅𝑆  =  𝐼(𝑆𝑡𝑟; 𝑅𝑒𝑤) 

= −∑ ∑ (𝑃(𝑆𝑡𝑟, 𝑅𝑒𝑤) ⋅ log2 (
𝑃(𝑆𝑡𝑟,𝑅𝑒𝑤)

𝑃(𝑆𝑡𝑟)⋅𝑃(𝑅𝑒𝑤)
)) 

𝑅𝑒𝑤∈{𝑤𝑖𝑛,𝑙𝑜𝑠𝑒}
 
𝑆𝑡𝑟∈{𝑠𝑡𝑎𝑦,𝑠𝑤𝑖𝑡𝑐ℎ} , 

where Rew is the reward outcome on the previous trial, coded as win (1) or lose (0).  

Finally, the entropy of reward-dependent strategy (ERDS), is the remaining uncertainty in the 

strategy after accounting for the information given by previous reward outcome: 

𝐸𝑅𝐷𝑆  =  𝐻(𝑆𝑡𝑟|𝑅𝑒𝑤) = 𝐻(𝑆𝑡𝑟) − 𝐼(𝑆𝑡𝑟; 𝑅𝑒𝑤) =

−∑ ∑ (𝑃(𝑆𝑡𝑟, 𝑅𝑒𝑤) ⋅ log2 (
𝑃(𝑆𝑡𝑟,𝑅𝑒𝑤)

𝑃(𝑅𝑒𝑤)
)) 

𝑅𝑒𝑤∈{𝑤𝑖𝑛,𝑙𝑜𝑠𝑒}
 
𝑆𝑡𝑟∈{𝑠𝑡𝑎𝑦,𝑠𝑤𝑖𝑡𝑐ℎ} . 

These metrics are model-free in the sense that they do not assume any underlying structure 

or model in the learning and decision-making processes. As such, these measures can be 

computed directly from any segment of the task, making them especially useful for quantifying 

behavioral adjustment over time in dynamic, changing environments. For the running average 

plot, we computed the metrics for each individual using a moving window of 7 trials, such that 

the data point for trial t was computed from trials between t−6 and t. The values were then 

averaged for each age group. For calculating the bar plots in the inset, we calculated the 

metrics for each phase in each subject by compiling the last 10 trials of each Cooperation block 

and the last 5 trials of each Competition block (i.e., last half of each block) to reduce the 

contaminating effect of the preceding phase. These values were then averaged across 

subjects by age groups. 

 

Learning models 

To test for a dynamic tracking of implicit intention we compared 5 models, 1 involved 

theory of mind (the MIIL model), the others were to control for other possible strategies (see 

Supplementary Materials). The influence model relies on Taylor expanded reinforcement 

learning17,18 to take into account the influence of one’s own strategy on the strategy of the 

other. This model can be adapted in a cooperative or in a competitive version. The MIIL model 

is constructed based on an arbitrator that weights the cooperative and competitive versions of 

the influence model according to their reliability before making the decision 12.  

To control for strategies that did not include the ability to adapt to changing intentions 

of others (theory of mind), and thus could not differentiate between cooperation and 

competition, we added 4 other models including two Bayesian inference types (BSL). The 

Bayesian Sequences Learner (BSL) strategy relies on Bayesian inference given past 

sequences of choices. We used sequences of depths 0 and 1. Finally, we added two non-

Mentalizing non-Bayesian models, a reinforcement learning model (QL) and a model based 

on the heuristic Win/stay – Lose/Switch that we observed in the model free analysis. 

The Bayesian Model Selection (BMS) was performed using the VBA toolbox 

(Variational Bayesian Analysis) in a random effect analysis relying on the free energy as the 

lower bound of model evidence. We use Exceedance Probability measurements (EP)25 to 

select the model used most frequently in our population.  



Results (2162 Words) 
 

Behavioral signature of tracking intentions.  

To study possible signature of tracking intentions, we considered multiple variables that 

could affect choice behavior. These include the previous stay vs switch choices of the child 

and of the artificial agent (AA) in the previous three trials (at t-1, t-2, t-3), the three previous 

outcomes (i.e. whether the previous three trials were won or lost), the age and sex of the child,  

decision time, the hierarchical condition (i.e., if they were paired with a child in the same school 

grade, or an older child, or a younger child), the number of trials within a session of the 

experiment, the strategy of the AA at that time (competitive or cooperative), the previous 

cooperativity signatures at t-1 and t-2 (see below), and finally the interactions between age 

and cooperativity signatures as regressors. We first investigated the probability to “stay”, i.e., 

to select the same target as that from the previous trial, for the three different age groups (Fig. 

2a). We examined how children used the history of previous interactions to make their choices. 

To measure cooperation, we defined the “cooperativity signature” as a binary variable that is 

equal to 1 if:  

- the participant won on the previous trial and the artificial agent (AA) stayed on the same 

target for the next trial, or, 

- the participant lost on the previous trial and the AA switched to the other target for the 

next trial. 

Otherwise, the cooperativity signature was set to 0. Indeed, from the perspective of the 

participant, if the AA is a cooperative partner, then when both players win by choosing the 

same target, they should choose to keep the same target. Instead, if they lose due to choosing 

different targets, the AA’s switch can be seen as its willingness to conform to the participant’s 

choice. Cooperativity signature equal to 1 corresponds to the AA following win-stay/lose-switch 

strategy.  

We first computed the mean behavioral probability to “stay”, i.e., to select the same target as 

that from the previous trial, for the three different age groups (Fig. 2a). To control for random 

effects and the interaction and autocorrelation between effects of each variable over time, we 

used Generalized Linear Mixed-Effects (GLME) models implemented with the lme4 package 

in R. We ensured that we had good estimates of random effects and accounted for variability 

in behavior using Bound Optimization by Quadratic Approximation (see Methods). GLME1 

assessed the children’s tendency to select the same target as that in the previous trial (“stay”) 

and GLME2 assessed their performance in successfully finding the same card as the AA 

(“reward”). 

When examining how children used the history of previous interactions to make their 

choices, we found that the results of previous three trials, i.e., the decisions of both the 

participant and the AA to stay and whether the participant was successful, significantly 

predicted the probability that the participant would stay and win, independently of all other 

factors (Supp.Tab.1). Participants’ performance improved with time, and, within a session of 

the experiment. Children tended to stay more frequently over time in the cooperative blocks. 

This suggests that their performance improved with practice. Interestingly, the cooperativity 

signature at t-1 predicted a higher probability for the children to stay with their choice. This 

indicates that children tracked whether the other agent was cooperating during the previous 

trial. More specifically, the marginal effects of the interaction between cooperativity signature 

and age (Fig. 2b left) indicated that older children performed significantly better after a positive 

(vs zero) cooperativity signature from the AA. In comparison, after controlling for other 

independent variables, younger children did not show such improvements in performance after 

trials with a positive cooperativity signature. This indicates that older children identified 



signatures of cooperativity better. In contrast, younger children also tended to stay less in the 

cooperative blocks, independently from other factors. However, taking into account the 

marginal effects of the interaction between the age of the child and the mode of the AA 

(cooperative vs. competitive) (Fig. 2b right), we observed that stay behavior was more 

frequent in cooperative blocks compared to the competitive blocks for older children, whereas, 

surprisingly, it decreased in cooperative blocks compared to competitive blocks for younger 

children. These results point towards an evolution of the learning process for intention 

adaptation and coordination strategy. We found no effect for sex or hierarchical condition. 

These results persisted after a step-by-step drop-term procedure or addition of a random effect 

of time. 

 

Model-free analysis based on information theory reveals emergence of new strategies 

in older children  

To examine whether and how children continuously adjust their behavior across 

cooperative and competitive blocks and reveal different choice strategies across age groups, 

we next computed several metrics based on information theory to measure consistency in 

children’s responses to the AA’s choice and reward feedback. More specifically, we computed 

the entropy in participant’s choice strategy in terms of stay or switch on the previous target 

(H(Str)), mutual information in reward-dependent strategy (MIRS), and conditional entropy of 

reward-dependent strategy (ERDS) over the time course of the experiment. Children were 

grouped as kindergarteners (KG), early primary schoolers (EPS), and mid-primary schoolers 

(MPS). We computed these quantities using a running average (with window size of seven 

trials) and separately for each age group (Fig. 3, see Methods for more details). 

We found that during the cooperative blocks, better performance (Fig. 3a) in older 

children was accompanied by lower H(Str) (Spearman’s correlation; r = -0.718, p = 7.15e-32), 

suggesting that older children were overall more consistent in their stay or switch between 

trials (Fig. 3b, Wilcoxon rank sum test on H(Str); KG vs. EPS: p = .0169; EPS vs. MPS: p = 

.0203). The lower H(str) observed in older children was mostly due to a decrease in ERDS (r 

= 0.852, p = 1.53e-55; Fig. 3d), corresponding to more consistent responses to reward 

feedback, and to a lesser extent, a decrease in MIRS (r = 0.438, p = 1.98e-10; Fig. 3c) 

corresponding to a weaker link between choice and previous reward outcome. These results 

indicate that the superior performance of older children during the cooperative blocks was due 

to two factors: (1) older children were able to choose more consistently across trials (less 

stochasticity in choice); (2) older children based their choices on reward outcome less strongly.  

In contrast, the differences between the three age groups were smaller during the 

competitive blocks. More specifically, there were no significant differences in their consistency 

in strategy (H(Str)), even between the youngest (KG) and the oldest (MPS) age groups 

(Wilcoxon rank sum test, p = .582; Fig. 3b, inset). Yet, we observed that the oldest (MPS) age 

group responded more strongly to the outcome on the previous trials, as indicated by 

significantly larger MIRS than the younger EPS group (Wilcoxon rank sum test, p = .0285; Fig. 

3c inset) or KG group (p = .038). Similarly, the randomness in strategy after accounting for the 

effect of reward outcome (ERDS) was significantly smaller for the oldest group (Wilcoxon rank 

sum test, p = .00205; Fig. 3d inset), but not significantly different between KG and EPS children 

(p = .311). The smaller ERDS for the oldest group compared to the younger group (EPS) was 

accompanied by a larger MIRS (Fig. 3c). These data indicate that during the competitive 

blocks, only children in the oldest group were able to learn better from reward feedback and 

this made them more consistent in response to rewards.  



Overall, these results suggest that only the oldest group of children (MPS) were able 

to adjust their strategy appropriately when the intention of AA changed between the 

cooperative and competitive blocks. Consistent with this interpretation, we observed that the 

MPS group showed the largest overall increase in MIRS from cooperative to competitive block 

(Figure 3c; mean increase = 0.0788; Wilcoxon signed-rank test, p = .00127), whereas the 

younger age groups exhibited insignificant changes in MIRS (KG: mean increase = - 0.00286, 

p = .891; EPS: mean increase = -0.0438, p = .634). These results indicate the development of 

additional strategies in older children that allow them to learn from reward feedback differently 

depending on the nature of the interaction with the other agents. 

 

Computational models track children’s evaluation of the “other player’s” intentions 

To elucidate the computations underlying the children’s strategic decision-making, we 

compared a variety of different computational models fitted to the choice data of individual 

children on a trial-by-trial basis. We sought to examine their ability not only to mentalize the 

other agent, but also to adapt to its intentions. Therefore, we fitted different Influence 

models17,18, including the Mixed-Intentions Influence Learning (MIIL) model12. Classical 

influence models rely on mentalizing mechanisms that account for the influence of one’s own 

choice on the other’s choice. We tested a competitive as well as a cooperative version of the 

classical influence model. In contrast, the Mixed-Intentions Influence model computes one 

decision value according to a competitive expert and another according to a cooperative 

expert. It then arbitrates between the two, based on the difference in their relative reliability, 

defined as the difference in unsigned value functions for the two choices determined by specific 

learning algorithms (see Supplementary Material). We compared these models to other 

models that did not rely on mentalizing mechanisms (see Methods). Specifically, we fitted a 

Win-Stay/Lose-Switch (WS/LS) heuristic19, a Q-Learning (QL) model based on reinforcement 

learning, and Bayesian models of different complexity, (Bayesian Sequence Learners of depth 

0 and 1 (BSL0 and BSL1)26 (see Supplementary Methods for more details on the models). 

All of these models were initially fitted separately to each participant and in each condition. We 

applied a Variational Bayes Approximation to fit and optimize all of the tested models based 

on the Free Energy criterion27 with the VBA-toolbox28 in Matlab. This ensured we had good fits 

of the tested models to the data and accounted for variability in behavior (see Supplementary 

Methods). We then compared all the tested models with a group-level random-effect Bayesian 

Model Selection (BMS)25,29 based on the Free Energy criterion with the VBA toolbox.  

We found that the best fitting model for the majority of children in groups KG and EPS 

was the BSL0 model (Fig.4a&b), which is a Bayesian learning model that computes the mean 

and variance of the probability of the correct choice for the next trial (KG: Estimated Frequency 

Ef=0.605, protected Exceedance Probability pEP=0.999; EPS: Ef=0.530, pEP=0.986). These 

results show that a majority of the children from 3 to 7 years old neither tracked the intentions 

of the other agent, nor relied on any mentalizing process for their decision in this task. They 

rather tracked with a simple Bayesian strategy which card was the most probable at each trial. 

In mid-primary schoolers (MPS), the MIIL model fitted the majority of the children best (MPS: 

Ef=0.483, pEP=0.956, Fig.4a&b). This indicates that the ability to mentalize and to track the 

intentions of others for strategic decision-making actually appears around the age of 8 years 

old, when children are in the third year of primary school (in China). Furthermore, this ability to 

mentalize and track intentions, with an un-signaled alternation between cooperative and 

competitive blocks, appears gradually among children starting from kindergarten (KG: 

Ef=0.122, pEP=10e-11; EPS: Ef=0.278, pEP=1.36e-2; MPS: Ef=0.483, pEP=0.956, 

Fig.4a&b). According to these findings, children progressively develop the ability to mentalize 

and update their beliefs about future chosen targets, and arbitrate between the predicted 



intentions of another to compete or cooperate. This ability appears earlier in some children (at 

kindergarten) but the majority of mid-primary schoolers apply this decision process which 

remains the most common strategy in adults 12. 

 

The sophistication of children’s decision process increases with age 

The BSL0 model best accounted for the behavior of the majority of younger children, 

but was almost entirely absent in the oldest group. Thus, the model frequencies of the oldest 

(MPS) vs youngest (KG) groups of children differed significantly. The posterior probability that 

the two groups had the same model frequencies was p = 6.7e-3 (uncorrected). Although there 

was no significant difference between the frequency of the different models in the KG and EPS 

groups (p=0.995) or in the EPS and MPS groups (p=0.990), there was a general trend towards 

an increase in the sophistication of the strategies such that the BSL1 model best accounted 

for the behavior of more EPS and MPS students than the BSL0. The WSLS heuristic remained 

a marginal strategy for some EPS and MPS participants, although its representation increased 

among the other models with age (see Fig.4a&b).  

Finally, analysis of the arbitration parameters of the MIIL model for the children that 

were best fitted by this model, revealed how the model attributes the cooperative vs 

competitive tendency of the children (Fig.4c). In general, the children showed a low tendency 

to cooperate in the game. This was the case across the three age groups. Their tendency to 

cooperate increased during the cooperative blocks, and interestingly, in the older the age 

group, children became more likely to cooperate than not during the cooperative blocks. 

Furthermore, for the MPS group, the tendency to cooperate in cooperative blocks increased 

progressively over consecutive cooperative blocks. This indicates that the older children 

improved their ability to decipher the cooperative intentions of the artificial agent in the 

cooperative blocks during the task. Thus, our results indicate differences in both model 

frequency between the age groups, but also that the children best fitted by the MIIL model 

were also more capable of recognizing cooperative intentions.   

 
 
  



Discussion (1356 words)  

Learning to adapt one’s own decisions to those of another facilitates social interactions. 

The abilities to adapt to the intentions of others, to determine the influence of one’s actions on 

the actions of others, and to apply strategic reasoning during social interactions are relevant 

AToM abilities for children’s everyday experiences. Such skills are required for all sorts of 

competitive or cooperative interactions in the playground and classroom at school. Here, we 

first examined how children across age groups adjust their choice behavior across cooperative 

and competitive blocks. Next, we characterize the computations required to adapt to changing 

intentions of others in children. We demonstrate that by the age of 8 years old (i.e. mid-primary 

school), most children used a computational mechanism relying on a mixed-intentions 

influence learning model, that arbitrates between cooperative and competitive intentions to 

adapt their decisions. The strength of this approach was to compare diverse computational 

models to assess how children learn to adapt their decisions to those of another. This 

computational approach accurately captures the development of AToM abilities during 

childhood at a mechanistic level, avoiding issues of interpretation that can be encountered 

when relying only on behavior 10,11,30.  

We found that when a task is not explicitly signaled as cooperative or competitive, most 

children in mid-primary school exploit a cooperativity signature, i.e. intention to cooperate from 

their partner, better than younger children. Measures of entropy and mutual information based 

on information theory indicate that older (vs younger) children performed especially well in 

cooperative (vs competitive) blocks due to 1) their higher choice consistency and 2) their 

weaker reliance on the previous outcome to decide. Older children thus discriminate better 

between competitive vs cooperative blocks by behaving more predictably in the cooperative 

blocks than in the competitive ones, and by displaying more forgiveness in these blocks. At 

the computational level, we furthermore provide evidence that most children in mid-primary 

school, are able to track variations of another individual’s hidden cooperative/competitive 

intentions. Their behavior was best explained by a Mixed-Intentions Inference Learning (MIIL) 

model12 which exploits a control mechanism that gives a higher weight to the strategy with the 

most reliable prediction31. In contrast, the best fitting model for the majority of children in KG 

and EPS groups (children from 3 to 7 years old) was a learning model that computes the mean 

and variance of the probability of the correct choice for the next trial. These age-group of 

children neither tracked the intentions of the other agent, nor relied on any mentalizing process 

for their decision in this task. They rather tracked with a simple strategy which card was the 

most probable at each trial.  

Computational modeling helped to reveal the mechanisms underlying learning to adapt 

to the changing intentions of the other. The intention of the children to cooperate or compete 

was captured by the arbitration weight factor of the MIIL model. This factor evolved with time 

depending on the competitive vs cooperative blocks of the AA for most children in the MPS 

group. More precisely, the intention to cooperate during cooperative blocks grows stronger 

with time over the course of consecutive blocks. This suggests that children understanding of 

the intentions of the other player, in this case the AA, improved with time during the task, and 

that this was mainly driven by the realization that the other player could cooperate or compete. 

This indicates that these children can actively learn and adapt to the intentions of the other 

player. Very few of the children in the younger groups showed this ability during the task, 

although it was apparent in some children in the intermediate EPS group. However, their ability 

to learn and adapt to the AA, as captured by the arbitration weight factor, was far lower than 

for the children in the oldest group. When considering the arbitration weight of the MIIL model 

(Fig.4.c), the oldest group of children differentiated between competition vs cooperation 



intention of the AA better than the two younger groups. Finally, it should be noted that in all 

three age groups there was a strong bias towards competition. This might be because most 

videogames played by children at this age, on a tablet and also in their daily experience, 

involve competition in one way or another. The competitive bias might also have been fostered 

by the experimental setup in which children were placed facing each other, which might 

encourage a competitive, rather than a neutral context, for children.  

Our computational modeling analysis indicates a shift of nature of the algorithms (from 

BSL0 to MIIL) used by children between early primary school (EPS) and mid-primary school 

(MPS). This is consistent with behavioral reports that core aspects of AToM develop 

nonlinearly, with children reaching a milestone at the age of 7 years, at which time they attain 

the conceptual insight that mental states can be recursive 5. Indeed, it has been proposed that 

a distinct conceptual development occurring in middle childhood at around 7-8 years old could 

explain improved performance involving social reasoning and reasoning about ambiguity. In 

contrast, a simple general increase in information-processing capacities would have only 

predicted a change from BSL0 to BSL1 during development, and cannot explain such 

conceptual development in reasoning. Our findings therefore confirm that a conceptual 

development occurs in children between early primary school (EPS) and mid-primary school 

(MPS) age. We were able to characterize this change at the computational level by showing 

that it is underlined by algorithms of distinct nature. A conceptual insight might also explain the 

improved performance in our task, as most children in the oldest group have achieved the 

insight that: a) their own previous choices can influence others behavior and, b) that others 

can change their intentions during interaction and consequently switch strategies. We find that 

this conceptual insight occurs at the same age, 8 years old, as in previous large-scale studies8. 

This is an important period of cognitive development that might be linked to other complex 

forms of reasoning, such as scientific reasoning 6,32,33.  

The MIIL model that fits best most MPS children is also the model that fitted best most 

of adults that performed the same task 12. Children above 8 years old are, in this sense, more 

similar to adults than younger children. This indicates that most 8-year-old children have 

developed the computational mechanisms that they will most likely maintain in adulthood to 

solve similar decision tasks. A similar trend was observed for other repeated economic games 

(stickers game and sender-receiver game) where children older than 6.5 years of age become 

more similar to adults than children younger than 6.5 years old 34. Our results would therefore 

indicate that most 8-year-old children have developed the computational mechanisms that they 

will most likely maintain in adulthood to adapt to others’ fluctuating intentions or to solve similar 

decision tasks. 

To conclude, our work provides evidence that important conceptual developments 

occur in children at around 8 years old and that they can be accounted by the Mixed-Intentions 

Inference Learning model. We established that, from mid-primary school onward, most 

children develop the abilities to adapt to the fluctuating intentions of others to cooperate or 

compete, and to learn to adapt one’s own strategy as a consequence. They become able to 

mentalize the influence of their own choices on other’s decisions and to arbitrate between a 

cooperative and a competitive strategy in a decision game that encourages adaptation to the 

hidden intentions of others. We document the computational mechanisms and the period when 

specific aspects of AToM for social reasoning develop during childhood, with a conceptual 

change in the decision-learning process between the youngest group and the oldest group of 

children. This suggests that conceptual developments fuel some aspects of AToM 

development in children4,5,8. Research studies have observed diverse consequences of AToM, 

e.g., children’s everyday social experiences35, their self-understanding36,37, as well as their 

epistemological beliefs38 or their academic abilities39,40. These abilities are fundamental for 



children’s psychological well-being and their success in life. Therefore, understanding the 

computational mechanisms underlying components of the AToM during childhood has 

practical relevance to optimize educational and social environments, especially for e-learning 

applications modeling children as computational agents, and may also help identify children at 

risk. 
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Fig. 1. Description of the procedure to study adaptation to fluctuating competitive and 

cooperative intentions of others in children. (a)-(b) Experimental setup. Two children 

were tested on individual tablets. They played facing each other, so each could see the other, 

but not the other’s tablet. They were told that their tablets were connected, that the other player 

represented on their tablet was the child sitting opposite, and that each of them had to 

maximize their own score to maximize their final reward. In reality both children were actually 



playing with an Artificial Agent (AA). Males were paired with males and females with females. 

(c) Experimental protocol. The two players both chose one card among two cards presented. 

When both children had chosen, the chosen cards were revealed, and if the card they had 

chosen was the same as that chosen by the AA, they scored points. If their card was not the 

same as that indicated for them by the AA, that child was not rewarded. (d) Payoff matrix for 

the two possible modes of the Artificial Agent (AA). The AA that decided which choice was 

rewarded for the participant operated in either a competitive or a cooperative mode, based on 

the payoff matrices depicted above. (e) Snapshots of the actual game on the tablets. The 

player chose one of the two cards presented on the lower part of the screen. The jewels on 

the right represent the number of rewards (images) that the child will be allowed to choose and 

keep at the end of the experiment. 

  



Fig. 2. Behavioral results. (a) Mean probability for the children to choose the same target 

as the one they chose in the previous trial (“stay”). The mean frequency to “stay” is 

represented in green, blue and red for children in mid-primary school (MPS), early primary 

school (EPS), and kindergarten (KG) respectively, with their respective standard errors 

(ribbons). The purple bar represents the first 4 initial trials in which the Artificial Agent (AA) 

played randomly for initialization purposes. The green bars represent the cooperative blocks 

and the red bars the competitive blocks. (b) Generalized Mixed Effects (GLME) models, 

marginal effects. Left: predicted probability for the subjects to choose the correct target at 

trial n, rewardn, plotted against the trial number (x-axis), after a positive cooperativity signature 

(blue) vs after a negative cooperativity signature (red) for different ages. Right: predicted 

probability for the subjects to choose the same target at trial n as previously (at trial n-1), stayn 



(right). The older the child, the better they succeed in coordinating with the AA after a positive 

cooperativity signature and the more stable they behave in the cooperative blocks.  

  

 

  



 
Fig. 3. Model-free analysis based on information theory. (a) Probability of winning 

reward over trials. Running averages of the probability of reward are computed using a 

moving window of 7 trials. Performance steadily increased with age during the cooperative 

blocks, but only slightly increased in older children in the competitive blocks. Inset shows the 

mean value for each group during each phase (Cooperative and Competitive). (b) Shannon 

entropy for stay vs. switch over trials H(Str). During the cooperative phase, improvement 

in performance with age was accompanied by decrease in H(str) as older children were better 

at choosing less randomly. No overall effect was observed during the competitive blocks. (c–

d) Mutual Information between reward outcome on the previous trial and the adopted 

choice strategy (MIRS) and entropy of reward-dependent strategy (ERDS)23. During the 

cooperative blocks, both MIRS and ERDS decreased in older children, showing that older 

children chose less randomly, and that they were also able to base their choice strategy on 

reward outcome less strongly. In contrast, during the competitive blocks, larger MIRS in 8-9 yo 

compared with 6-7 yo was accompanied by smaller ERDS in 8-9 yo compared with 6-7 yo. 

(Shaded error bar = S.E.M.)   

  



 
Fig. 4. Computational learning models. (a)-(b) Bayesian model comparison. x-axis: model 

names; y-axis: age group; Color-scale: (a) estimated frequencies (Ef), i.e., the frequency at 

which one model fitted one subject best in the group population compared to the other tested 

models; (b) protected exceedance probabilities (pEP), i.e., the probability that measures how 

likely it is that any given model is more frequent than all other models in the comparison set, 

corrected for the possibility that observed differences in model evidences (over subjects) are 

due to chance 25.  In the Kindergarten (KG) and Early Primary School (EPS) groups, the model 

that best fitted most of our group of participants is the BSL0. In Mid-Primary School, the MIIL 

model best fitted most of the participants. (c) Mean estimated cooperation probability 

computed from the MIIL model. x-axis: trial number. y-axis: wMIIL, the mean probability, 

according to the MIIL model, that the participant attempts to cooperate (left) across all 

participants (group by group) and (right) across only those participants that were best fitted by 

the MIIL model for the 114 trials (group by group). This indicates that children in Kindergarten 

fail to use sophisticated MIIL computations. The initial purple area shows the 4 random 

initializing trials, green areas are the Cooperative blocks, and red areas are the Competitive 

blocks.  

 

  



Supplementary Materials 
 

Learning Models 
 

Bayesian Sequence Learning (BSL) model 
The BSL model26 tracks the (log) odds of P(ot=1|ot-K), where o is the partner's choice (binary 
outcome). This variable is updated according to a Laplace-Kalman filter, yielding 2 sufficient 
statistics (mean and variance) per combination of past outcomes. BSL can learn sequences 
of arbitrary depth K. For example:  

- if K=1, then BSL tracks 2 probabilities, namely: P(ut=1|ut-1=1) and P(ut=1|ut-1=0). In this 

case, BSL needs to know about the partner's previous move ut-1. 

- if K=2, then BSL tracks 4 probabilities, namely: P(ut=1|ut-1=1, ut-2=1), P(ut=1|ut-1=0,ut-

2=1), P(ut=1|ut-1=1,ut-2=0) and P(ut=1|ut-1=0,ut-2=0). In this case, BSL needs to know 

about the partner's two previous moves ut-1 and ut-2. etc. 

More generally, the BSL model tracks 2K probabilities.  
 

Win-Stay Lose-Switch (WSLS) model 
This heuristic19 keeps the same target as the previous one if previous reward was positive, and 
changes targets otherwise. 
 

Q-Learning (QL) model 
The constituents of this model in its simplest form are:  

 - a set of (action/item) hidden value states. In two-armed bandit problems, there are 

two of these (n in a n-armed). In general, there will be as many values as there are available 

actions. Some behavioral biases can be captured by the initial conditions on these hidden 

value states.  

 - a learning rate. This parameter controls the impact of reward prediction error on the 

value update. Note that one may want to ask whether the learning rate depends upon 

experimental factors (pathological condition, gain/loss domains, etc…) 

 - a behavioral temperature and a bias. These parameters control the exploitation vs 

exploration ratio of the agent, and capture choice randomness.  

Q-learning models simply assume that subjects update the value of possible actions. In its 

simplest form, the Q-learning algorithm expresses the change in value Q(t+1)-Q(t) from trial t 

to trial t+1 as being linearly proportional to the prediction error. This yields the following learning 

rule:  

𝑄𝑡+1 = 𝑄𝑡 + 𝛼 ∗ (𝑟𝑡+1 − 𝑄𝑡) 

Where rt is the reward delivered to the subject at trial t, and α is the (unknown) “learning rate” 

of the subject. 

The Q-learning evolution function thus takes the agent's previous action and the feedback 

received for the previous action as data inputs. We complement with a softmax decision rule 

in the Q-learning observation function. As a reminder, this is an equation that expresses the 

probability Pt(ai) of the subject to choose action ai at trial t: 

𝑃𝑡(𝑎𝑖) =
exp(𝛽 ∗ 𝑄𝑡(𝑎𝑖))

∑ 𝛽 ∗ 𝑄𝑡(𝑎𝑗)𝑗
 

Where β is the (unknown) temperature. 

Fitting the above Q-learning model to behavioral data means finding estimates of the learning 

rate α, the inverse temperature β, and the initial values Q0 that best explains the observed 

choices. 



Influence Learning model 
 This mentalizing model was described by Hampton et al17, who also found neural 
correlates with this model in humans17. The influence model relies on a Taylor expended 
reinforcement learning. This model describes computations underlying the capacity to 
mentalize (in the context of a strategic game). Let 𝑝𝑛 = 𝑃𝑛(𝑜 = 1) be the agent's prediction of 
the other's next move, i.e., the probability that the other will pick the first alternative option. The 
"influence learning" rule can be written as follows: 

𝑝𝑛+1 = 𝑝𝑛 + 𝜂 ∗ (𝑜 − 𝑝𝑛) − 𝜆 ∗ 𝑘1 ∗ 𝑝𝑛 ∗ (1 − 𝑝𝑛) ∗ (𝑎 −
𝛽∗𝑥𝑛−𝑘2

𝑘1
) (1) 

where o is the other's last move, a is the agent's last move, 𝜂 is the weight of the agent's 
prediction error, 𝜆 is the weight of the other's prediction error, k1 & k2 are derived from the 

game's payoff table, 𝑥𝑛 is the tracked log-odds of 𝑝𝑛, 𝛽 is the other’s temperature, i.e. the 
tendency of the other to explore vs exploit information (the closer it is to 0, the more it explores 
by choosing randomly without using previous information, and the closer it is 1, the more it 
exploits previous information and chooses deterministically). 
Note that for all subjects, the tested models fitted better than chance. 
 

Mixed-Intentions Influence Learning (MIIL) model 
The ‘mixed intentions’ version of the influence model computes one decision value according 

to a competitive expert and another according to a cooperative expert and then arbitrates 

between the two, based on the difference in their respective reliability (see SI, Fig. 1). We 

defined reliability as the difference in unsigned value functions for two choices given by 

particular learning algorithms. 

 

Supp. Fig.1. Scheme of the Mixed-Intention Influence model (adapted from Philippe et 

al12). Two influence models (one cooperative and the other competitive, resp. Pcoop in green 

and Pcomp in red) compute a value for choosing one specific target (P in black). A controller 

uses the difference between the absolute value of the value of each expert (called reliability) 

to compute a probability that the other is cooperating (blue). Then, the model weights the value 

of each expert according to the probability of being in cooperative or in competitive modes to 

produce a final decision value. Then it compares its predictions to the actual reward and 

computes again a new value for each expert. 



 

GLMs & GLMEs.  
We at first modeled our GLM based on the following formulas: 
Rewardn ~ 1 + Rewardn-1 + Rewardn-2 + Rewardn-3 + Stayn-1 + Stayn-2 + Stayn-3 + AA_Stayn-1 + 
AA_Stayn-2 + AA_Stayn-3 + Coop_sign-1 + Coop_sign-2 + Trial + AA_mode + Hierar_cond + 
Sex + Age + DT + (Age:Coop_sign-1) + (Age:Coop_sign-2) + (Age:AA_mode) 
Stayn ~ 1 + Rewardn-1 + Rewardn-2 + Rewardn-3 + Stayn-1 + Stayn-2 + Stayn-3 + AA_Stayn-1 + 
AA_Stayn-2 + AA_Stayn-3 + Coop_sign-1 + Coop_sign-2 + Trial + AA_mode + Hierar_cond + 
Sex + Age + DT + (Age:Coop_sign-1) + (Age:Coop_sign-2) + (Age:AA_mode) 

The R summary outputs were:  

glm(formula = reward_n ~ 1 + reward_n_1 + reward_n_2 + reward_n_3 +  
    stay_n_1 + stay_n_2 + stay_n_3 + AI_stay_n_1 + AI_stay_n_2 +  
    AI_stay_n_3 + coop_sig_n + coop_sig_n_1 + coop_sig_n:Age +  
    coop_sig_n_1:Age + Trial + Age + mode + mode:Age + Sex +  
    Condition + DT_interval, family = binomial, data = all_data) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-1.6512  -1.1944   0.8336   1.1220   1.4958   
 
Coefficients: 
                  Estimate Std. Error z value Pr(>|z|)     
(Intercept)      -0.882495   0.166709  -5.294 1.20e-07 *** 
reward_n_1        0.135809   0.030741   4.418 9.97e-06 *** 
reward_n_2        0.224299   0.031396   7.144 9.05e-13 *** 
reward_n_3        0.095392   0.031254   3.052 0.002272 **  
stay_n_1          0.319626   0.030827  10.368  < 2e-16 *** 
stay_n_2          0.006183   0.040066   0.154 0.877365     
stay_n_3          0.084637   0.039147   2.162 0.030617 *   
AI_stay_n_1       0.107068   0.040205   2.663 0.007744 **  
AI_stay_n_2       0.077600   0.039470   1.966 0.049290 *   
AI_stay_n_3       0.103181   0.028713   3.594 0.000326 *** 
coop_sig_n       -0.241575   0.241846  -0.999 0.317853     
coop_sig_n_1      0.302307   0.186278   1.623 0.104615     
Trial             0.045286   0.015080   3.003 0.002673 **  
Age               0.048033   0.024527   1.958 0.050183 .   
mode             -0.040009   0.134166  -0.298 0.765548     
SexMale          -0.026873   0.028118  -0.956 0.339217     
Condition        -0.027190   0.021363  -1.273 0.203097     
DT_interval       0.002459   0.014542   0.169 0.865699     
coop_sig_n:Age    0.047194   0.036310   1.300 0.193687     
coop_sig_n_1:Age -0.029094   0.028008  -1.039 0.298920     
Age:mode          0.011641   0.020080   0.580 0.562078     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 29242  on 21229  degrees of freedom 
Residual deviance: 28563  on 21209  degrees of freedom 
  (772 observations deleted due to missingness) 
AIC: 28605 
 



Number of Fisher Scoring iterations: 4 
 
glm(formula = stay_n ~ 1 + reward_n_1 + reward_n_2 + reward_n_3 +  
    stay_n_1 + stay_n_2 + stay_n_3 + AI_stay_n_1 + AI_stay_n_2 +  
    AI_stay_n_3 + coop_sig_n + coop_sig_n_1 + coop_sig_n:Age +  
    coop_sig_n_1:Age + Trial + Age + mode + mode:Age + Sex +  
    Condition + DT_interval, family = binomial, data = all_data) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-1.7896  -1.1789   0.7449   1.0952   1.5737   
 
Coefficients: 
                  Estimate Std. Error z value Pr(>|z|)     
(Intercept)      -0.921750   0.167804  -5.493 3.95e-08 *** 
reward_n_1        0.427364   0.030985  13.793  < 2e-16 *** 
reward_n_2       -0.005308   0.031660  -0.168  0.86684     
reward_n_3        0.080017   0.031511   2.539  0.01111 *   
stay_n_1          0.125316   0.031079   4.032 5.53e-05 *** 
stay_n_2          0.189470   0.040200   4.713 2.44e-06 *** 
stay_n_3          0.124653   0.039408   3.163  0.00156 **  
AI_stay_n_1       0.196072   0.040380   4.856 1.20e-06 *** 
AI_stay_n_2       0.171727   0.039696   4.326 1.52e-05 *** 
AI_stay_n_3       0.252993   0.028970   8.733  < 2e-16 *** 
coop_sig_n        0.004318   0.243123   0.018  0.98583     
coop_sig_n_1     -0.095439   0.186746  -0.511  0.60931     
Trial             0.072417   0.015296   4.734 2.20e-06 *** 
Age               0.006792   0.024671   0.275  0.78309     
mode             -0.130648   0.134809  -0.969  0.33248     
SexMale          -0.044579   0.028475  -1.566  0.11746     
Condition        -0.034473   0.021639  -1.593  0.11114     
DT_interval      -0.014021   0.014684  -0.955  0.33967     
coop_sig_n:Age    0.031188   0.036493   0.855  0.39276     
coop_sig_n_1:Age  0.038038   0.028066   1.355  0.17532     
Age:mode          0.020517   0.020172   1.017  0.30911     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 29199  on 21229  degrees of freedom 
Residual deviance: 28026  on 21209  degrees of freedom 
  (772 observations deleted due to missingness) 
AIC: 28068 
 
Number of Fisher Scoring iterations: 4 
 
After applying a dropterm() process based on the AICs of the models successively, the final 
models were:  
Rewardn ~ 1 + Rewardn-1 + Rewardn-2 + Rewardn-3 + Stayn-1 + Stayn-3 + AA_Stayn-1 + 
AA_Stayn-2 + AA_Stayn-3 + Coop_sign-1 + Coop_sign-2 + Trial + Age + (Age:Coop_sign-1) 
Stayn ~ 1 + Rewardn-1 + Rewardn-3 + Stayn-1 + Stayn-2 + Stayn-3 + AA_Stayn-1 + AA_Stayn-2 + 
AA_Stayn-3 + coop_sign-1 + coop_sign-2 + Trial + Age + AA_mode + (AA_mode:Age) + 
(Age:coop_sign-2) + Sex + Condition 
We used the glm() function of the lme4 package on R with a binomial family. 



The R summary outputs were:  

glm(formula = reward_n ~ 1 + reward_n_1 + reward_n_2 + reward_n_3 +  
    stay_n_1 + stay_n_3 + AI_stay_n_1 + AI_stay_n_2 + AI_stay_n_3 +  
    coop_sig_n + coop_sig_n_1 + coop_sig_n:Age + Trial + Age,  
    family = binomial, data = all_data) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-1.6400  -1.1939   0.8343   1.1230   1.4677   
 
Coefficients: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -0.79419    0.11351  -6.997 2.62e-12 *** 
reward_n_1      0.13777    0.03067   4.492 7.04e-06 *** 
reward_n_2      0.22214    0.03086   7.197 6.14e-13 *** 
reward_n_3      0.09386    0.03117   3.011 0.002603 **  
stay_n_1        0.31885    0.03078  10.358  < 2e-16 *** 
stay_n_3        0.08633    0.03907   2.210 0.027134 *   
AI_stay_n_1     0.11296    0.03089   3.657 0.000255 *** 
AI_stay_n_2     0.07616    0.03940   1.933 0.053244 .   
AI_stay_n_3     0.10179    0.02862   3.557 0.000375 *** 
coop_sig_n     -0.19871    0.13376  -1.486 0.137403     
coop_sig_n_1    0.13516    0.03963   3.410 0.000649 *** 
Trial           0.04219    0.01474   2.863 0.004191 **  
Age             0.02797    0.01644   1.701 0.088926 .   
coop_sig_n:Age  0.04749    0.01978   2.401 0.016364 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 29242  on 21229  degrees of freedom 
Residual deviance: 28568  on 21216  degrees of freedom 
  (772 observations deleted due to missingness) 
AIC: 28596 
 
Number of Fisher Scoring iterations: 4 
 
glm(formula = stay_n ~ 1 + reward_n_1 + reward_n_3 + stay_n_1 +  
    stay_n_2 + stay_n_3 + AI_stay_n_1 + AI_stay_n_2 + AI_stay_n_3 +  
    coop_sig_n + coop_sig_n_1 + coop_sig_n_1:Age + Trial + Age +  
    mode + mode:Age + Sex + Condition, family = binomial, data = all_data) 
 
Deviance Residuals:  
    Min       1Q   Median       3Q      Max   
-1.7870  -1.1789   0.7452   1.0949   1.5906   
 
Coefficients: 
                 Estimate Std. Error z value Pr(>|z|)     
(Intercept)      -1.01799    0.12891  -7.897 2.86e-15 *** 
reward_n_1        0.42592    0.03092  13.774  < 2e-16 *** 
reward_n_3        0.08087    0.03148   2.569 0.010205 *   
stay_n_1          0.12632    0.03096   4.080 4.50e-05 *** 
stay_n_2          0.18913    0.03966   4.769 1.86e-06 *** 



stay_n_3          0.12491    0.03939   3.171 0.001520 **  
AI_stay_n_1       0.19588    0.03974   4.929 8.28e-07 *** 
AI_stay_n_2       0.17140    0.03960   4.328 1.50e-05 *** 
AI_stay_n_3       0.25365    0.02896   8.758  < 2e-16 *** 
coop_sig_n        0.20653    0.05734   3.602 0.000316 *** 
coop_sig_n_1     -0.11472    0.18523  -0.619 0.535695     
Trial             0.07281    0.01528   4.764 1.89e-06 *** 
Age               0.02112    0.01835   1.151 0.249580     
mode             -0.20953    0.09820  -2.134 0.032871 *   
SexMale          -0.04353    0.02845  -1.530 0.126007     
Condition        -0.03278    0.02158  -1.519 0.128665     
coop_sig_n_1:Age  0.04109    0.02781   1.477 0.139571     
Age:mode          0.03259    0.01429   2.280 0.022580 *   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 29199  on 21229  degrees of freedom 
Residual deviance: 28028  on 21212  degrees of freedom 
  (772 observations deleted due to missingness) 
AIC: 28064 
 
Number of Fisher Scoring iterations: 4 
 
The successive factors that were dropped by our GLM dropterm() procedure in R were: 

 

 

We then checked if our results were still robust if we included random effects of time. We 
used the glmer() function of the lme4 package on R with a binomial family and the bobyqa 
optimizer. We proceeded to further simplifications through another dropterm() process which 
led to the following formula: 

Rewardn ~ 1 + Rewardn-1 + Rewardn-2 + Rewardn-3 + Stayn-1 + Stayn-3 + AA_Stayn-1 + 
AA_Stayn-2 + AA_Stayn-3 + Coop_sign-1 + Coop_sign-2 + Trial + Age + (Age:Coop_sign-1) + (1 + 
Trial |ID) 
Stayn ~ 1 + Rewardn-1 + Rewardn-3 + Stayn-2 + AA_Stayn-1 + AA_Stayn-2 + AA_Stayn-3 + 
Coop_sign-1 + Coop_sign-2 + Trial + Age + AA_mode + (AA_mode:Age) + (Age:Coop_sign-2) + 
(1 + Trial |ID) 

Their summary outputs in R were: 

Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 
['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: reward_n ~ 1 + reward_n_1 + reward_n_2 + reward_n_3 + stay_n_1 + stay_n_3 + 
AI_stay_n_1 + AI_stay_n_2 + AI_stay_n_3 + coop_sig_n_1 +   
    coop_sig_n_2 + coop_sig_n_1:Age + Trial + Age + (1 + Trial | ID) 

Rewardn (GLM)  Df Deviance AIC 

stay_n_2 1 28562.75 28602.75 

DT_interval 1 28562.77 28600.77 

Age:mode 1 28563.11 28599.11 

coop_sig_n_2:Age 1 28563.88 28597.88 

Sex 1 28564.81 28596.81 

Mode 1 28566.08 28596.08 

Condition 1 28567.89 28595.89 

<none> NA 28567.89 28595.89 

Stayn (GLM)  Df Deviance AIC 

reward_n_2 1 28026.14 28066.14 

coop_sig_n_1:Age 1 28026.87 28064.87 

DT_interval 1 28027.77 28063.77 

<none> NA 28027.77 28063.77 



   Data: all_data 
Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05)) 
 
     AIC      BIC   logLik deviance df.resid  
 28570.6  28706.0 -14268.3  28536.6    21213  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-1.9889 -1.0158  0.6215  0.9348  1.3948  
 
Random effects: 
 Groups Name        Variance Std.Dev. Corr 
 ID     (Intercept) 0.029156 0.17075       
        Trial       0.001403 0.03746  0.54 
Number of obs: 21230, groups:  ID, 193 
 
Fixed effects: 
               Estimate Std. Error z value Pr(>|z|)     
(Intercept)    -0.71923    0.12685  -5.670 1.43e-08 *** 
reward_n_1      0.11649    0.03120   3.734 0.000188 *** 
reward_n_2      0.20311    0.03132   6.485 8.86e-11 *** 
reward_n_3      0.07641    0.03158   2.420 0.015529 *   
stay_n_1        0.30152    0.03122   9.659  < 2e-16 *** 
stay_n_3        0.07109    0.03944   1.803 0.071428 .   
AI_stay_n_1     0.09678    0.03129   3.094 0.001978 **  
AI_stay_n_2     0.06985    0.03958   1.765 0.077630 .   
AI_stay_n_3     0.07906    0.02918   2.710 0.006737 **  
coop_sig_n_1     -0.21691    0.13435  -1.614 0.106423     
coop_sig_n_2    0.13944    0.03975   3.508 0.000452 *** 
Trial           0.04419    0.01506   2.935 0.003341 **  
Age             0.02724    0.01839   1.481 0.138522     
coop_sig_n:Age  0.05124    0.01988   2.577 0.009963 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Correlation matrix not shown by default, as p = 14 > 12. 
Use print(x, correlation=TRUE)  or 
    vcov(x)        if you need it 
 
Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) 
['glmerMod'] 
 Family: binomial  ( logit ) 
Formula: stay_n ~ 1 + reward_n_1 + reward_n_3 + stay_n_2 + AI_stay_n_1 +      
AI_stay_n_2 + AI_stay_n_3 + coop_sig_n_1 + coop_sig_n_2 + coop_sig_n_2:Age +   
    Trial + Age + mode + mode:Age + (1 + Trial | ID) 
   Data: all_data 
Control: glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 1e+05)) 
 
     AIC      BIC   logLik deviance df.resid  
 27812.0  27947.4 -13889.0  27778.0    21213  
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-2.5128 -0.9796  0.4887  0.8999  1.8841  
 



Random effects: 
 Groups Name        Variance Std.Dev. Corr 
 ID     (Intercept) 0.12670  0.3559        
        Trial       0.03475  0.1864   0.12 
Number of obs: 21230, groups:  ID, 193 
 
Fixed effects: 
                 Estimate Std. Error z value Pr(>|z|)     
(Intercept)      -0.78275    0.16996  -4.605 4.12e-06 *** 
reward_n_1        0.42514    0.02938  14.468  < 2e-16 *** 
reward_n_3        0.08482    0.03163   2.681 0.007329 **  
stay_n_2          0.09117    0.04080   2.235 0.025437 *   
AI_stay_n_1       0.16911    0.04046   4.180 2.92e-05 *** 
AI_stay_n_2       0.16380    0.03174   5.161 2.45e-07 *** 
AI_stay_n_3       0.16712    0.02984   5.601 2.13e-08 *** 
coop_sig_n_1        0.22127    0.05848   3.784 0.000155 *** 
coop_sig_n_2     -0.12465    0.18971  -0.657 0.511133     
Trial             0.08319    0.02059   4.041 5.32e-05 *** 
Age               0.01886    0.02480   0.760 0.447049     
mode             -0.24768    0.10027  -2.470 0.013507 *   
coop_sig_n_2:Age  0.04671    0.02853   1.637 0.101541     
Age:mode          0.03843    0.01461   2.630 0.008539 **  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
The successive factors that were dropped by our GLMER dropterm() procedure in R were: 

 

 
We then proceeded to an addterm() process with the regressors that were previously 
removed from the GLMs:  

add_term_score_GLMER = addterm(GLMER_score, ~  . + Stayn-2 + (Age:Coop_sign-2) + 
mode + Sex + Condition + DT,test="Chisq") 

add_term_stay_GLMER = addterm(GLMER_stay, ~  . + Rewardn-2 + (Age:Coop_sign-1) + Sex 
+ Condition + DT,test="Chisq") 

This led to the following formula and results: 

Rewardn ~ 1 + Rewardn-1 + Rewardn-2 + Rewardn-3 + Stayn-1 + Stayn-3 + AA_Stayn-1 + 
AA_Stayn-2 + AA_Stayn-3 + Coop_sign-1 + Coop_sign-2 + Trial + Age + (Age:Coop_sign-1) + (1 + 
Trial |ID) 
Stayn ~ 1 + Rewardn-1 + Rewardn-3 + Stayn-2 + AA_Stayn-1 + AA_Stayn-2 + AA_Stayn-3 + 
Coop_sign-1 + Coop_sign-2 + Trial + Age + AA_mode + DT + (AA_mode:Age) + 
(Age:Coop_sign-2) + (1 + Trial |ID) 

 

 

 

 

Rewardn 
(GLMER)  

Df Deviance AIC 

<none> NA 28536.6 28570.6 

Stayn (GLMER)  Df Deviance AIC 

stay_n_1 1 27776.5 27816.5 

stay_n_3 1 27776.7 27814.7 

Sex 1 27777.1 27813.1 

Condition 1 27778.0 27812.0 

<none> NA 27778.0 27812.0 



Models GLM GLME 

Variables 
Rewardn : Estimate 

 (Std. Error) 
Stayn : Estimate 

(Std. Error) 
Rewardn : Estimate 

(Std. Error) 
Stayn : Estimate 

(Std. Error) 

Intercept 
-0.79419 (0.11351) 

*** 
-1.01799 (0.12891)  

*** 
-0.71931 (0.12678)  

*** 
-0.78958 (0. 17080)  

*** 

Rewardn-1 
0.13777 (0.03067)  

*** 
0.42592 (0.03092)  

*** 
0.11649 (0.03120)  

*** 
0.42246 (0.02944)  

*** 

Rewardn-2 
0.22214 (0.03086)  

*** 
/ 

0.20311 (0.03132)  
*** 

/ 

Rewardn-3 
0.09386 (0.03117)  

** 
0.08087 (0.03148)  

* 
0.07641 (0.03158)  

* 
0.08593 (0.03164)  

** 

Stayn-1 
0.31885 (0.03078)  

*** 
0.12632 (0.03096)  

*** 
0.30152 (0.03122)  

*** 
/ 

Stayn-2 / 
0.18913 (0.03966)  

*** 
/ 

0.09100 (0.04080)  
* 

Stayn-3 
0.08633 (0.03907)  

* 
0.12491 (0.03939)  

** 
0.07109 (0.03943)  

. 
/ 

AA_Stayn-1 
0.11296 (0.03089)  

*** 
0.19588 (0.03974)  

*** 
0.09678 (0.03128)  

** 
0.17040 (0.04047)  

*** 

AA_Stayn-2 
0.07616 (0.03940) 

. 
0.17140 (0.03960)  

*** 
0.06986 (0.03958)  

. 
0.16351 (0.03174)  

*** 

AA_Stayn-3 
0.10179 (0.02862)  

*** 
0.25365 (0.02896)  

*** 
0.07905 (0.02918)  

** 
0.16725 (0.02984)  

*** 

Coop_sign-1 -0.19871 (0.13376) 
0.20653 (0.05734)  

*** 
-0.21677 (0.13427) 

0.22357 (0.05851)  
*** 

Coop_sign-2 
0.13516 (0.03963)  

*** 
-0.11472 (0.18523) 

0.13944 (0.03975)  
*** 

-0.12383 (0.18964) 

Trial 
0.04219 (0.01474)  

** 
0.07281 (0.01528)  

*** 
0.04419 (0.01506)  

** 
0.08420 (0.02062)  

*** 

Age 
0.02797 (0.01644)  

. 
0.02112 (0.01835) 0.02725 (0.01838) 0.01987 (0.02493) 

AA_mode / 
-0.20953 (0.09820)  

* 
/ 

-0.24844 (0.10025)  
* 

Sex (Male) / -0.04353 (0.02845) / / 

Hierar_cond / -0.03278 (0.02158) / / 

DT / / / 0.02368 (0.01623) 

Coop_sign-

1:Age 
0.04749 (0.01978)  

* 
/ 

0.05122 (0.01987)  
** 

/ 

Coop_sign-

2:Age 
/ 0.04109 (0.02781) / 0.04668 (0.02852) 

AA_mode:Age / 
0.03259 (0.01429)  

* 
/ 

0.03831 (0.01461)  
** 

Supp. Table 1: Comparison of GLMs and GLMEs for behavioral factors. Hierar_cond, 
AA_mode, Coop_sig, Reward, AA_Stay and Stay are coded effects (Hierar_cond: different = 
1, equal = 0 ; AA_mode: competitive = -1, random = 0, cooperative = 1; Coop_sig, Reward, 
AA_Stay & Stay: True = 1, False = 0). Trial & DT were normalized. Signif. codes: ‘***’: p < 
0.001; ‘**’: p < 0.01; ‘*’: p < 0.05. 

 

Control analyses and model checks 
We ran several control analyses. We first conducted a Confusion Analysis (CA) as a 

model check to ensure that the compared models that we tested, given our data, were not 
confused between each other and that our model selection was indeed reliable41. We therefore 
generated data multiple times with Monte-Carlo simulations (approx. 2800 in total) for each of 
our tested models with different sets of parameters, and conducted the same analysis as 



presented previously on the simulated data. This meant fitting the data with all of the tested 
models, then performing a BMS on the models to select the one that fitted best. If this analysis 
is reliable and the models are distinguishable, then the model that we simulated at the 
beginning should also be that selected by our analysis. The confusion matrix (Supp.Fig.2.a, 
see also the confusion table in Supp. Mat.) showed that the final selected model was indeed 
that which was initially simulated the majority of the time. Even if data generated by all models, 
the MIIL model included, can, to a certain extent, be mistakenly attributed to the BSL0 model, 
the reciprocal is not true, i.e. data generated by a BSL0 is not mistaken for any other model, 
the MIIL model included. This means that we perhaps actually underestimate the amount of 
AToM in younger children. 
Next, we checked if the learning parameters of the MIIL model could actually be identified from 
observed data. To do so, we generated simulated data with multiple Monte-Carlo simulations 
(approx. 9800 in total) from the influence model using different sets of learning parameters 
sampled from a uniform distribution. The sampling was done (uniformly) between the most 
extreme empirical values found in our data analysis for each of our seven learning parameters. 
We then fitted the generated data with the influence model with the same method as 
previously. We then regressed the estimated parameters on the simulated parameters. We 
found for each learning parameter a positive correlation between estimated and simulated 
parameters (Fig.3.b). The regression indicates that the estimated parameters were actually 
underestimated compared to those used to generate simulated data.  

Supp. Fig. 2. Model checks. (a) Confusion matrix. x-axis: model selected as the best fitting 

one after model fitting and Bayesian Model Selection (BMS); y-axis: initial simulated model 

that generated the data; Color-scale: model attribution ratio. (b) Simulation-recovery 

analysis. X-axis: value of the simulated parameters of the influence model that generated the 

simulated data; Y-axis: value of the estimated parameter after model fitting and parameter 

estimation on the simulated data. We simulated then recovered the two parameters 

constituting the arbitration weight that estimates the cooperation tendency of the subject in the 

MIIL model. 

 

Supplementary analyses  
We initially fitted and compared other models than those presented in the main results: 

2 influence models, one in a purely competitive setup and one in a purely cooperative setup. 

But they eventually did not pass the confusion analysis, i.e. they were confused with other 

models when simulated then tested through our analysis. They indeed get confused for the 

BSL0 model. This implies that, for our main results, the overrepresentation of the BSL0 model 

in the younger groups might actually hide the presence of cooperative and competitive 

Influence models among them. However, this does not change the main result that a transition 



in model representation occurs around age 8 in MPS when the MIIL model becomes 

preponderant. Still, the results of the comparison is given here, for the readers’ information.  

 

 

Supp. Fig. 3. Supplementary analysis. (top) Bayesian model comparison. X-axis: model 

names; Y-axis: age group; Color-scale: Estimated frequencies (Ef), i.e., the frequency at which 

one model fitted one subject best in the group population compared to the other tested models. 

In the Kindergarten (KG) and Early Primary School (EPS) groups, the model that best fitted 

most of our group of participants is the BSL0. In Mid-Primary School, the MIIL model best fitted 



most of the participants. (down) Confusion matrix. X-axis: model selected as the best fitting 

one after model fitting and Bayesian Model Selection (BMS); Y-axis: initial simulated model 

that generated the data; Color-scale: model attribution ratio.  
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