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Abstract

This paper studies the effec ts of timing jitter onc omplec proc esses,
whether the samplingc ondition is verified or not. The problem of
recovering ac ontinuous-time process from observations subjected
to jitter isc onsidered. A solution in terms of linear filtering of
sampled real and imaginary parts is derived. Simulation ecamples
are given to demonstrate the application of the proposed scheme.

Key words ssd phrsses : sampling,c omplec proc esses, timing jit-
ter, linear minimum mean square reconstruction

1 Introduction

The well-known sampling theorem states that a continuous-time band-
limited process can be recovered from a set of samples in the case of
periodic sampling if the sampling frequency is twice the spectral band
limit of the process. Indeed, when the sampling theorem is verified, the
reconstruction of the original continuous-time process can be achieved
with a zero mean square error (MSE) by a linear interpolation of the
samples. This interpolator is referred to as the Shannon interpolator.
When the hypotheses of the sampling theorem are not fulfilled, the linear



reconstruction with a zero MSE is not possible. However, the linear
minimum mean square estimator (LMMSE) can be derived.

In the case of complex processes, it has been shown that a lower MSE
can often be achieved by considering a linear combination of the observed
real part and imaginary part samples rather than a linear combination
of the complex samples [1], [2]. However, the results of [1], [2] have been
obtained under uniform sampling assumption.

The problem of jitter in sampling has received an increasing attention
in recent years because as sampling rates become higher, the effect of jit-
ter on system performance can no longer be neglected. Early papers [3],
[4] derived the expression of the discrete sampled sequence spectrum as a
function of the continuous signal spectrum. More recent papers study the
effect of timing jitter in equivalent-time sampling systems [5], [6] and pro-
posed two amplitude estimators based on a mean estimator or a Markov
estimator. The effect of timing jitter in equispaced sampling wattmeters
is studied in [7], assuming that timing jitter introduces random fluctua-
tions in the sampling instants of both voltage and current channels. In
order to estimate the jitter variance in high frequency sampling scopes,
a maximum likelihood estimator is proposed and compared to the least
squares estimator [8]. An original method based on the bispectrum is
derived in [9], [10] to detect sampling jitter and estimate its variance.
In these papers, the reconstruction of the original signal is achieved by
assuming that multiple samples are taken at each nominal sample time,
allowing to propose estimators based on mean computation, for example.
The problem of signal reconstruction in the presence of jitter, using one
set of samples (i.e., one sample at each nominal sample time) has been
studied in [11]: three methods are derived from optimization techniques
to reconstruct a bandlimited discrete-time signal from an irregular set
of samples at unknown locations. It is interesting to note that in this
case, the continuous-time reconstruction is not addressed and a spectral
bandlimitedness hypothesis is necessary to apply the methods proposed
in [11].

The present paper addresses the problem of recovering a continuous-
time complex process from sampled observations subjected to timing
jitter, without any hypothesis on the signal spectral band.

The main results of [1], [2] are recalled in Section 2 and the formula-
tion of timing jitter problem is given. Section 3 first derives the solution
to a general problem: how can we reconstruct one random process, based



on the observation of two others random processes, correlated to the one
we are willing to reconstruct. Then, applied to the precise context of
the paper, the LMMSE expression is given, allowing to reconstruct a
complex random process based on the observations of its real and imagi-
nary sampled parts in the presence of timing jitter. Section 4 gives some
examples and simulations highlight how the results of the Section 3 can
be applied. Conclusions are reported in Section 5. Appendices are given
in order to detail some theoretical developments necessary to derive the
results of Section 3.

2 Problem formulation

2.1 Uniform sampling

Let Z = {Z(t),t € R} be a complex random process whose real and imag-
inary parts are denoted as X = {X(¢),t € R} and Y = {Y (t),t € R}

Z(t) = X(t) +iY (t). (1)

The random process Z is a zero mean stationary process whose Power
Spectral Density (PSD) sz (w) is defined by

K7 (r)=E[Z(t) 2" (t - 7)] = / 52 (W) T dw @)
JR

where F [.] denotes the mathematical expectation, the superscript * holds
for complex conjugate and Kz (7) denotes the random process autocor-
relation function. The PSDs sx (w) and sy (w) of X and Y are defined
in the same way, from the autocorrelation functions Kx (7) and Ky (7).
Moreover, X (t) and Y (t) are assumed to be stationary correlated and
the interspectrum sxy (w) is defined by

Kxy (f) = E[X ()Y (t —7)] = /IR sxy (@) €7 doo. 3)

Straightforward computations allow to express sz (w) as follows
sz (w) = sx (w) + sy (w) —isxy (w) +isxy (). (4)

The random process Z is sampled at time instants t = n € Z, with a
unit sampling period. The classical sampling theory studies linear recon-
struction of the continuous random process Z based on the observation



of its samples [12]. For example, in the case of a random process with a
limited spectral band of [—7, 4], the reconstruction is exact (i.e., with
a zero MSE) using the following formula:

X sin(r(t—k
20 =2, 7r((t(—k)))

k=—oc

7 (k). (5)

More generally, without any hypothesis on the spectral bandwidth, the
uniform sampling of the random process Z allows to derive the LMMSE
of Z(t) from the sampled process Zs; = {Z(n),n € Z} [13], [14]. This
LMMSE is a linear combination of the observed samples and can be
written in a general form:

n

Zi(t) = 1

0= tim > (1) 20 (6)
k=—n

where the limit is defined in the mean square sense. This linear recon-

struction is optimal in the sense that the coefficients ay,, (t) are calculated

in order to minimize the MSE
2
ol=E “z@) - zl(t)] ] (7)

where Z(t) is a linear interpolator defined in (6).

Of course, the knowledge of the complex sampled process Z; is equiv-
alent to the knowledge of its sampled real and imaginary parts, X; =
{X(n),ne€Z} and Y, = {Y(n),n € Z}. However, it has been shown [1],
[2] that a lower MSE can be possibly obtained by considering a linear
interpolator of the form

—~

Zy(t) = Hm > by (8) X (k) + can (8) Y (F). (8)
k=—n

n—-+o0o

2.2 Non uniform sampling

When sampling errors occurred during the sampling process, the sampled
complex observations can be written

v

Z(n)=Z(n—A(n)) 9)



where timing jitter is modeled by a random sequence Ag = {A(n),n € Z}
independent of Z. The jitter is assumed to be stationary in the sense
that the two following characteristic functions [15] are independent of n:

V(W) = EF“W} (10)

o (mw) = E {ei“’(A(")_A("_m))} i

This paper addresses the problem of finding the LMMSE Z (t) of Z(t)
from the observations Z; = {Z (n),n € Z}. Note that the jitter se-

quence Ag is not observed and is only known by its characteristic func-
tions given in (10). The reconstruction of Z(t) from Zs can be achieved,
as in the uniform sampling case, by the following linear interpolation:

n

Zs(t) = lim ,;_:n apn (t) Z (k) (11)
where the interpolation coefficients ay,, (t) depend on the statistical prop-
erties of the jitter sequence A;. Such problem has been addressed by
Balakrishnan in [3]. Related studies can also be found in [16] and [17].
The main contribution of this paper is the reconstruction of Z(t) by

using the following linear interpolator

Z(t) = 1 (b1 (5) X (k) + i () Y (B)) 12

0= 1 3 (b (0 X06) +cun () V4 (12)

where X (k) = X (k— A(k)) and Y(k) = Y (k — A (k)) are the real and

imaginary parts of the observed sampled process Zs = {Z (k), ke Z}.

The determination of the interpolation coefficients by, (t) and cky, (t) is
related to a more general problem addressed in the next section.

3 LMMSE derivation

The first part of this section studies the recovery of a random sequence
W, = {W (n),n € Z} from the observation of two other sequences U, =
{U(n),n€Z}and Vs ={V (n),n € Z}, both correlated with W,. The
determination of the LMMSE defined in (12) is studied in the second part
of this section.



3.1 A general problem

The three random sequences Uy, V, and Wy are assumed to be sta-
tionary, with stationary intercorrelations. The autocorrelation functions
of the three random sequences allow to define their respective PSDs
su (w), sy (w) and sy (w), defined on [—m, 47|, from the Herglotz lemma
[18]. For sake of clarity, only one spectrum definition is given: for exam-
ple, sy (w) is defined by

ot '
Ky(m)=E[U(n)U"(n—m)] = / 5u (w)e“mdw  (m,n) € Z2.

' (13)
The stationary intercorrelations of the three random sequences Uy, V
and Wj allow to define the interspectra of these sequences. For example,
Suv (w) is defined by

- |
Kuy (m) = E[U (n) V* (n —m)] = / Suv (@) €™ dw  (myn) € 72,

(14)
Appendix B shows that the LMMSE of W (n) (denoted as W(n)) from the
observation of {U (n),n € Z} and {V (n),n € Z} can be viewed as the
sum of the outputs of two time-invariant linear filters driven respectively
by U (n) and V (n), as illustrated on Fig. 1.

MO )

+ AWQ’])

VO g L

Figure 1: Reconstruction of W(n) from the observation of U(n) and
V(n).

Straightforward computations (see Appendix B) allow to determine



the frequency responses of these filters, denoted as Hy (w) and Hy (w)

Hyr (w) _ Swu (w) Sy (w) — Swv (w) Svu (w) (15)
su (w) 3y (W) = |3y (W)
Hy (W) = Swy (W) sy (W) — 3w (W) Sy (W)

su (W) $v (W) = [suv @)[*
Moreover, the MSE 0%, between the original sequence W (n) and its
reconstruction W (n) can be expressed as follows:

o2, = EUW(n)—W(nﬂ (16)

- o S (W) — M
B /—ﬂ ( W( ) gU (w)
Bwv (W) S (w) = Swu (W) Suv ()]

50 (@) (80 @)3v @) = oy @)F)

dw.

3.2 Reconstruction of a complex random process sampled
with timing jitter

This section applies the results obtained in the previous sub-section 3.1
to the following particular case

Wn) = Z({t+n)=X{t+n)+iY(t+n) (17)
Un) = X(n—-—An)=X(®) and V(n)=Y (n— A(n)) =Y (n).

Appendix C shows that the assumptions necessary to express /I/I7(n) =
7 (t + n) as in Fig. 1 are satisfied for any fixed ¢. As a consequence,
the reconstruction of W(n) = Z(t+n) can be obtained by means of two
time-varying filters as illustrated on Fig. 2. Computations detailed in the
Appendix C allow to derive the expressions of the different spectra and
interspectra (see (64) and (66) in the Appendix C) which are necessary to
compute the expressions of the two linear filters Hy (t,w) and Hy (t,w)
given by (15). The interpolation coefficients by, (t) and ¢ (t) of (12) are
the impulse responses of these two filters

I :

bp (1) = o Hy (t,w) e dw (18)
1 o iwk

c(t) = — Hy (t,w)e“"dw.

2

—T7



Moreover, the MSE of reconstruction can be derived by (16), since the
required spectra and interspectra have been defined in (64) and (66).

X(n-AM) [ t.o) .
Ul
Z(n) +> Z(t+n)

\Y(n‘A(n)); Hv(t, @)

Figure 2: Reconstruction of Z(t).

4 Simulation results

4.1 Example of uncorrelated real and imaginary parts

This first example takes into consideration a complex random process
with uncorrelated real and imaginary parts X and Y (sxy (w) = 0)
with uniform DSPs on [—m, 7]

{ sx (w)

sx (w)

w) =5 for we[—m,7]

w) =0 elsewhere. (19)

= SY (
pry SY (
The jitter sequence Ag = {4 (n),n € Z} is assumed to be independent,
identically distributed (i.i.d.) with uniform distribution on [—a, +d]

U (w) __ sin(aw)
sCiL:(aw) 2 (20)
O (m,w) = (—) m # 0 and ®(0,w) =1.

aw
In this example, X (n) and Y (n) have the same properties. Consequently,
it is not surprising that (based on the results of Appendix B and Appen-
dix C) the reconstruction filters satisfy Hy (w) = iHy (w). Moreover,
based on the results of Appendix B and Appendix C, we obtain

Hy () = et aw sin (aw)

21
sin? (aw) + (aw)? ¢a (21)

6161:1—%.[7r <¥>2dm. (22)

™

where



Consequently, the LMMSE defined in (12) is of the form

=S bt ( ) + zY(k:)) (23)

kEZ

The interpolation coefficients by, (t) cannot be expressed in closed form
for this example. However, a standard FIR implementation can be con-
ducted (see [19] for more details on RIF implementation). Figure 3 shows
examples of these coefficients for different values of the jitter parameter
a and reconstruction time instant ¢ (due to a symmetry property of these
coefficients, only time instants from 0 to 0.5 are considered).

Jitter parameter a=0.2 /\

——Wtzo ’\/\/\/\/\/\/\/\A‘W\/—W—
0
0 t=0.3 /W\/\/\/\/\N\/

01205

-20 -15 -10 -5 o0k s 10 15 20

Jitter parameter a=0.9
0_t=0
o 1=0.3 W\/\
0o—1=0.5

-20 -15 -10 0 k 5 10 15 20

< RIFordr 20 ,

Figure 3: Reconstruction coefficients for different values of jitter para-
meter a and time instant .

The expression of the MSE 0% given by (16) can also be derived

1 +m 102
0% =2— —/ sin” (aw) 5—dw. (24)
T J_r sin? (aw) + (aw)® qq

It is interesting to compare this proposed LMMSE to the standard inter-
polator of Shannon. Note that the Shannon interpolator can be retrieved
from (21) by setting a = 0 (absence of jitter). The reconstruction Shan-
non filters and the corresponding interpolation coefficients are of the




sin (7 (t + k))
(t+k)

The main interest of the Shannon interpolator is that its expression is
not related to the random process which has been sampled. However,
this interpolator does not take into consideration the timing jitter effect.
Under appropriate conditions, the Shannon interpolator yields a zero
MSE. However, in the presence of jitter, these conditions are not satisfied

Hyy (w) = e, Hy (w) = ie™", o () = (25)

and the reconstructed random process Zoshan = {Egh,m (t),t e R} issued

from the Shannon interpolator is such that

2 -z | =k 0

E DESW (n) — Z(n)ﬂ —F [

In other words, the reconstruction of Z(t) by the Shannon interpolator
is not better than the random variable Z (n) itself in terms of MSE. By
taking into consideration (19) and (20), the expression of this last MSE
can be derived as a function of the jitter parameter a

2 [T sin(mh)

oh=4—= / ———2df. (27)

af., w0

The comparison between the proposed LMMSE and the Shannon inter-
polator in terms of MSE is illustrated in Fig. 4 as a function of the jitter
parameter a. Note that the MSEs are normalized. These simulations
show that the theoretical expressions derived in this paper are in good
agreement with the estimated MSEs. Moreover, the Shannon interpola-
tor becomes rapidly inefficient (in terms of reconstruction of Z(t)) when
parameter a increases. Figure 5 shows an example of a complex process
and its reconstruction in the case of a jitter parameter a = 0.2. In this
case, the reconstruction error is small as expected (see Fig. 4). Figure
6 illustrates the case of a reconstruction in the presence of jitter with
parameter a = 0.9. The estimated normalized MSE equals 57%, which
shows the limitation of the LMMSE.

4.2 Example of correlated real and imaginary parts, out
of sampling condition.

The second example developed in this section studies a complex random
process that does not satisfy the Nyquist conditions, with correlated real
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Figure 4: Normalized MSE v.s. jitter parameter.
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’ (red part)

450 500 550 600 650 700

Figure 5: Example of a complex random process (only the real part
is represented) and its reconstruction in the case of jitter (parameter
a=0.2).



Estimated normal i‘zed MSE : 0.57

251 Observed samples .
LX) Original process (real part)
2

o (Jitter: a=0.9) “x X

05[

ol

05

1
151 Reconstructed process
2 (real part)

25f
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Figure 6: Example of a complex random process (only the real part
is represented) and its reconstruction in the case of jitter (parameter
a=0.9).

and imaginary parts. More precisely, the complex random process Z is
such that its real and imaginary part are linked by the following relation:

Y = 2H (X) (28)

where H (.) denotes the Hilbert filter. The PSD of X is assumed to be
defined as

1
sx (w) = o for w € [—2m, +27] and sx (w) =0 elsewhere.

In this case, (28) yields

sy (w) = % for w € [—2m, +27] sy (w) =0 elsewhere
sxy (W) = 5=sign(w) for w € [—2m, +27] sxy (w) =0 elsewhere
(29)

where sign(w) is the signum function (equal to +1 if its argument is non-
negative and -1 if its argument is negative). The jitter sequence A, =
{A(n),n € Z} is assumed to be independent, identically distributed
(ii.d.) with discrete uniform distribution on {—¢,e} (P[A(n) =¢] =
P[A(n) = —¢] = 0.5). The corresponding characteristic functions of the



jitter are defined as

U (w) = cos (ew)
{ ® (m,w) = cos? ?ew) m # 0 and o (0,w) = 1. (30)

Appendix B and Appendix C show that the reconstruction filters of Fig.
2 have the following transfer functions

Hy @) = et (1 + 2sign (w)) He (ew)
+ (1 — 2sign (w)) e~ 2™t H_ (ew — 27esign (w))
0t (2 + sign (w)) He (ew)
Hy () = 26 { + (2 — sign (w)) e i2msign(w)t iy (ew — 2mesign (w))
(31)
where cosw
H. (w) = - . 32
) 1—%+2COS2M (32)

Figure 7 shows the corresponding impulse responses for a jitter parameter
¢ = 0.1. As in the previous example, the time support of these impulse
responses can be approximated by 20 coefficients (in our simulations,
this is true for any value of ¢). As a consequence, the reconstruction
filters can be implemented as FIR filters with small order.

t=0 t=0.21 t=0.42 t=0.63 t=0.84

15

by(t)

-10 0 Kk 10-10 0 k 10-10 o k 10-10 ok 10-10 ok 10

15

G A
0 JL

-10 0 k 10-10 0 k 10-10 0 k 10-10 0k 10-10 0k 10

Figure 7: Interpolation coefficients |bg(t)| and |cx(t)| for different time
instants t (¢ = 0.1).

The MSE defined in (16) can be derived

L [N,
=5 By (33)



N(w) = (48 (w)+5)cos? (ew) + (—4S (w) + 5) cos? (ew — 2meS (w))
420 cos? (ew) cos? (ew — 2meS (w))
D(w) = 2 (1 —sinc(47e) + 2cos” (ew))
(1 — sinc (4me) + 2 cos® (ew — 27meS (w))) (34)

It is important to note that the MSE does not depend on the time
instant t. Note also that in the absence of jitter, the exact recon-
struction of Z(t) based on the observation of the sampling sequence
Z; = {Z(n),n € Z} is not possible because the spectral bandwidth of
Z(t) is 4m. This exact reconstruction is only allowed by considering the
real and imaginary parts of the sampled process separately, as shown in
[1], and introducing a linear interpolator of the form of (8). In this case,
by setting ¢ = 0 in (31), the interpolation coefficients can be expressed
as

—1i

b (t) = m(

—4 + 3 4 e*i%t) (35)

o (t) = —2 4 3¢ — e_i%t) )

8 (t+k) (
Consequently, in the presence of jitter, the MSE 02Z will tend to zero as
¢ decreases. Figure 8 illustrates this behavior, as a function of the jitter
parameter value . Figure 8 also shows that the theoretical and esti-
mated MSEs for the LMMSE are in good agreement. Figure 9 compares
the MSEs of the LMMSE and the linear interpolator derived without
considering jitter effects (the expression of the interpolator coefficients
are given in (35)). Obviously, the LMMSE outperforms the other inter-
polator for large values of . Figure 10 shows an example of a complex
random process and its reconstruction for € = 0.1.

5 Conclusions

This paper studies the reconstruction of random complex processes sam-
pled periodically with timing jitter. It is shown that the recovery of
the original continuous-time process can be considered by using a linear
interpolator with different interpolation coefficients relative to the real
and imaginary parts of the observed sampled process. The theoretical
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Figure 9: MSEs for the LMMSE and the linear estimator designed in
absence of jitter, as a function of the jitter parameter e.
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Figure 10: Example of a complex random process (only the real part is
represented) and its reconstruction for e = 0.1.

expression of these interpolation coefficients is derived. Simulation re-
sults illustrate the performance of the proposed interpolator which can
be implemented easily as a sum of FIR filters of small order. These
simulations are conducted for two particular examples: (1) Z(t) has un-
correlated real and imaginary parts and satisfies the Nyquist conditions
and (2) Z(t) has correlated real and imaginary parts and does not satisfy
the Nyquist conditions. The performance of the LMMSE is studied in
both cases.

This paper provides an interesting reconstruction procedure for com-
plex random processes sampled irregularly. The proposed solution re-
quires the knowledge of spectral informations of the original continuous-
time process as well as appropriate jitter characteristic functions. This
should not be a problem in most applications. As an example, in telecom-
munications, the transmitted signals are known (NRZ, RZ, Biphase, ...)
and as a consequence, have known PSDs [20].
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Appendix A: Time-invariant filter

The time-invariant filter G of impulse response g (t) associates the sta-
tionary process V. ={V (t),t € R} to the process W =G [V] = {W (t) ,t €
R} by the relation (defined in some sense)

00
WO=GVI(0= [ “gt-u)V@adn (36)
The transfer function of G is the function G (w) defined by
+o0 )
Gw)= / g (u) e™""du. (37)

J =00



Let Hy denotes the Hilbert space spanned by the random process V =
{V (t),t € R} where the inner product is defined by

(V(t2),V (t2)) yy,, = BV (81) V™ (2)] - (38)

In what follows, an isometry Iy, between Hy and L? (sy ), is defined by
the one-to-one correspondence

V(t) <5 e, (39)

the inner product in L? (sy) being

9120 = /R (@) ¢ @) sy (@) dow. (40)

Consequently, every random variable A (resp. B) in Hy will have a
corresponding element f (w) (resp. g (w)) in L? (sy) such that

A= lim 37 apV (t) <5 f (@) = lim " ae (41)

k=—n k=—n

and
(4, By, = BIAB") = /R F (@) 0" (@) sv (@) dw = (f, ) ey - (42)

This “fundamental isometry” [21] in the case of the time-invariant linear
filter G defined in (36) and (37) leads to
V(1) LV, giwt
I ' (43)
GIVI(t) = G (w)e™".

Appendix B: LMMSE derivation

The linear minimum mean square estimator (LMMSE) of W (n) based on
the observations of U(n) and V'(n) is defined by the orthogonal projection
of W(n) onto the Hilbert space spanned by the random sequences U =
{U(n),neZ}and V={V(n),necZ}

—~

W=, Pr W) (44)



H (U) and H (V) are Hilbert spaces spanned respectively by U = {U (n),
n € Z}and V ={V (n),n € Z}. Both spaces are generally not orthogo-
nal. Consequently, the sum H (U)+H (V) can be written in the following
manner:

H(U)+ H(V)=H (U)o H(B) (45)

where @ denotes an orthogonal sum and the random sequence B =
{B(n),n € Z} is defined as a linear function of both observed random
sequences U and V such that

E[Un)B*(n—m)=0  V(n,m) € Z2. (46)
Consequently, the expression of w (n) is derived in four steps:
Step 1 : determination of the random sequence B using (46),
Step 2 : orthogonal projection of W (n) onto the Hilbert space H (U),
Step 3 : orthogonal projection of W (n) onto the Hilbert space H (B),
Step 4 : construction of W (n) = Pryu) [W (n)] + Pryg) [W (n)]-

The final step for the LMMSE derivation consists of computing MSE
which provides an appropriate performance measure.
These steps are detailed in what follows.

Step 1
The random sequence B defined by (46) is chosen to be of the form
B(n)=V(n)-Hg[U](n) (47)

where Hp [U] (n) denotes the output of a linear filter driven by U (n).
The transfer function of this filter is denoted Hp (w) in what follows.

Using the stationary intercorrelation property of U and V and the
above expression of B(n), (46) can be written

4 | o |
/ suy (w)e™™dw — Hg (w)e“ sy (w)dw =0  Vm € Z.
- ) (48)



The unicity of Fourier transforms leads to the expression of the following
filter transfer function:

Hp (@) = NNUUV—(S‘;) (49)

The PSD of B (n) is then obtained by Wiener-Lee relation [19]

s v @)P

SB (w) =Sv (w su (w) (50)

Step 2

The orthogonal projection Wi (n) of W (n) onto the Hilbert space
H(U) can be found using the isometry Iy (see previous Appendix A for
recalls on isometry). Denote as

Iy Wn
Un)——e
I wn
Wy (n) < Hyw (w) ™. (51)
The orthogonal projection Wiy (n) is defined by
E[(W(@n)-Wyn)U*(n—m) =0 V(n,m)cZ? (52)

or equivalently

T ) - .
/ Swu (w) e ™dw — Hyw (w) e“™sy (w)dw =0 Vm € Z.

B o (53)
Consequently, Wy (n) can be viewed as the output of a linear filter,
driven by U(n), with transfer function

sy (w)
Step 3

The orthogonal projection Wg (n) of W (n) onto the Hilbert space
H(B) can be found using the isometry Iz (see Appendix A). Denote as
B (n) JB, giwn

Wg (n) <2 Hpw (w) e™™. (55)



The orthogonal projection Wg (n) is defined by
E[(W ) -Wg(n)B*(n—m)]=0 V(n,m)eZ® (56

or equivalently, Vm € Z

o '
/_ (swv (w) — Hg (w) swy (w)) e dw

- '
- Hpw (w)e“"sp (w) dw = 0. (57)

By using (49) and (50), Wg (n) can be viewed as the output of a linear
filter driven by B(n) with transfer function
swy (W) sy (w) = swu (W) syv (w)
~ ~ ~ 2
su (W) sv (W) = [suv (W)

Step 4

HBW (w) = (58)

Up to this point, it has been shown that the LMMSE W(n) of W(n)
can be defined by linear filtering of U(n) and V(n) as illustrated in Fig.
11.

U(n)

Hy(@)

WU(n; \?\\Kn)
> (@) +

'+ B(n) oo Wa(n)

+vy

V(n)

Figure 11: Detailed scheme of reconstruction of W(n) from the observa-
tion of U(n) and V' (n).

This procedure is equivalent to the Fig. 1 where

Hy (w) = Hyw (w)— Hp(w)Hpw (w) (59)
Hv(w) = HBw(w).



Note that in the particular case W = U, we obtain Hy (w) = 0 and
Hy (w) =1 (the same holds if W =V).

MSE

The MSE between W (n) and W(n) is defined by

dhe = || = @] = B0V ) = W o) = W ) W )

= KW (0) - o HUW (w) gUW (w) dw

T g (@) Gow (@) — Hi (@) 5w @) de (60)

J =T

Equations (49), (54) and (58) yield

o = K (0)— [ A (w)dw (61)

J =T

where

A(w) = B0 @I, [swv (@) v @) = Swu @) Sov (@)1° (62)

) 5y @) (v @) @) - Bov @)

Note that in the particular case W = U, A (w) = 5y (w) and 02 = 0
(the same holds if W = V).

Appendix C: Spectra and interspectra
This section derives the spectra and interspectra sy (w) , sy (w) , Sy (w),

swu (W), Swv (w), which are necessary to derive the LMMSE according
to (15). Denote as

W (n) Z(t+n)=X({t+n)+iY(t+n)
Un) = X(n—Am) = X (n)
V(n) Y(n—A(n) =Y(n)



The PSD sy (w) of U(n) is related to its correlation function by (13).
Moreover, conditional expectations yield
EU (n)U* (n—m)]
=FE{E[X(n—AMn)X*(n—m—A(n—-m)) | Al}
= E[Kx (A(n—m)—A(n))

- E |:/ eiw(A(nfm)fA(n)er)SX (w) dw
JR

= / D* (m,w) e“Msx (W) dw. (63)
R

Eq. (63) and (13) allow to define sy (w) as follows

+7 | +m |
/ Sy (w) e dw = Z / D" (m,w + 21k) " sx (w + 27k) dw
J =T keZ J =T

vm € Z. (64)

The same properties hold for sy (w) (replace sx by sy in the above
expression) and for the interspectrum syy (w) (replace sx by sxy in the
above expression). The interspectrum sy (w) can be derived as follows:

E[W (n)U" (n —m)]
= E{E[(X (t+n)+i¥ (t+n) X" (n—m—A(n—m)) | A}

=F [/ elwltrmtAm=m)) (g (W) + is’y (w)) dw}
JrR

= /R\Il (w) e (sx (w) + isky (w)) dw. (65)

By using

. |
BW () U (n—m) = / Swo (@) €™ du

—T

the interspectrum can be expressed as follows:

swu (w) = eith\Il (w + 27k) €™ (sx (w + 27k) + is%y (w + 27k)) .
keZ
(66)
The same ideas can be used to derive the interspectrum sy (w) (replace
sx by sxy and s%, by sy in the above expression). The knowledge of
su(w),sy (w), syy (w),swu (w), swy (w) allows to derive the expres-
sion of the reconstruction filters Hys (w) and Hy (w) defined in (59).



