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LINEARISATION OF THE HFB EQUATIONS

We give here additional details on our analytical solu-
tion of the BCS equations (1)–(2) in the regime of weak
perturbations, leading to Eq. (6). We linearize the evo-
lution around the initial equilibrium state, rather than
around a virtual final equilibrium state as in Ref. [7]. At
nonzero temperature, where ∆(t) never reaches ∆f , this
is far more intuitive.

We introduce the fluctuations δck = ck − ck,i, δnk =
nk−nk,i, and δ∆ = ∆−∆i and linearize the BCS system
(1)–(2):

i∂tδck = 2ξkδck − 2∆iδnk +
ξk
ϵk

F (ϵk)δ∆ (S1)

i∂tδnk = −∆i(δck − δc∗k)−
∆i

2ϵk
F (ϵk)(δ∆− δ∆∗)(S2)

Although the quench scenario corresponds to δnk =
δck = 0 at t = 0−, we make so far no assumption on
the initial state. In this more general case, the fluctua-
tion of ∆ has a time-dependent part caused by the δc′s,
and a constant part δ∆0 =

gf−gi
V

∑
k ck,i caused by the

quench on g:

δ∆(t) =
gi
V

∑
k

δck(t) + δ∆0 (S3)

In the spirit of Ref. [? ], we now move to the quasipar-
ticle basis:

α+
k =

ξk
ϵk

(δck + δc∗k)−
2∆i

ϵk
δnk

α−
k = δck − δc∗k (S4)

mk =
2ξk
ϵk

δnk +
∆i

ϵk
(δck + δc∗k) (S5)

so as to diagonalise the individual parts of Eqs. (??)–
(??):

i∂tα+
k = 2ϵkα

−
k + F (ϵk)(δ∆− δ∆∗) (S6)

i∂tα−
k = 2ϵkα

+
k +

ξk
ϵk

F (ϵk)(δ∆+ δ∆∗) (S7)

i∂tmk = 0 (S8)

In the quasiparticle basis, the fluctuations of ∆ take the
form:

δ∆ = δ∆0 +
gi
2

∫
d3k

(2π)3

[
α−

k +
ξk
ϵk

α+
k +

∆i

ϵk
mk

]
(S9)

To solve the time-dependent system, we introduce the
Laplace transform of the variables:

A±
k (ω) =

∫ +∞

0−
eiωtα±

k (t)dt (S10)

and similarly for Mk(ω) and δ±(ω) the transform of
mk(t) and δ∆(t) ± δ∆∗(t) respectively. This allows us
to express the microscopic variables in terms of the fluc-
tuations of ∆,

A+
k (ω) =

iωα+
k (0

−) + 2iϵkα−
k (0

−)

ω2 − 4ϵ2k
+

2ξkF (ϵk)

ω2 − 4ϵ2k
δ+(ω) +

ωF (ϵk)

ω2 − 4ϵ2k
δ−(ω) (S11)

A−
k (ω) =

iωα−
k (0

−) + 2iϵkα+
k (0

−)

ω2 − 4ϵ2k
+

2ϵkF (ϵk)

ω2 − 4ϵ2k
δ−(ω) +

ωξkF (ϵk)

ϵk(ω2 − 4ϵ2k)
δ+(ω) (S12)

Mk(ω) =
imk(0

−)

ω
(S13)

and finally to eliminate them using the resummation Eq. (??), yielding a closed system of equations on δ±:

M

(
δ − δ∗

δ + δ∗

)
= −i

(
S−
S+

)
(S14)



2

The fluctuation matrix M is introduced below equation
(7) of the main text, and the sums encoding the initial
conditions on ∆ are given by

S+=

∫
d3k
(2π)3

[
ωξkα

+
k (0

−) + 2ξkϵkα
−
k (0

−)

ϵk(ω2 − 4ϵ2k)
+
∆i

ϵk

mk(0
−)

ω

]
+

δ∆0 + δ∆∗
0

giω
(S15)

S− =

∫
d3k
(2π)3

ωα−
k (0

−) + 2ϵkα
+
k (0

−)

ω2 − 4ϵ2k
+

δ∆0 − δ∆∗
0

giω
(S16)

Inverting Eq. (??) and switching back to the time do-
main [using the inverse Laplace transformation f(t) =

− 1
2π

∫ −∞+iη
+∞+iη dze−iztF (z)], yields, for the time-evolution

of ∆:(
δ∆(t)− δ∆∗(t)
δ∆(t) + δ∆∗(t)

)
= −

∫ −∞+iη

+∞+iη

dz
2iπ

e−iztM−1

(
S−
S+

)
(S17)

We now input the initial condition corresponding to the
interaction quench, that is (as explained above Eq. (3) of
the main text) α±

k = mk = 0, and δ∆0 = ϵgi/∆i, which
converts into S− = 0 and S+ = 2ϵ/ω∆i. Finally, we

derive Eq. (6) of the main text by closing the integration
contour in Eq. (??) around the branch cuts of M (see
Fig. 1 in Ref. [7]), and by remarking that the modulus-
modulus response function (Eq. (7)) is related to M by
f(z) = −(M−1)22/∆i.

CALCULATION OF M

We numerically evaluate the elements of M at nonzero
temperature using the Kramers-Kronig relation

M11

ω2
0

=
M22

ω2
0 − 4∆2

=

∫ +∞

−∞

ρf (ω)dω
ω0 − ω

(S18)

M12 =

∫ +∞

−∞

ρg(ω)dω
ω0 − ω

(S19)

In dimensionless units (ρ̌ = (2π)3∆ρ/k3∆, ω̌ = ω/2∆ β̌ =
β∆), we have

ρ̌f =
π

2ω̌

th(β̌ω̌)√
ω̌2 − 1

(k1(ω̌) + k2(ω̌)) (S20)

ρ̌g =
π

2
th(β̌ω̌) (k1(ω̌)− k2(ω̌)) (S21)

with

{
k1(ω) = Θ(ω̌ − 1)

√
µ̌+

√
ω̌2 − 1

k2(ω) = Θ(ω̌ − 1)Θ(
√
1 + µ̌2 − ω̌)

√
µ̌−

√
ω̌2 − 1

if µ̌ > 0

{
k1(ω) = Θ(ω̌ −

√
1 + µ̌2)

√
µ̌+

√
ω̌2 − 1

k2(ω) = 0
if µ̌ < 0

(S22)

The divergence of the integrals (??)–(??) in ω = ω0 is
easily compensated by adding/subtracting ρ(ω0). Still,
the evaluation can become difficult when ω̌0 is close to

the angular points 1 or
√
1 + µ̌2. To overcome this, we

subtract the nearly diverging behavior of the integrand.
(For here on, all quantities are implicitly dimensionless).

• When ω0 → 1+, the integrand nearly diverges around ω → 1+. We set e = (ω − 1)/(ω0 − 1) and derive:

ρf (ω)− ρf (ω0)

ω0 − ω
=

πthβ√
2

√
µ

(ω0 − 1)3/2
1√
e+ e

+O(ω0 − 1)−1/2 (S23)

ρg(ω)− ρg(ω0)

ω0 − ω
= O(ω0 − 1)−1/2 (S24)

• When ω0 → ω±
3 , the integrand nearly diverges around ω → ω∓

3 . We set e = (ω − ω3)/(ω3 − ω0) and derive:

ρf
ω0 − ω

=
πth(βω3)√

2

1

ω3
√
µ

1

ω0 − ω3

1

1 + e
+O(1) (S25)

ρg
ω0 − ω

=
πth(βω3)√

2

√
µ

ω0 − ω3

1

1 + e
+O(1) (S26)
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