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Université Claude Bernard Lyon 1
Ecole Centrale de Lyon

Ampère, UMR5005
69621 Villeurbanne, France

Email: eric.bideaux@insa-lyon.fr

Abstract—To improve the performances of a hydrogen hybrid
vehicle, it is necessary to optimally size its components and
elaborate optimal power management control between the dif-
ferent embedded sources. As both operations are systematically
linked, it is advisable to avoid solving these optimization problems
separately. In this paper, we propose a coupled method for
components sizing and offline power management in a fuel cell
electric racing vehicle. The bi-level strategy developed uses Non-
dominated Sorting Genetic Algorithms for electrical components
optimal sizing and Mixed Integer Linear Programming for
optimal power management control. The final results obtained
show good performances and acceptable compromise between
the models used, the simplifications made on the power profile,
and the relevance of the preliminary design parameters.

Index Terms—Bi-level optimization, Components sizing, Of-
fline power management control, Fuel cell electric vehicles,
Batteries

I. INTRODUCTION

The recent European environmental laws and regulations
on climate impose an ecological transition in the field of
transport by a gradual elimination of thermal sources, and their
replacement by cleaner energy sources such as hydrogen and
batteries [1].

To build and operate these hybrid renewable energy systems,
the steps of components sizing (CS) and system power man-
agement (PMS) are used during the preliminary design phase
to provide a detailed set of specifications for the different
energy sources of the system. These two steps are based
on optimization methods, and are strongly linked [2]. They
determine which resources are necessary for the design, the
control and the maintenance of the system [3].

Literature review details three existing strategies for cou-
pling CS and PMS by using optimization techniques [4], [5].
While the use of iterative strategies such as in [6] pose the
problem of convergence, simultaneous strategies are complex
to implement and solve [7]. Finally, in the bi-level strategy,
PMS, called lower level optimization problem is formulated

as a sub-problem of the CS’s, called upper level optimization
problem [8].

For usual electric vehicle applications, an exhaustive search
method and conventional optimization methods such as dy-
namic programming or convex programming are generally
used for CS and PMS problems respectively [9], [10]. Such
approaches used for preliminary design become limited for
specific high-power demand and high-dynamic applications
where computational time issues and memory limitation are
usually encountered [11].

In this paper, we propose a coupled optimization method for
CS and offline PMS in a fuel cell electric racing car whose
architecture is illustrated in the Fig.1, and where electrical
components technologies have been already chosen. The bi-
level strategy used is inspired by the works [11] and [12].
It uses an heuristic method based on Non-dominated Sorting
Genetic Algorithm (NSGA-II) for CS, and a combinatorial
approach based on Mixed Integer Linear Programming (MILP)
for PMS between the fuel cells and the energy storage system.

Fig. 1. Fuel cell racing car system archictecture

The novelty of the work presented lies in the studied
automotive application and the main contributions of this paper
are:

• A detailed CS method of the on-board energy sources,
which has discrete decision variables compared to the
literature, which usually only returns the required power
and energy of sources [13];



• An acceleration of the offline PMS problem in the inner
loop in order to evaluate in the outer loop more combi-
nations of CS design parameters;

• the consideration of DC-DC converter mass with respect
to fuel cell system design parameters.

This paper is organized as follows. Section 2 presents the
mathematical formulation of the CS and PMS problems. In
section 3, the coupling strategy and the optimization methods
used at each level are presented. The results of components
sizing and optimal power management are presented in Section
4, and Section 5 concludes the paper.

II. BI-LEVEL OPTIMIZATION PROBLEM

Bi-level strategy consists in evaluating a coupled optimiza-
tion problem at different levels in order to solve it in two
interacting sub-problems. It is used in this paper to solve CS
and PMS problems with the general form written in (1)

min
xsizing

Φ0(xsizing)

s.t. Gi(xsizing) ≤ 0, i ∈ {1, · · · , p}
xsizing ∈ Xsizing

min
xpms

f0(xsizing, xpms)

s.t. gj(xsizing, xpms) ≤ 0, j ∈ {1, · · · , q}
xpms ∈ Xpms.

(1)

The upper level optimization problem regarding components
sizing has as decision variables xsizing ∈ Rn constrained in set
Xsizing, and aims to minimize the cost function Φ0 : Rn → R
under the constraints Gi : Rn → R. In the lower level, the
optimization problem related to power management between
power sources has xpms ∈ Rm as decision variables con-
strained in set Xpms, and aims to minimize f0 : Rm → R
such that constraints gj : Rm → R are respected.

A. CS optimization model formulation

The CS optimization problem aims to find the optimal
design parameters of the power sources in the car which
minimizes the mass of the electrical components MFCEVelec

while maximizing its autonomy considered as the embedded
energy in the vehicle EFCEVtotal . These components are the fuel
cell (FC) system and its hydrogen storage tank (H2TANK),
the energy storage system (ESS), and the power electronics
DC-DC converter (CONV ), DC motor sizing being out of
the scope of the current work. The upper level optimization
problem is written in (2)

min
xsizing

Φ1 = MFCEVelec

max
xsizing

Φ2 = EFCEVtotal

s.t. MFCEVelec ≤ MFCEVmax

EFCmax + EESSmax ≥ E(℘)

PoutDCmax + PESSmax ≥ Pmax(℘)

ULS
CONVmin

≤ UFC(t) ≤ ULS
CONVmax

UDCmin ≤ UESS(t) ≤ UDCmax

(2)

where xsizing = {Ns, Np, Nfc, Afc,MH2} is the sizing deci-
sion variables vector. Ns and Np are respectively the ESS
number of cells in series and modules in parallel, Nfc and
Afc are the fuel cell stack number of cells and active surface
of membrane electrode assembly (MEA). Finally, MH2

rep-
resents the hydrogen quantity needed to meet power profile
demand ℘ whose total required energy and maximum power
are parameters E(℘) and Pmax(℘) expressed in (3) and (4).

E(℘) =

∫ tf

t0

P℘(t) dt, (3)

Pmax(℘) = max{P℘(t)}, t ∈ [t0; tf ]. (4)

1) Fuel cell system and its converter’s constrains: Fuel
cell stack configuration and one polymer exchange membrane
(PEM) voltage VFC and power density response PdFC

with
respect to its current density JFC are shown in Fig.2

(a) (b)
Fig. 2. Fuel cell stack configuration and characteristics. (a) architecture. (b)
polarization curve.

Assuming that components are homogeneous, the mass of
the fuel cell stack is written below

MFCstack = MMEA +MBP +MEP (5)

where MMEA = SPtotal · ρAMEA ·Nfc is the mass of MEAs,
MBP = SPtotal ·ρABP · (Nfc+1) is the mass of bipolar plates,
and MEP is the mass of end plates assumed to be constant.

Parameter SPtotal =
Afc

aS
, in [m2] is the total surface of fuel cell

plates by considering aS as the ratio between the active and
total surfaces. Finally, ρAMEA and ρABP , are respectively
MEA and BP surface density.

By using a set of hydrogen tanks data-sheets, the mass of a
full hydrogen tank MH2 tank with respect to tank pressure Ptank

and variable MH2 can be approximated to a linear function
with coefficients α(Ptank) and β(Ptank)

MH2 tank = α(Ptank) ·MH2
+ β(Ptank). (6)

To objectively take into account DC-DC converter mass
MCONV according to fuel system design, its power density
PdCONV with respect to its maximum input power PFCmax is
approximated to a third-order polynomial function taken from
[14] and shown in Fig.3.

The power density of the converter to be designed, in
[kW/kg], is then expressed as

P design
dCONV

=
(
a3 · P 3

pu + a2 · P 2
pu + a1 · Ppu + a0

)
× P ref

dCONV
, (7)



Fig. 3. Power density estimation of the DC-DC converter (pu:per unit)

where ai, i = {0, 1, 2, 3} are polynomial function coefficients,

and the dimensionless parameter Ppu =
PFCmax

P ref
CONVmax

denotes the

ratio between the maximum fuel cell power and the reference
converter input power. Superscripts “design” and “ref” are
respectively related to the designed and reference converters.
Knowing the DC converter’s efficiency ηCONV , the hydrogen
lower heating value LHVH2

and fuel cell system maximum
efficiency ηFCmax , it is possible to evaluate the maximum
converter output power PoutDCmax and energy EFCmax provided
by the fuel cell system expressed as follows

PoutDCmax = PFCmax · ηCONV (8)
EFCmax = MH2

· LHVH2
· ηFCmax · ηCONV . (9)

Constraints associated to converter input voltage boundaries
are written in (10) and (11)

Nfc · VFCmin ≥ ULS
CONVmin

(10)

Nfc · VFCmax ≤ ULS
CONVmax

, (11)

where VFCmin and VFCmax are respectively the minimum and
the maximum voltage response of a single cell and superscript
“LS” relates to converter low side voltage.

2) Energy storage system constrains: The ESS is composed
of Li-ion battery cells with a nominal voltage VESScell , a
capacity QESScell , and a constant internal resistance Rint. The
ESS configuration and battery cells open circuit voltage curve
are depicted in Fig.4.

(a) (b)
Fig. 4. Energy storage system configuration and characteristics. (a) battery
pack architecture. (b) voltage response.

By assuming a global efficiency of battery pack ηBAT ,
the amount of battery energy storage available EESSmax , the
maximum power delivered PESSmax , and its associated weight
MESS are written as follows

EESSmax = Ns ·Np · VESScell ·QESScell · ηESS (12)
PESSmax = Ns ·Np · PESScellmax · ηESS (13)
MESS = Ns ·Np ·mESScell · (1 + λcasing). (14)

where mESScell is one battery cell mass and λcasing is the weight
ratio of the ESS casing with respect to the total weight of
battery cells. Finally, ESS decision variable Ns is bounded by
using DC bus voltage constraints (15)

UDCmin ≤ Ns · VESScell ≤ UDCmax . (15)

where UDCmin and UDCmax are respectively minimum and
maximum voltage range of the electric motor.

B. PMS optimization model formulation

The purpose of the lower level PMS optimization problem is
to guarantee the validity of the system CS design parameters,
and to minimize hydrogen consumption over the whole racing
car’s power profile ℘. It is written as follows

min
xpms

f0 = mH2
(t)|tft0

s.t. P℘(t) + Paux(t) = PoutDC(t) + PESS(t),

d

dt
PFC(t) ≤ dFC ,

mH2 |
tf
t0 ≤ MH2 ,

PESSmin ≤ PESS(t) ≤ PESSmax ,

SoEmin ≤ SoE(t) ≤ SoEmax,

SoE(tf ) ≥ SoE⋆

(16)

where xpms = PFC(t), t ∈ [t0; tf ] is the PMS optimization
decision variable. Parameter dFC is the maximum fuel cell
power rise dynamic, and is linked to fuel cell compressor
performances. Variable SoE(t) is the ESS state of energy at
time t, and SoE⋆ is the allowed final ESS state of energy.

1) Fuel cell system constraints: The fuel cell system uses a
model which is based on the instantaneous hydrogen consump-
tion of a single cell and global efficiency ηFC with respect to
its power density PdFC

displayed in Fig.5.

Fig. 5. Fuel cell system efficiency and hydrogen consumption

By calling qmH2 , the non-linear hydrogen consumption
function of a single cell, the total hydrogen consumed during
the race car mission is written as follows

f0 = mH2(t)|
tf
t0 = Nfc ·Afc

∫ tf

t0

qmH2(PdFC
(t))dt. (17)

The first PMS problem constraint related to system power
balance is written by knowing fuel cell system auxiliaries
power consumption PFCaux such as

P℘(t)+PFCaux(PFC(t)) = ηCONV ·PFC(t)+ηESS ·PESS(t).
(18)



2) ESS constraints: As only energy and power aspects are
assessed by the PMS optimization problem, battery power and
state of energy boundaries are the constraints associated to
ESS. State of energy at any time t of the battery is derived by
using (19)

SoE(t) = SoEinit −
∫ t

t0

PESS(t)

EESS
dt, (19)

where EESS is the total energy of the battery, and SoEinit =
SoE(t0) is the battery state of energy at the beginning of
the race. We then impose a minimum value of the final state
of energy constraint in (20) such that the racing car is able
to perform additional maneuvers at the end of the race using
only the energy remaining in the battery pack.

SoEinit −
∫ tf

t0

PESS(t)

EESS
dt ≥ SoE⋆ (20)

III. OPTIMIZATION PROBLEM SOLVING

A. Coupled optimization framework

The coupled CS and offline PMS optimization problem
resulting from (2) and (16) is written as follows

min
xsizing

MFCEVelec = MFCstack +MESS +MH2Stank +MCONV

max
xsizing

EFCEVtotal = EFCmax + EESSmax

s.t. (3) to (15)
min
xpms

∫ tf
t0

qmH2
(t))dt

s.t. (17) to (20)
xsizing = {Ns, Np, Nfc, Afc,MH2

}
xpms = PFC(t)
Ns, Np, Nfc ∈ N
Afc,MH2

, PFC(t) ∈ R

(21)

The upper level is a constrained bi-objective optimization
problem with five mixed continuous and integer decisions
variables. The lower level is a mono-objective constrained
optimization problem with one continuous decision variables
and two state variables which are battery state of energy
and hydrogen tank level. The bi-level optimization problem
framework is displayed in Fig.6. It uses Non-dominated Sort-
ing Genetic Algorithm (NSGA-II) [15] at the outer loop to
generate design variables. In the inner loop, those variables
are evaluated and the same Mixed Integer Linear Programming
(MILP) formulation as in [11] is used to solve the offline PMS
optimization problem.

B. Offline PMS problem solving technique

Though PMS optimization problem has continuous decision
variables PFC(t), MILP method is chosen to rapidly achieve
design parameters evaluation at the lower level, especially
for long duration power demand profiles. As the objective
function and constraints are non-linear with respect to PFC(t),
it is sampled in discrete variables PFC(k) in order to use
simplex method. Finally, to cope with memory limitations and
computational efforts, the power profile number of time steps
is reduced by applying a low pass filter. The PMS problem

Fig. 6. Bi-level optimization problem framework

solving algorithm is finally detailed by pseudo-code shown in
Table I.

TABLE I
OPTIMIZATION PROBLEM SOLVING APPROACH

1.While: convergence is not reached do
2. Get Ns, Np, Nfc, Afc,MH2

variables
3. Evaluate MFCEVelec
4. Compute corresponding power profile ℘
5. Apply Gaussian filter on ℘ and decrease its number

of time steps
6. Solve PMS problem
7. If: PMS is feasible do
8. Return control states and decision variables
9. Store results for population selection and mutation
10. else:
11. Reject selected population
12. End If
13. If: Number of evaluation reached do
14. Move to 18
15. else:
16. Move to 2
17. End If
18.End While

IV. RESULTS AND DISCUSSION

After a description of the vehicle application and parameters
employed for the study, this section section shows CS and
offline PMS optimization results.

A. Case study description

The coupled optimization problem described in Section 3
is used to achieve components sizing and optimal control of
a fuel cell car dedicated to rally race competition. The power
profile considered lasts 5000 s with typical portions displayed
in Fig.7(a) and 7(b).

Figure 7(c) shows the cumulative energy consumption of the
original power profile of 50000 time steps versus the one used
for optimization reduced to only 1000 time steps. Even though
the filtering and under-sampling processes result in a loss of
high frequency power information, we notice that it does not
globally affect the total energy required by the vehicle. Power
profile characteristics, parameters used, and their numerical
values are summarized in Table.II



(a) (b)

(c)
Fig. 7. Race car power demand profile characteristics. (a) dirt tracks phase. (b)
Sand dunes phases. (c) Cumulative energy consumption comparison between
the original (in blue) and filtered under-sampled (in red dash) power profiles.

B. Optimization results

Optimization problem code were implemented in Python by
using Pymoo module for solving CS and Gurobi optimizer for
PMS. The parameters of NSGA-II used for CS optimization
problem have been set as follows. The population has been
set to 80, the number of generation to 15, and the crossover
rate has been set to 0.7.

As expected, Fig.8 shows that the heavier the car is, and
the more energy its carries. The Pareto front between the
two objective functions shows two main parts. The first one
exhibits few solutions where energy increases rapidly with
mass due to the increase of fuel cell design parameters. The
second part of the Pareto front has more feasible solutions,
but increases too much the vehicle mass without affecting the
embedded energy.

Fig. 8. CS optimization mass and energy Pareto front

Another aspect to take into account is that the vehicle
will consume more energy to perform the same mission if
it weighs more. Thus, a good trade-off has to be found
to increase the car’s autonomy while not increasing that
much its weight. That compromise has been identified as
the crossing point of the two parts of the Pareto front. Its
corresponding design variables {Ns = 280, Np = 2, Nfc =
351, Afc = 856cm2,MH2 = 19kg} have been chosen among

TABLE II
PARAMETER DEFINITION AND NUMERICAL VALUES USED

Power demand profile data
E(℘) Total energy of the power profile [kWh] 253
Pmax(℘) Maximum power of the power profile [kW ] 262

Power profile duration time [s] 5000
PEM parameters

ρAMEA MEA mass surface density [kg/m2] 0.21
ρABP BP mass surface density [kg/m2] 1.04
aS MEA active surface ratio [-] 0.45
MEP Mass of end plates [kg] 2

Hydrogen tank parameters
Ptank Hydrogen tank pressure [bar] 700
α, β Linear interpolation coefficients [-] [15.3,20.8]

DC-DC converter parameters
ULS
CONVmin

Low side minimum voltage [V ] 50
ULS
CONVmax

Low side maximum voltage [V ] 600
ηCONV Converter efficiency [-] 98.9
P ref
dCONV

Reference power density [W/kg] 6400
P ref
CONVmax

Maximum power [kW ] 180
a0, · · · , a3 Power density interpolation coefficients [-] see Fig.3

Li-ion battery parameters
VESScell Battery cell nominal voltage [V ] 2.4
QESScell Battery cell rated capacity [Ah] 2.9
ηESS Efficiency of the battery [-] 0.98
mESScell Battery cell mass [kg] 0.15
λcasing Battery pack casing mass ratio [-] 0.4
UDCmin DC bus minimum voltage [V ] 550
UDCmax DC bus maximum voltage [V ] 750
SoEmin Minimum battery state of energy [-] 0.3
SoEmax Maximum battery state of energy [-] 0.95
SoEinit Initial battery state of energy [-] 0.9
SoE⋆ Accepted final battery state of energy [-] 0.4

CS optimization results in order to evaluate mass and energy
distribution between components.

(a) (b)
Fig. 9. Mass distribution between designed components and energy allocation
between sources. (a) Mass distribution. (b) Energy distribution.

Figure 9 shows that more than 56% of the optimized mass is
related to hydrogen storage tank (H2TANK). Only 117 kg of
batteries corresponding to 4.51 kWh of energy are needed. A
logic explanation of this ESS design is that selected batteries
are power rated types. Hence, batteries are designed not for
their energy, but to deliver high power. ESS is then intended
to come as support to the fuel cell during strong dynamics.

PMS optimization results of the selected CS design vari-
ables, and applied on the filtered power profile are displayed
in Fig.10.

The offline PMS results show that fuel cell system seems to
work at an average power of 200 kW. It shares high frequency
power demands with batteries, which are used to compensate
power demand during acceleration phases, and store exceeding
power during deceleration phases. ESS state of energy and
hydrogen tank level are respectively displayed in Fig.11(a)
and 11(b)



Fig. 10. PMS optimization results of fuel cell (top) and batteries (down).

(a) (b)
Fig. 11. ESS and hydrogen state variables over load duration. (a) Battery
state of energy. (b) Hydrogen tank level.

The results shown above indicates that the PMS optimiza-
tion problem succeeded in minimizing hydrogen consumption
while respecting the constraints related to ESS on filtered
power profile. Battery is used within its state of energy limits
and the car finishes the race with enough power and energy
as desired in the performance requirements.

V. CONCLUSION

A bi-level strategy for coupling optimal sizing and con-
trol for an electric vehicle composed of a fuel cell and a
battery storage system has been proposed in this paper. The
application studied is a rally racing car, but the methodology
developed can be extended to high power applications such
as heavy trucks. Satisfying results were obtained, and the
assumptions maid such as the simplification of the power
profile for the offline power management have improved the
time evaluation of the proposed method.

Final version of this paper will include convergence study
of the heuristic method and validity of the components sizing
selected and its associated power management on the original
power profile.

Improvements to this work can be separated into two
aspects: the first one is the implementation of the coupling
method by achieving parallel calculations in the inner loop,
and the evaluation of the optimal control on a more represent-
ing power profile. Thus, this will validate the obtained results
on the true power profile which exhibits more dynamics. The
second aspect will focus on the comparison of the current
results with those to be obtained in the future with energy-
rated battery technologies.
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