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ABSTRACT: Theoretical characterization of reactions of complex molecules depends on 

providing consistent accuracy for the relative energies of intermediates and transition states. Here 

we employ the DLPNO-CCSD(T) method with core-valence correlation, large basis sets, and 

extrapolation to the CBS limit, to provide benchmark values for Diels-Alder transition states 

leading to competitive strained pentacyclic adducts. We then use those benchmarks to test a diverse 

set of wave function and density functional methods for the absolute and relative barrier heights 

of these transition states. Our results show that only a few of the tested density functionals can 

predict the absolute barrier heights satisfactorily, although relative barrier heights are more 

accurate. The most accurate functionals tested are B97M-V, M11plus, B97X-V, PBE-D3(0), 

M11, and MN15 with MUDs from best estimates less than 3.0 kcal. These findings can guide 

selection of density functionals for future studies of crowded, strained, transition states of large 

molecules.       
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Studies of cycloaddition reactions have a long history.1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, 18,19,20 In a 

recent work, Jamieson et al.18 studied, among other related reactions, the ambimodal [6+4] 

cycloaddition of tropone with cycloheptatriene. Key transition states (TS8 and TS9, where we use 

their numbering for all species, and we put the zero of energy at the overall reactants, as they do) 

are the transition states for [4+2] Diels-Alder reactions leading from intermediates to the final 

pentacyclic products, whose structures are 11 and 12. The reaction steps passing through these 

transition states are shown in Figure 1. Figure 2 shows the structures of the corresponding 

transition state TS8 and TS9 when viewed from the same direction as Figure 1 and Ref. 18 (Figure 

S1 in Supporting Information shows the structures of these transition states from other viewing 

directions). The carbon skeleta of the products, 11 and 12, are identical, as are the skeletal of the 

transition structures leading to them and the two reactants. The difference is that the position of 

the carbonyl group has been exchanged with the only CH2 in the molecule.  

Jamieson et al. obtained best estimates for barrier heights of 9.4 kcal for TS8 and 14.9 kcal 

for TS9; all energies are relative to the overall reactants (infinitely separated tropone and 

cycloheptatriene) and are given on a per mole basis. Jamieson et al. noted that transition states, 

TS8 and TS9, are similarly strained and explained the apparently lower barrier for TS8 as due to 

the electronic effect of ,-unsaturation in its ketone precursor (structure 8) shown in Figure 1. 

(That is, the enone in 8 is a better dienophile than the nonconjugated alkene dienophile in 9.) Upon 

repeating their calculations with the structures in their Supporting Information (SI), we got a 

different result, and we started a detailed investigation to understand why. We now understand that 

they inadvertently switched the labels of TS8 and TS9 in the SI.21 Nevertheless, our study of TS8 

and TS9 turned out to be very interesting, and we continued to perform a complete theoretical 

study of the relative energies of these transition states with two objectives: (1) Can we obtain a 

more accurate best estimate of these barrier heights? (2) What theoretical methods that are 

practically affordable for large molecules are accurate for predicting the barrier heights of reactions 

leading to such large, crowded, and strained molecules? We note that this kind of study would 

have been impossible several years ago, but the ability to calculate high-level best estimates for 

very large closed-shell singlet molecules made a big leap forward with the development of the 

DPLNO-CCSD(T) method,22 and both Jamieson et al. and the present work use this method for 

best estimates. Our work differs from the previous work in using larger basis sets, including core-

valence correlation, and extrapolating to the complete-basis-set (CBS) limit, as well as adding a 

very broad set of tests of theoretical methods to meet objective 2. 
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Figure 1. Species 8 and 9 are intermediates produced by reaction of 1 with 7. The Diels-Alder 

reactions under study here are passage of 8 through transition state TS8 to form 11 and passage of 

9 through transition state TS9 to form 12. The energies in this article are all given with respect to 

the overall reactants 1 and 7. Two of the bonds are shown in green to guide the eye from 8 to 11 

and from 9 to 12. The two new single bonds are shown in red. 

 

 

 

Figure 2. The transition structures. The green bonds are the same as shown in green in 8, 9, 11, 

and 12 in Figure 1, and the red bonds are the same as shown in red in 11 and 12. [Color code for 

ball-and-stick models: O = red, C = gray, and H = white]. 

 

To test the accuracy of broadly applicable and newly developed methods, we present 

calculations by post-Hartree-Fock wave function theory (WFT), leading up to our best estimate, 

and by density functional theory (DFT) methods. Within DFT methods, we consider calculations 

both with and without molecular mechanics (i.e., with and without empirical pairwise corrections). 
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We consider not only the absolute barrier heights (V‡), but also the difference in barrier heights, 

BH, which is a measure of selectivity, and which is defined as V‡(TS9) minus V‡(TS8). The 

barrier height for TS8 is denoted BH8 and that of TS9 is denoted BH9. Note that Jamieson et al. 

specify the heights of the barriers with respect to the overall reactants (1 + 7) of the mechanism 

they studied; therefore, this is a study of the energy of crowded, strained transition states with 

respect to uncrowded, unstrained species, and that makes it particularly interesting. 

Computational details and references for software and basis sets are given at the end in the 

Computational Details section. 

Geometries. Using the exchange-correlation functional MN15-L and the maug-cc-pVTZ 

basis set (geometries optimized this way are abbreviated //M), we optimized four of the structures 

shown in Figure 1 – the reactants (1 and 7) and TS8 and TS9. The transition states have the 

chemical formula C14H14O. The geometries were similar to those obtained by Jamieson et al. with 

B97X-D/def2-TZVP (abbreviated //). Furthermore, high-level WFT calculations (see Table 1) 

with FC-DLPNO-CCSD(T) with the two largest basis sets yield energy barriers that differ by only 

0.4 kcal or less when we compare using //M geometries to using // geometries. Therefore, most 

WFT calculations, including those leading to our best estimate, were carried out at only one 

geometry. We chose //M for this purpose because the MN15-L exchange-correlation functional is 

known to generally yield good geometries. 23  For density functional calculations, we use 

consistently optimized geometries, except for a few cases (labeled “single-point energies”) where 

it is stated otherwise.  

WFT calculations and best estimates. The WFT barrier heights and their difference (∆BH) 

are shown in Table 1. We show both results with core-valence correlation (denoted all-electron, 

AE) and results with core electrons uncorrelated (denoted frozen core, FC).  

In order to judge the performance of WFT methods, we first obtain a best estimate at the AE 

level. We will use the complete-basis-set limit (CBS limit) of DPLNO-CCSD(T) calculations for 

this. This does not include connected quadruple excitations or other higher-order terms, but that is 

probably not a serious source of error, since Karton24,25 found that, although beyond-CCSD(T) 

terms typically raise the calculated barrier for cycloadditions, the increase is usually less than 0.1–

0.2 kcal. Furthermore, CCSD(T) is expected to be adequate when the B1 diagnostic is below 10 

kcal (which is an indication that the system or property is not highly multiconfigurational),26 and 

we calculated B1 diagnostics of 5.6 kcal for TS8 and 5.5 kcal for TS9.  

To reach the AE complete-basis limit, we employed two-point extrapolation from maug-cc-

pCVxZ calculations using the formula:27 

𝐸 = 𝑎 + 𝑏𝑥−3  (1) 

where x = 3 and 4 for T and Q, respectively. The result is shown in the table as AE-CBS, and the 

last column of Table 1 shows the mean unsigned deviation (MUD) of each method from this best 

estimate.  
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We also extrapolated FC calculations with the same basis sets, and the results are shown in 

the table as FC-CBS. We see an error of about 0.3 kcal in MUD due to neglect of core-valence 

correlation.  

Consider next the other calculations, starting with Møller-Plesset second-order perturbation 

(MP2) calculations. We see large errors with MUDs of 6.4–10.7 kcal and qualitatively incorrect 

barriers. Coupled cluster theory with single and double excitations (CCSD) reduces the MUDs to 

0.4–2.9 kcal. Adding quasiperturbative connected triple excitations [CCSD(T)] calculations with 

comparable basis sets give errors of 0.4–3.1 kcal. The smaller errors in some of the CCSD 

calculations compared to CCSD(T) are apparently due in part to cancellation of errors since 

CCSD(T) calculations with the same basis sets give larger errors. Only when we use DLPNO can 

we use very large basis sets as required to get the CBS limit. We found that diffuse basis functions 

have a large effect for smaller basis sets, but our calculations show that the effect is smaller for 

higher zeta levels. 

 

Table 1. The BH8, BH9, and ∆BH (= BH9 – BH8) energies (kcal) with WFT (post-HF 

methods  

Method  Core//a  Basis seta Codea  BH8 BH9 ∆BHa MUDa 

Present work        

MP2 FC//M MG3S G -3.9 2.4 6.3 9.0 

MP2 FC//M 6-31+G(d,p) M 0.0 5.7 5.7 6.4 

MP2 FC//M cc-pVDZ M -4.5 1.4 5.9 9.4 

MP2 FC//M maug-cc-pVDZ G -2.8 3.1 5.9 8.2 

MP2 FC//M maug-cc-pVDZ M -2.8 3.1 5.9 8.2 

MP2 FC//M maug-cc-pVDZ O -2.8 3.1 5.9 8.2 

MP2 FC//M maug-cc-pCVDZ G -5.7 0.3 6.0 10.2 

MP2 FC//M maug-cc-pVTZ G -2.8 3.4 6.3 8.3 

CCSD FC//M 6-31+G(d,p) M 13.9 18.8 4.9 2.9 

CCSD FC//M cc-pVDZ M 10.6 15.6 5.0 0.7 

CCSD FC//M cc-pVDZ O 10.6 15.6 5.0 0.7 

CCSD FC//M maug-cc-pVDZ M 11.7 16.8 5.0 1.5 

CCSD FC//M maug-cc-pVDZ O 11.7 16.8 5.0 1.5 

CCSD(T) FC//M 6-31+G(d,p) M 10.2 15.0 4.8 0.4 

CCSD(T) FC//M cc-pVDZ M 6.6 11.7 5.1 2.2 

CCSD(T) FC//M cc-pVDZ O 6.6 11.7 5.1 2.2 

CCSD(T) FC//M maug-cc-pVDZ M 7.8 12.8 5.0 1.4 

DLPNO-CCSD FC//M maug-cc-pVQZb O 12.4 17.8 5.5 1.9 

DLPNO-CCSD FC//M maug-cc-pCVQZb O 12.6 18.0 5.4 2.0 

DLPNO-CCSD FC//M maug-cc-pCVQZ c O 12.6 18.0 5.4 2.0 

DLPNO-CCSD(T) FC// cc-pVQZb O 9.4 14.9 5.5 0.1 

DLPNO-CCSD(T) FC// maug-cc-pVQZb O 9.4 14.9 5.5 0.1 

DLPNO-CCSD(T) FC//M cc-pVQZb O 9.0 14.4 5.4 0.4 

DLPNO-CCSD(T) FC//M maug-cc-pVTZd O 9.4 14.7 5.3 0.2 
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DLPNO-CCSD(T) FC//M maug-cc-pVQZb O 9.1 14.5 5.4 0.3 

DLPNO-CCSD(T) FC//M maug-cc-pCVTZc O 9.6 14.9 5.3 0.1 

DLPNO-CCSD(T) FC//M maug-cc-pCVQZb O 9.3 14.7 5.3 0.2 

DLPNO-CCSD(T) FC//M maug-cc-pCVQZc O 9.3 14.7 5.3 0.2 

DLPNO-CCSD(T) FC//M FC-CBSe  O 9.1 14.5 5.4 0.3 

MP2 AE//M cc-pCVTZ G -3.4 2.9 6.3 8.6 

MP2 AE//M maug-cc-pCVDZ G -6.5 -0.5 6.0 10.7 

MP2 AE//M maug-cc-pCVDZ O -6.5 -0.5 6.0 10.7 

CCSD AE//M cc-pCVDZ G 9.3 14.4 5.1 0.4 

CCSD AE//M cc-pCVDZ O 9.3 14.4 5.1 0.4 

CCSD AE//M maug-cc-pCVDZ O 8.9 14.0 5.1 0.6 

CCSD(T) AE//M cc-pCVDZ G 5.2 10.3 5.1 3.1 

CCSD(T) AE//M cc-pCVDZ O 5.2 10.3 5.1 3.1 

DLPNO-CCSD AE//M cc-pwCVQZf O 12.7 18.2 5.4 2.1 

DLPNO-CCSD AE//M cc-pwCVQZg O 12.7 18.1 5.4 2.1 

DLPNO-CCSD AE//M cc-pwCVQZc O 12.8 18.2 5.4 2.2 

DLPNO-CCSD AE//M maug- cc-pCVQZc O 12.8 18.2 5.4 2.2 

DLPNO-CCSD AE//M maug- cc-pCVQZb O 12.7 18.2 5.5 2.2 

DLPNO-CCSD(T) AE//M cc-pCVTZd O 9.2 14.5 5.3 0.3 

DLPNO-CCSD(T) AE//M cc-pCVQZb O 9.4 14.8 5.3 0.1 

DLPNO-CCSD(T) AE//M cc-pwCVQZf O 9.5 14.9 5.4 0.0 

DLPNO-CCSD(T) AE//M cc-pwCVQZg O 9.5 14.9 5.3 0.1 

DLPNO-CCSD(T) AE//M cc-pwCVQZc O 9.6 14.9 5.4 0.1 

DLPNO-CCSD(T) AE//M maug- cc-pCVTZc O 9.5 14.9 5.3 0.1 

DLPNO-CCSD(T) AE//M maug- cc-pCVQZc O 9.5 14.9 5.4 0.1 

DLPNO-CCSD(T) AE//M maug- cc-pCVQZb O 9.5 14.9 5.4 0.0 

Best estimate        

DLPNO-CCSD(T) AE//M AE-CBSe O 9.5 15.0 5.4 0.0 

Refs. 18, 21        

DLPNO-CCSD(T)c FC// cc-pVQZ O 9.4 14.9 5.5 – 

aFC//M = frozen core at MN15-L/maug-cc-pVTZ geometries. FC// = frozen core at B97X-D/def2-

TZVP geometries. AE//M = all electrons correlated (aka core-valence correlated) at MN15-L/maug-

cc-pVTZ geometries. The basis sets shown in the table are the main basis sets for DPLNO calculations 

and the auxiliary basis sets are provided in footnotes. G = Gaussian 16; O = ORCA; M = Molpro. The 

difference BH9 – BH8 was calculated before rounding the numbers to one decimal place. MUD = 

mean unsigned deviation from best estimates for BH8, BH9, and ∆BH. 

bThe auxiliary basis sets are cc-pVQZ/C and def2/J. 

cThe auxiliary basis sets are cc-pwCVQZ/C and def2/J. 

dThe auxiliary basis sets are cc-pVTZ/C and def2/J. 

eCBS = complete-basis-set limit obtained by extrapolation (see text). FC-CBS is the complete-basis 

limit for frozen-core calculations and AE-CBS is the complete-basis limit for all-electron calculations. 

fBoth auxiliary basis sets are replaced by AutoAux. 
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gThe auxiliary basis sets are cc-pWCVQZ/C and AutoAux. 

 

The largest calculation in Table 1 is the all-electron calculation with the maug-cc-pCVQZ 

basis set. This calculation involves 1740 basis functions. 

In the final analysis, although our calculations are much more complete than those of Jamieson 

et al. (they have larger basis sets containing diffuse functions, with core–valence correlation, and 

with extrapolation to the CBS limit), our best estimates agree well with theirs as seen in the last 

few rows of Table 1. 

It is hard to make an estimate of the reliability of the DLPNO-CCSD(T) results. A previous 

study of transition state barrier heights28 concluded that CCSD(T)/CBS is typically about 0.4 kcal 

from the complete CI limit. Although it is not possible to know in advance whether this error 

estimate applies to any given reaction, especially when we consider reactions of larger molecules, 

it does give a rough estimate of the reliability of CCSD(T)/CBS. 

However, DLPNO-CCSD(T) involves four thresholds that control the number of electron 

pairs and other algorithmic cut-offs, and in practical calculations these are set at values for which 

the DLPNO-CCSD(T) results differ slightly from the canonical CCSD(T) values. We use the 

defaults threshold that are denoted “NormalPNO”, for which the most important threshold is 

TCutPairs = 1.0E-4 and for which the semicanonical MP2 pair treatment is used. For these choices, 

the mean deviation in reaction energies from CCSD(T0) was estimated to be 0.3±0.4 kcal, and the 

difference of CCSD(T0) from CCSD(T) was estimated to be on average <0.2 kcal, although they 

can be much larger in some cases.29  Compounding these sources of error (0.4, 0.3, and 0.2 kcal) 

leads to 0.5 kcal estimate for a typical error in reaction energies. Errors in barrier heights for closed 

-shell transition states (like the present ones) would be expected to be similar or a little larger, and 

the present systems are also larger (with possibly larger errors) than the systems involved in the 

benchmarks; furthermore, we use geometries optimized by DFT. Putting all these considerations 

together, we estimate the accuracy of the best estimates to be 0.5±1 kcal. This is smaller than the 

typical error in the density functionals for the present problem, so conclusions about density 

functional accuracy that are drawn from comparison to these best estimates should be valid except 

when functionals have deviations from the best estimates that are less than 2 kcal. 

DFT calculations. Density functional theory is a more practical alternative for widespread 

applications to large organic molecules, therefore we next consider the applicability of DFT to 

these barrier heights. Our DFT results are in Table 2. 
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Table 2. Density functionals tested, their percentage of Hartree-Fock exchange (HFX) and of 

perturbation theory correlation (PT2), the reference for the functional, the basis set used, the 

calculated barrier heights (BH8 and BH9), their difference (BH = BH9 – BH8), and the mean 

unsigned deviation (MUD) of BH8, BH9, and ΔBH from the best estimates (all energies in kcal) 

Functional %HFX
a
 %PT2

a
 Ref. Basis set BH8 BH9 ΔBH

b
 MUD 

Gradient approximation 

BLYP 0 0 30, 31 MG3S 43.9 50.4 6.5 23.6     
aug-cc-pVTZ 44.3 51.1 6.7 24.1 

PBE 0 0 32 aug-cc-pVTZ 18.4 25.7 7.3 7.2 

Gradient approximation + molecular mechanics 

PBE-D3(0) 0 0 32 aug-cc-pVTZ 11.6 19.0 7.4 2.7 

Gradient approximation + density-based nonlocal correlation 

VV10 0 0 33 aug-cc-pVTZ 19.0 26.0 6.9 7.3 

Local meta functional 

M06-L 0 0 34 MG3S 23.9 32.1 8.2 11.4     
aug-cc-pVTZ 23.3 31.2 7.9 10.8 

M11-L 0 0 35 aug-cc-pVTZ 20.2 27.8 7.6 8.6 

MN15-L 0 0 36 MG3S 18.6 26.7 8.0 7.8     
6-31+G(d,p) 13.3 21.1 7.8 4.1     

maug-cc-pVTZ 17.9 25.9 8.1 7.3     
aug-cc-pVTZ 15.8 23.9 8.1 6.0 

revM06-L 0 0 37 MG3S 23.4 31.7 8.2 11.1     
aug-cc-pVTZ 22.8 30.9 8.1 10.6 

Meta functional + density-based nonlocal correlation 

B97M-V 0 0 38 aug-cc-pVTZ 17.9 25.4 7.5 7.0 

Global hybrid gradient approximation 

B1LYP 25 0 39 MG3S 38.4 44.8 6.5 19.9 

B3LYP 20 0 40 MG3S 36.6 43.2 6.6 18.8     
aug-cc-pVTZ 36.9 43.6 6.6 19.1 

PBE0 25 0 41 aug-cc-pVTZ 13.8 20.9 7.1 4.0 

Global hybrid meta functional 

PW6B95 28 0 42 MG3S 20.8 27.8 7.0 8.6 

M06 27 0 43 MG3S 16.2 23.1 6.9 5.4     
aug-cc-pVTZ 16.9 23.7 6.9 5.9 

revM06 40.4 0 44 MG3S 15.6 22.6 7.0 5.1     
aug-cc-pVTZ 15.6 22.5 6.9 5.0 

MN15 44 0 45 MG3S 13.1 19.8 6.6 3.2     
aug-cc-pVTZ 11.9 18.6 6.6 2.4 

M06-2X 54 0 43 aug-cc-pVTZ 13.0 19.5 6.5 3.0 

M06-HF 100 0 46 aug-cc-pVTZ 0.7 6.1 5.4 5.9 
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Global hybrid gradient approximation + molecular mechanics 

B3LYP-D3(0) 20 0 47 MG3S 25.6 32.4 6.8 11.6     
aug-cc-pVTZ 25.7 32.7 6.9 11.8 

B3LYP-D3(BJ) 20 0 48 MG3S 21.3 27.7 6.4 8.5 

Global hybrid meta functional + molecular mechanics 

PW6B95-D3(0) 28 0 47 MG3S 15.7 22.8 7.2 5.3 

PW6B95-D3(BJ) 28 0 28 MG3S 15.3 22.2 7.0 4.9 

M06-D3(0) 27 0 49 MG3S 14.2 21.1 6.9 4.1 

CF22D 46.2806 0 50 MG3S 13.3 19.9 6.5 3.3 

Range-separated hybrid gradient approximation 

CAM-B3LYP 19/65 0 51 aug-cc-pVTZ 26.6 33.0 6.4 12.0 

Range-separated hybrid meta functional 

M11 42.8/100 0 52 aug-cc-pVTZ 12.7 19.1 6.4 2.8 

M06-SX 33.5/0 0 53 MG3S 16.2 23.5 7.3 5.7 

MN12-SX 25/0 0 54 MG3S 19.1 26.3 7.1 7.5 

Range-separated hybrid meta functional + rung-3.5 terms 

M11plus 42.8/100 0 55 aug-cc-pVTZ 10.9 16.8 5.9 1.2 

Range-separated hybrid gradient approximation + density-based nonlocal correlation 

B97X-V 16.7/100 0 56 aug-cc-pVTZ 5.9 12.1 6.2 2.4 

Range-separated hybrid meta functional + density-based nonlocal correlation 

 B97M-V 15/100 0 57 aug-cc-pVTZ 8.7 14.8 6.1 0.6 

Range-separated hybrid gradient approximation + molecular mechanics 

B97X-D 22/100 0 58 def2-TZVP 12.6 19.4 6.8 3.0 
    

aug-cc-pVTZ 13.0 19.8 6.8 3.2 

Doubly hybrid functional 

B2PLYP 53 27 59 aug-cc-pVTZ 22.4 28.9 6.4 9.3 

DSD-PBEP86 68 23/51 60 aug-cc-pVTZ 4.6 10.9 6.3 3.3 

PBE-QIDH 69.336 33.333 61 aug-cc-pVTZ 1.1 8.0 6.8 5.6 

Doubly hybrid functional + molecular mechanics 

B2PLYP-D3(BJ) 53 27 62 aug-cc-pVTZ 16.5 23.1 6.6 5.4 

mPW2PLYP-D 55 25 63 aug-cc-pVTZ 14.3 21.0 6.8 4.1 

PBE-QIDH-D3(BJ) 69.336 33.333 64 aug-cc-pVTZ -1.2 5.6 6.8 7.2 

Single-point energies b 

B1LYP/MG3S//BLYP/MG3S  38.3 44.9 6.5 20.0 

CF22D/MG3S//MN15-L/maug-cc-pVTZ  12.8 19.3 6.5 2.9 

PW6B95-D3(0)/MG3S//PW6B95/MG3S  
 15.7 22.8 7.2 5.3 

aThis is the percentage of Hartree–Fock exchange. For range-separated hybrids and range-separated 

doubly hybrid functionals, %HFX or %PT2 are shown as A/B, where A is the percentage at small 

interelectronic separation, and B is the percentage at large interelectronic separation. 
bThe ∆BH values were calculated before rounding the numbers to one decimal place. 
cExcept for the following three rows, all the results in this table are consistently optimized. 
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Comparing the last three rows of Table 2 to results with consistently optimized geometries 

shows that the choice of geometry does not have a large effect on our conclusions, and we focus 

the remaining discussion on the results with consistently optimized geometries. 

Table 2 shows results with four polarized-triple-zeta-plus-diffuse-functions basis sets (MG3S, 

aug-cc-pVTZ, maug-cc-pVTZ, and def2-TZVP) and one basis set that has polarized-double-zeta-

plus-diffuse functions (6-31+G(d,p)). The table shows that, even among this diverse batch of basis 

sets, basis set effects are small, so we may compare calculations with different basis sets without 

considering basis set effects in detail.  

Before comparing the density functional calculations to one another, we compare them to the 

wave function calculations. Density functional theory with good density functionals is often more 

accurate than MP2 for barrier heights, a conclusion that is also true for small molecules. 65 

However, only the most successful functionals agree reasonably well with CCSD(T) calculations. 

In particular, 20 of the functionals in Table 2 achieve MUDs smaller than the 6.4 kcal best value 

achieved by MP2, and eight functionals achieve MUDs smaller than the largest MUD (3.1 kcal) 

of any of the CCSD(T) calculations. Two functionals (M11plus and B97M-V) achieve MUDs in 

the range 0.6–1.2 kcal. 

Table 2 shows very large errors for some of the functionals. For example, BLYP gives an 

error of ~35 kcal for BH8 and BH9, depending on the basis set. Amazingly, though, all 56 density 

functional calculations predict ΔBH in the narrow range of 5.4–8.2 kcal, and all except M06-HF, 

which correctly predicts ΔBH to be 5.4 kcal (although it strongly underestimates absolute barrier 

heights), predict it in the even narrower range 5.9–8.2 kcal (all off in the same direction, higher 

than the best estimate). This is even more surprising when one sees that the range of barrier heights 

predicted for BH8 ranges from –1.2 to 44.3 kcal and that for BH9 ranges from 5.6 to 51.1 kcal. 

Clearly there is a source of error that is reasonably similar for BH8 and BH9 such that ΔBH is 

much more accurate than either of the separate barriers. The functionals with nonlocal exchange 

or correlation tend to predict less difference between the two barriers (and therefore tend to be 

more accurate for ΔBH) than the local functionals do. Because the distribution of ΔBH predictions 

is narrow, because the MUD from the best estimate averaged over BH8, BH9, and ΔBH is 

presented in Table 2 for the reader to examine, and because a functional is considered satisfactory 

only if it predicts the absolute barrier heights rather than just the ΔBH, the rest of the discussion 

focusses on just the two absolute barrier heights. 

Most of the functionals overestimate the two barrier heights, with overestimates as high as 36 

kcal by BLYP, although M06-HF, B97X-V, B97M-V, DSD-PBEP86, PBE-QIDH, and PBE-

QIDH-D3(BJ) underestimate them. The only functionals to have mean signed deviations in the 

two barrier heights (i.e., now not considering ΔBH) with magnitudes of 4 kcal or less are 

(alphabetically) DSD-PBEP86, M06-2X, M11, M11plus, MN15, PBE-D3(0), B97M-V, 

B97X-D, and B97X-V. The next best set of functionals have magnitudes of their mean signed 

deviations in the range 5–8 kcal and are (again alphabetically) B2PLYP-D3(BJ), M06, M06-SX, 

MN15-L, mPW2PLYP-D, PBE0, PBE-QIDH, and revM06. The functionals in these lists span a 
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wide variety of different types and ingredient lists, but the only local functional without molecular 

mechanics to make it to either of these lists is MN15-L. On average, as usual, the nonlocal 

functionals give lower (and therefore usually more accurate) barrier heights; the difference is about 

by ~7–8 kcal (on average), as compared to local functionals. We conclude that adding nonlocality 

exchange and/or correlation tends to improve the results. 

Examination of Table 2 shows categories where functionals with the same ingredients have 

quite different performance. For example, BLYP and PBE share the same ingredients (but with 

different functional dependences on these ingredients), but PBE is much more accurate. B1LYP 

and PBE0 share the same ingredients and even the same percentage of Hartree–Fock exchange, 

but PBE0 is much more accurate. The popular B3LYP functional, with the same ingredients as 

B1LYP (although a different percentage of Hartree–Fock exchange) also performs poorly. 

Detailed examination of Table 2 shows that one key element in determining the barrier heights 

is damped dispersion. The local functionals do not predict long-range dispersion, and, in an 

apparently related failing, many of them underestimate noncovalent interactions even at van der 

Waals distances where the interaction is not pure dispersion (which is an interaction between 

subsystems that have no orbital overlap66). The nonlocal interaction at van der Waals distances is 

sometimes called damped-dispersion energy or medium-range correlation energy. The various -D, 

-D3(0), and -D3(BJ) molecular mechanics terms included in some of the functionals add long-

range dispersion and medium-range empirical corrections to the functionals, and this seems to 

usually improve the barrier heights, in some cases by large amounts. For example, such terms 

lower the average of BH8 and BH9 by 6.8 kcal for PBE, by 10.9–15.4 kcal for B3LYP, by 5.0–

5.6 kcal for PW6B95, by 7.4 kcal for M06, by 5.8 kcal for B2PLYP, and by 2.4 kcal for PBEQIDH. 

It is noteworthy that this lowering is found even for the B2PLYP and PBEQIDH functionals, which 

already contain wave-function perturbation theory terms, whose inclusion was motivated in part 

by the goal of improving dispersion interactions. In the case of PBEQIDH, adding molecular 

mechanics dispersion makes the results worse, but for the other cases studied, it makes the results 

better. The improvement of medium-range correlation may also explain why meta functionals tend 

to do better than gradient approximations. The role of the medium-range correlation energy in 

improving the barrier heights in reactions of large organic molecules was first discovered in a 

study of Grubbs catalysts,67 and the present reactions provide an equally dramatic example. 

Another way to include dispersion interactions into density functionals is by density-based 

nonlocal correlation, as included in VV10, B97M-V, B97X-V, and B97M-V in Table 2. The 

mean signed deviations of these four methods for the barrier heights are respectively 10.2, 9.4, –3.2, 

and  ⎯0.5 kcal, so there is no consistent trend showing that this approach provides good accuracy. 

Additional comments. The systematic benchmarking of exchange-correlation functionals for 

individual properties has been instrumental in the establishment of DFT as a method of choice for 

many applications, including reactivity. Our work complements the conclusions drawn from 

common benchmark sets involving smaller molecules. The present study is not a comprehensive 

benchmark; however, it does suggest some general conclusions on the application of approximate 

electronic structure methods to questions of chemical reactivity. The large molecules studied here 
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provide a challenging test case in that, among the functionals examined, the average overestimate 

of the barrier heights is ~9–10 kcal. These large errors illustrate how benchmarking on small 

molecules does not always indicate the sizes of errors on larger systems. Furthermore, it is possible 

to obtain very large errors in the barrier heights with MP2 and with some local functionals and 

global hybrid gradient approximations (that is, global hybrid approximations in which the local 

part depends on densities and density gradients, but does not contain local kinetic energy density, 

which is present in global hybrid meta approximations). However, a diverse set of eight functionals 

yield MUDs on the two barrier heights and the difference in barrier heights (the MUD of Table 2) 

of 3.3 kcal or less. These most successful functionals have been derived using a variety of criteria 

and theoretical considerations, illustrating that there is no unique path to improved functionals. An 

important takeaway from the present study is that the density functionals that do best span a diverse 

set of functional types, but the functionals that do best include several that might have been 

expected to do well based on previous work where they are extensively tested on smaller 

molecules. This indicates some success for the method for developing and testing functionals on 

systems for which accurate results are available (which are usually smaller systems) and 

recommending those functionals for applications to more complex systems. But some functionals 

that did well for smaller test cases do poorly here, illustrating the need for broadening the tests. 

Additional testing is required to determine the accuracy for predicting the favorability of 

competing mechanisms of large molecules. It will be interesting to extend the present kind of tests 

to a broader variety of transition states, such as those in the competing mechanisms in the work of 

Jamieson et al.  

The most accurate density functionals for this problem are (in order) B97M-V, M11plus, 

PBE-D3(0), MN15, M06-2X, B97X-D, CF22D, and DSD-PBE86, all of which have an MUD 

(of two barrier heights and their difference) from our best estimates less than or equal to 3.3 kcal. 

Alternatively, if one considers the magnitude of the mean signed deviation from the best estimate 

for only the two absolute barrier heights and uses a magnitude of 4.5 kcal for identifying the most 

successful functionals, one obtains this same set of functionals plus B97X-V and M11. These 

findings can guide the selection of density functionals for future studies of crowded, strained, 

transition states of large molecules.  

Computational details. We used several software packages: Gaussian 16, 68  a locally 

modified version of Gaussian 09,69 ,70 the Gaussian development version (GDV for M11plus),71 

Molpro 2019,72,73 and ORCA 4.2.1.74,75 We considered several basis sets: 6-31+G(d,p);76 MG3S77 

(for species containing only H, C, and O, MG3S is the same as 6-311+G(2df,2p)78); def2-TZVP;79 

cc-pVxZ, aug-cc-pVxZ, and maug-cc-pVxZ with x = D, T, Q;80,81,82 cc-pCVxZ and maug-pCVxZ 

with x = D, T, Q;82,83,84,85,86 and cc-pwCVQZ.87 The pCV and pwCV basis sets include polarization 

functions for core-valence correlation in all-electron (AE) calculations, and the other basis sets 

were developed for frozen-core (FC) calculations. Nevertheless, we use pCV basis sets for some 

FC calculations to allow a more consistent comparison of FC and AE calculations. Auxiliary basis 

sets were taken from ORCA. Table S4 of the SI shows the keywords that were used for calculations 
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in ORCA. All species are in singlets state, and all calculations are spin restricted. All DFT 

calculations were done using Gaussian, and we used the ultrafine grid (a pruned 99, 590 grid) for 

them. 
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