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Abstract

A system of n components is here considered, with component
deterioration modeled by non decreasing time-scaled Lévy processes.
When a component fails, a sudden change in the time-scaling functions
of the surviving components is induced, which makes the components
stochastically dependent. We compute the reliability function of co-
herent systems under this new dependence model. We next study the
distribution of the ordered failure times, and establish some positive
dependence properties. We also provide stochastic comparison results
in the usual multivariate stochastic order between failure times of two
dependence models with different parameters. Finally, some numeri-
cal experiments illustrate the theoretical results.

Keywords: reliability; Lévy process; inverse Gaussian process; func-
tional dependence; stochastic comparison; aging property

1 Introduction

Safety and dependability is a crucial issue in many industries, which has lead
to the development of a huge literature devoted to the so-called reliability
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theory. Traditionally, only lifetime data were available, from where appropri-
ate lifetime models were inferred. See, e.g., [2] for a pioneer reference work
on the subject. Based on the on-going development of on-line monitoring
which allows the effective measurement of a system deterioration, numerous
papers nowadays model the degradation in itself, which allows for a better
assessment of the system health and a better prediction of its future failure
time. The deterioration level of a system is usually considered to be accumu-
lating over time and it is often modeled by non decreasing (or with increasing
trend) continuous-time stochastic processes. Most common models are Lévy
processes such as gamma processes [1, 5, 19], Wiener processes with trend
[6, 22, 26] and inverse Gaussian processes [21, 23] (see also [8, 20] for more
references).

In this paper, we consider a system composed of n components, with com-
ponent deterioration modeled by non decreasing time-scaled Lévy processes
and component failures triggered by the reaching of a given known threshold.
In the oldest literature, components were most of the time assumed to be
independent, which highly facilitated the modeling and assessment of relia-
bility indicators, using for instance structure functions (see, e.g. [2]). Since
then, many different kinds of dependence have been considered, see, e.g. [10],
where the authors review condition-based maintenance policies for systems
with components subject to economic, structural, stochastic and resource
dependence. Following their vocabulary, we here envision some ”stochastic
dependence” between components, which ”means that the deterioration or
failure processes of components are (partially) dependent” [10]. To be more
specific, we here assume that a failure among components has an impact on
the future deterioration of the surviving components and we call it stochastic
failure dependence. This kind of dependence has been envisioned in different
papers such as [4, 11, 12, 13], where the authors model the impact of failures
on the lifetimes of the surviving components (including possible cascading
failures), see also [10] for many other models and references. However, the
papers involving Lévy deteriorating components together with stochastic fail-
ure dependence are fewer. One can quote [24], where the authors consider
that a component failure ”acts as a shock to each surviving component by
causing a random magnitude of damage which is additive to the degradation
level of the survivor”. See also [25] for a similar dependence model. One
can also quote [7], where the system health is described by two correlated
performance characteristics (or component deterioration levels) modeled by a
bivariate Wiener process at a first stage. Once one of the two characteristics
has reached its threshold (or once one of the two components has failed), the
system operates defectively and enters its second stage, where the surviving
characteristic evolves according to a new univariate Wiener process. Within
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this setting, the authors compute the system reliability and availability based
on different inspection and maintenance policies.

In a similar spirit as [7], we here suggest that each failure among the n
components entails an increase in the deterioration rate of the surviving com-
ponents. As a typical example of such stochastic dependence, one can think
about the case where the ”multiple components share the total system load.
If a component fails, the system keeps operating but the remaining compo-
nents structurally need to work harder to realize the same output level. The
failure of a component thus increases the load on the working components,
which will hence deteriorate faster. In practice, this applies for example to
a set of pumps that are used to distribute a certain amount of gas.” [10]. As
another example, one can also think of a parallel-connected power supply sys-
tem for a server farm, where each server is powered by its own power supply
unit (PSU). When one PSU fails, the remaining PSUs need to compensate
for the lost power output to meet the power demands of the servers, result-
ing in faster degradation of those surviving PSUs. One can also think of an
electric vehicle powered by a lithium-ion battery pack composed of n iden-
tical battery cells. Each cell contributes to storing energy for the vehicle’s
operation. When a battery cell fails, the overall performance of the pack is
disrupted and the operation of the remaining cells must be adjusted, putting
additional strain on them and leading to an increased degradation rate. In
the same way, the failure of one wind turbine within a wind farm can lead to
adjustments in the operation of the remaining turbines, potentially acceler-
ating the overall deterioration of the wind farm’s mechanical and electrical
components.

In this paper, remembering that the deterioration of a component is mod-
eled by a non decreasing time-scaled Lévy process, we suggest to model the
impact of a component failure on the surviving components by some in-
crease in the time-scaling functions of the corresponding Lévy processes.
Note that up to our knowledge, such a stochastic failure dependence model
with impact on the time-scaling functions of the surviving non decreasing
Lévy-deteriorating components has not yet been considered in the literature.

Considering this dependence model, we compute the reliability of a coher-
ent system, as well as the marginal and joint distributions of the component
lifetimes and corresponding ordered statistics. These results are used to de-
rive some dependence and stochastic comparison properties, which allow to
better understand the impact of the model parameters. Numerical experi-
ments are next given considering inverse Gaussian processes as baseline Lévy
processes. These experiments show good agreements between the theoretical
results and Monte-Carlo simulations (which require much longer comput-
ing times however). These experiments also illustrate the dependence and
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stochastic comparison results of the paper and highlight the requirement of
several assumptions given for their derivation.

The paper is organized as follows: Section 2 provides a quick summary
about time-scaled Lévy processes. The model for dependence is next in-
troduced in Section 3. The reliability function of a coherent system with
dependent components is studied in Section 4. The marginal and joint dis-
tributions of the component lifetimes are computed in Section 5, as well as
the joint distribution of the corresponding ordered statistics. Section 6 is
dedicated to dependence and stochastic comparison properties. The numer-
ical experiments are given in Section 7. Section 8 ends the paper with some
conclusion and perspectives for future works.

Please note that in all the paper, the terms ”increasing” and ”decreasing”
mean ”non-decreasing” and ”non-increasing”, respectively. Also, a function
ϕ : I ⊆ Rn −→ J ⊆ R is said to be increasing if ϕ(x) ≤ ϕ(y) whenever x ≤ y
component-wise, for all x,y ∈ I .

2 Time-scaled Lévy processes

We here recall some basic facts about time-scaled Lévy processes and start
with some definitions.

Definition 1 A function Λ : R+ −→ R+ is said to be a time-scaling func-
tion if Λ is differentiable and strictly increasing, such that Λ (0) = 0 and
limt→+∞ Λ (t) = ∞. Its derivative function is denoted by λ = Λ′.

Definition 2 Let Y =(Y (t))t≥0 be a càdlag process, that is a right-continuous
process with left-side limits. Then Y is a Lévy process if:

� Y (0) = 0 almost surely,

� Y has independent and homogeneous increments: for all n ∈ N∗, t0 =
0 < t1 < · · · < tn, the increments ∆Y (ti−1, ti) = Y (ti) − Y (ti−1),
i = 1, · · · , n are independent and ∆Y (ti−1, ti) is identically distributed
as Y (ti − ti−1) for all i = 1, · · · , n,

� Y is stochastically continuous.

Definition 3 Let X =(X (t))t≥0 be a càdlag process. Then X is called a
time-scaled Lévy process if there exists a time-scaling function Λ and a base-
line Lévy process Y such that

X (t) = Y (Λ (t))
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for all t ≥ 0. In that case, X is said to be a time-scaled Lévy process with
parameters (Λ,Y).

Now, let us consider a component with deterioration level modeled by
a time-scaled non negative Lévy process X =(X (t))t≥0 with parameters
(Λ,Y) as in the previous definition. Recall that bothY andX are increasing
(and Y is a subordinator). Assume the component to be failed as soon as
X (t) ≥ L, where L is a given failure threshold. Then, the component failure
time is

τX = inf (t ≥ 0 : X (t) ≥ L)

with survival function

F̄τX (t) = P (τX > t) = P (X (t) ≤ L) = FX(t) (L) ,

where FX(t) is the cumulative distribution function (cdf) of X (t). Using
similar notations for Y, one can see that

F̄τX (t) = P (Y (Λ (t)) ≤ L) = P (τY > Λ (t)) = F̄τY (Λ (t)) . (1)

Assuming F̄τY to be differentiable, then F̄τX also is differentiable with
probability density function (pdf)

fτX (t) = λ (t) fτY (Λ (t)) (2)

for all t ≥ 0.

3 The model for dependence

Let us consider n identical non-repairable components gathered in a system.
Between failures among the n components, each component deteriorates ac-
cording to a time-scaled Lévy process. A component fails as soon as its
deterioration level crosses a given failure threshold L. Each failure entails
some modification in the future deterioration of the still operating compo-
nents, as they become more sollicited. This modification is modelled by a
change in the time-scaling functions for the surviving components. Between
failures, the instrinsic deterioration of the surviving components are assumed
to be independent.

In order to define the model more specifically, let us introduce indepen-
dent time-scaled non negative Lévy processes Xi,j, i, j = 1, · · · , n, with pa-
rameters (Λi,j,Yi,j), i, j = 1, · · · , n, where:

� index i refers to the i-th component,
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� index j refers to the number of already failed components (among the
n components),

� the Λi,j are time-scaling functions which only depend on the number
of already failed components (and not on the component), that is:

Λi,j = Λj for all i, j = 1, · · · , n, (3)

� the baseline Lévy processes Yi,j, i, j = 1, · · · , n are independent and
identically distributed as a given non negative Lévy process Y:

P (Yi,j (t) ≤ x) = P (Y (t) ≤ x) for all i, j = 1, · · · , n, all t ≥ 0, all x ≥ 0.
(4)

At the beginning, each component deteriorates according toXi,1, i ∈ I1 =
{1, · · · , n}. Then, after the first failure, the surviving components deteriorate
according to Xi,2, i ∈ I2, where I2 stands for the set of the n − 1 surviving
components. More generally, after the j-th failure with 1 ≤ j ≤ n − 1, the
surviving components deteriorate according to Xi,j+1, i ∈ Ij+1, where Ij+1

stands for the set of the n − j surviving components. The failure times of
the components are denoted by τi, i = 1, · · · , n, and the successive failures
happen at time τ (1) ≤ τ (2) ≤ · · · ≤ τ (n), where

(
τ (1), · · · , τ (n)

)
is the vector

of order statistics of (τ1, · · · , τn). For j = 1, · · · , n, the period between τ (j−1)

and τ (j) is called the j-th phase (where the 0-th failure is considered to
happen at time τ (0) = 0). This is illustrated in Figure 1 in the case of four
components, with τ (1) = τ1 < τ (2) = τ3 < τ (3) = τ2 < τ (4) = τ4.

The overall deterioration level of the i-th component is denoted by Zi =
(Zi (t))t≥0, i = 1, · · · , n and we set D to be the down state for a failed
component. In the specific case where τ1 < τ2 < · · · < τn (for sake of
simplicity) and setting τ0 = 0, we have:

Zi (t) =



Xi,1 (t) = ∆Xi,1 (τ0, t) if t < τ1,
∆Xi,1 (τ0, τ1) + ∆Xi,2 (τ1, t) if τ1 ≤ t < τ2,

...
...∑k−1

j=1 ∆Xi,j (τj−1, τj) + ∆Xi,k (τk−1, t) if τk−1 ≤ t < τk,
...

...∑i−1
j=1∆Xi,j (τj−1, τj) + ∆Xi,i (τi−1, t) if τi−1 ≤ t < τi,

D if τi ≤ t
(5)

for all i = 1, · · · , n and t ≥ 0, where ∆Xi,j(u, v) = Xi,j(v) − Xi,j(u) for all
0 ≤ u ≤ v and all i, j = 1, · · · , n.
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𝑋1,1(𝑡)

𝑋2,1(𝑡)

𝑋3,1(𝑡)

𝑋4,1(𝑡)

𝑋2,2(𝑡)

𝑋3,2(𝑡)

𝑋4,2(𝑡)

𝑋4,3(𝑡)

𝑋2,3(𝑡)

𝑋4,4(𝑡)

Phase 1

0

Phase 2 Phase 3 Phase 4

Figure 1: Example of trajectories for the component deterioration levels up
to failure, case n = 4 and τ1 < τ3 < τ2 < τ4.

Remark 4 Note that the parameters for this dependence model are the col-
lection of time-scaling functions {Λj, j = 1, · · · , n} and the distribution of
the baseline non negative Lévy process Y.

Technical assumptions 5 In all the paper, we make the following technical
assumptions:

� For all t ≥ 0, the random variable Y (t) admits a pdf with respect to
Lebesgue measure,

� The function FY (t) (L) is differentiable with respect to t.

We end this section with some notations and a few direct consequences
of the model definition, that will be used repeatedly in the remaining of the
paper.

We set
∆Λj (s, t) = Λj (t)− Λj (s)

for all 0 ≤ s ≤ t and j = 1, · · · , n, with ∆Λj (0, t) = Λj (t) when s = 0.
Based on (3), (4) and on the homogeneity of Y, it is easy to check that

P (∆Xi,j (s, t) ≤ x) = P (Y (Λj (t))− Y (Λj (s)) ≤ x)

= P (Y (Λj (t)− Λj (s)) ≤ x)

= P (Y (∆Λj (s, t)) ≤ x)
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for all 0 ≤ s < t and all x ≥ 0.
When x is equal to the failure threshold L, we also have

P (∆Xi,j (s, t) ≤ L) = P (τY > ∆Λj (s, t)) = F̄τY (∆Λj (s, t)) .

Finally, in a similar way as in (1) and (2), we have

F̄τXi,j
(t) = F̄τY (Λj (t)) , (6)

fτXi,j
(t) = λj (t) fτY (Λj (t)) , (7)

for all t > 0, i, j = 1, · · · , n.

4 Reliability of a coherent system

Considering n identical components with dependence modelled as in the pre-
vious section, we now assume that they are gathered in a coherent system
and the point is to compute its reliability. To begin with, let us consider a
specific coherent system, that is a k-out-of-n system (with 1 ≤ k ≤ n). In
that case, the system is up as long as at least k components are operating
and the system fails at the time of the n − k + 1-th failure among compo-
nents. The lifetime of the system hence is the order statistics τ (n−k+1) and
the reliability function is

Rk,n (t) = P
(
τ (n−k+1) > t

)
,

for all t ≥ 0.

Theorem 6 The reliability function of the k-out-of-n system is given by

Rk,n (t) =
n−k∑
m=0

Rm (t) ,

for all t ≥ 0, with
R0 (t) =

[
F̄τY (Λ1 (t))

]n
(8)

and

Rm (t) =
n!

(n−m)!

∫
Rm
+

1{t1<t2<···<tm<t} am(t1, . . . tm)

×
[
F̄τY

(
Λ∗

m+1 (t1, . . . , tm, t)
)]n−m

dt1 · · · dtm (9)
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for all t ≥ 0 and all m = 1, · · · , n− 1, where

Λ⋆
m(t1, . . . , tm) =

m∑
j=1

∆Λj(tj−1, tj), (10)

am(t1, . . . tm) =
m∏
i=1

λi (ti) fτY (Λ⋆
i (t1, . . . , ti)) , (11)

for all m = 1, · · · , n and all t0 = 0 < t1 < t2 < · · · < tm.

Proof. Let us first divide the reliability function Rk,n (t), according to the
number of already failed components at time t :

Rk,n (t) =
n−k∑
m=0

Rm (t) , (12)

where
Rm (t) = P

(
τ (m) < t < τ (m+1)

)
(13)

stands for the probability that exactly m components are failed at time t,
with 0 ≤ m ≤ n− k (and τ (0) = 0).

Let us first consider the case m = 0, where no components have failed
before t :

R0 (t) = P
(
τ (1) > t

)
= P

(
min
1≤i≤n

(τi) > t

)
= P

(⋂n

i=1
{τi > t}

)
.

When no components have failed at time t, all components are in their first
phase (see Figure 1) and they all deteriorate according to independent pro-
cesses Xi,1, i = 1, · · · , n up to time t. Hence

R0 (t) = P
(⋂n

i=1
{Xi,1 (t) < L}

)
=

n∏
i=1

P (Xi,1 (t) < L)

=
[
F̄τY (Λ1 (t))

]n
.

Now let us consider the generic term Rm (t), with 1 ≤ m ≤ n− k and let
An,m be the set of sequences (i1, · · · , im) of m elements of {1, · · · , n} without
repetition, with

card (An,m) =
n!

(n−m)!
.
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Then, the reliability can be written as

Rm (t) =
∑

(i1,··· ,im)∈An,m

P
(
τi1 < τi2 < · · · < τim < t < min

j /∈{i1,··· ,im}
τj

)
(14)

Noting that the probability in the right side of (14) does not depend on
(i1, · · · , im) (because all components are identical), we obtain

Rm (t) =
n!

(n−m)!
Sm (t) (15)

with

Sm (t) = P
(
τ1 < τ2 < · · · < τm < t < min

m+1≤i≤n
τi

)
.

Conditioning by τ1, · · · , τm, we get

Sm (t) = E
(
1{τ1<τ2<···<τm<t}Φ (τ1, · · · , τm)

)
(16)

with

Φ (t1, · · · , tm) = P
(
t < min

m+1≤i≤n
τi |τ1 = t1, · · · , τm = tm

)
= P

( ⋂
m+1≤i≤n

{t < τi} |τ1 = t1, · · · , τm = tm

)

= P

( ⋂
m+1≤i≤n

{Zi (t) < L} |τ1 = t1, · · · , τm = tm

)

for t1 < t2 < · · · < tm < t.
Now, given that τ1 = t1 < · · · < τm = tm, all n−m still operating compo-

nents are in their m + 1-th phase, and remembering (5), their deterioration
level is given by

Zi(t) =
m∑
j=1

∆Xi,j (tj−1, tj) + ∆Xi,m+1 (tm, t)

=st Y

(
m∑
j=1

∆Λj (tj−1, tj) + ∆Λm+1 (tm, t)

)
=st Y

(
Λ∗

m+1 (t1, · · · , tm, t)
)

(17)

for all
tm ≤ t < τ (m+1) = min

m+1≤k≤n
τk
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and all i = m + 1, · · · , n, where =st means equality in distribution. The
second line is a direct consequence of the model assumptions described in
Subsection 3. Noting that, given τ1 = t1 < · · · < τm = tm, the processes
(Zi (t))t≥tm

, i = m + 1, · · · , n are conditionally independent up to the next

failure at time τ (m+1), we obtain

Φ (t1, · · · , tm) =
∏

m+1≤i≤n

P
(
Y
(
Λ∗

m+1 (t1, · · · , tm, t)
)
< L

)
=
[
F̄τY

(
Λ∗

m+1 (t1, · · · , tm, t)
)]n−m

.

Starting again from (16), we now have

Sm (t)

=

∫
Rm
+

1{t1<t2<···<tm<t}
[
F̄τY

(
Λ∗

m+1 (t1, · · · , tm, t)
)]n−m

× f(τ1,··· ,τm) (t1, · · · , tm) dt1 · · · dtm

=

∫
Rm
+

1{t1<t2<···<tm<t}
[
F̄τY

(
Λ∗

m+1 (t1, · · · , tm, t)
)]n−m

fτ1 (t1)

×
m∏
i=2

fτi|τ1,··· ,τi−1
(ti|t1, · · · , ti−1) dt1 · · · dtm (18)

with
fτ1 (t1) = λ1 (t1) fτY (Λ1 (t)) = λ1 (t1) fτY (Λ∗

1 (t))

(see (7)) and where fτi|τ1,··· ,τi−1
(ti|t1, · · · , ti−1) stands for the conditional pdf

of τi given τ1 = t1, · · · , τi−1 = ti−1.
Using a similar argument as in (17), we have

F̄τi|τ1,··· ,τi−1
(ti|t1, · · · , ti−1) = P (Zi (ti) < L |τ1 = t1, · · · , τi=1 = ti−1 )

= P (Y (Λ∗
i (t1, · · · , ti)) < L)

= F̄τY (Λ∗
i (t1, · · · , ti))

for all 2 ≤ i ≤ m, from where we easily derive that

fτi|τ1,··· ,τi−1
(ti|t1, · · · , ti−1) = − ∂

∂ti
F̄τY (Λ∗

i (t1, · · · , ti))

= λi (ti) fτY (Λ∗
i (t1, · · · , ti)) . (19)

This allows to conclude, based on (12), (15) and (18).
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Remark 7 In the specific case where Λi (t) = Λ (t) for all t ≥ 0 and all
i = 1, · · · , n, all components are independent. In that case, Formula (9)
provides

Rm (t) =
n!

(n−m)!

∫
Rm
+

1{t1<t2<···<tm<t}
(
F̄τY (Λ (t))

)n−m

×
m∏
i=1

λ (ti) fτY (Λ (ti)) dt1 · · · dtm

=
n!

(n−m)!

(
F̄τY (Λ (t))

)n−m 1

m!

∫
[0,t]m

m∏
i=1

λ (ti) fτY (Λ (ti)) dt1 · · · dtm

=
n!

(n−m)!

(
F̄τY (Λ (t))

)n−m 1

m!

(∫ t

0

λ (t1) fτY (Λ (t1)) dt1

)m

=

(
n

m

)(
F̄τY (Λ (t))

)n−m
(FτY (Λ (t)))m ,

which is coherent, as the distribution for the number of failed components at
time t is binomial B (n, FτY (Λ (t))).

Remark 8 Remembering that series and parallel systems are specific k-out-
of-n systems with k = n and k = 1, respectively, we easily derive that their
reliability functions are

Rn,n(t) = R0(t)

for the series case and

R1,n(t) =
n−1∑
m=0

Rm (t)

for the parallel case, using the notations of Theorem 6.

Let us now assume that the components are gathered in a general coherent
system, that is in a system such that all components are relevant and with
a non decreasing structure function, see e.g. [17] for more details. Noting
that the n components are exchangeable, we can observe from [16] that the
structure of the system is caracterized by its signature p = (p1, · · · , pn),
where pi is the probability that the failure of the system is induced by the
i-th failure among components, that is

pi = P
(
T = τ (i)

)
for all i = 1, · · · , n, where T stands for the failure time of the system.
Also, the signature p is known to be independent on the joint distribution
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of (τ1, · · · , τn) (please see [16] for more details). Finally, as simultaneous
failures are not possible in our context, p is a probability vector, that is∑n

i=1 pi = 1.
We can now derive the system reliability as a direct application of [16,

Lemma 1].

Proposition 9 The reliability of the coherent system with signature
p = (p1, · · · , pn) is given by:

R (t) =
n∑

k=1

pk Rk,n (t) ,

for all t ≥ 0.

5 Distributions

In this section we compute the marginal and joint distributions of the compo-
nent lifetimes, as well as the joint distribution of the corresponding ordered
statistics.

5.1 Marginal distributions

Proposition 10 For each i = 1, · · · , n, the survival function of τi is given
by

P (τi > t) =
n−1∑
m=0

n−m

n
Rm (t)

for all t > 0 (independent on i), where Rm(t) has been introduced in Theorem
6 (see also (13)).

Proof. We may write

P (τi > t) =
n−1∑
m=0

P
(
τi > t|τ (m) < t < τ (m+1)

)
Rm (t) =

n−1∑
m=0

n−m

n
Rm (t) ,

for all t > 0, where the last equality comes from the fact that the probability
that component i is one of the n−m surviving components is (n−m)/n (as
all components are identical).

13



5.2 Joint distributions

We first compute the joint probability density function of (τ1, . . . τn).

Theorem 11 The probability density function of (τ1, . . . τn) is given by

f(τ1,...τn)(t1, . . . , tn) =
n∏

i=1

λi

(
t(i)
)
fτY
(
Λ∗

i

(
t(1), · · · , t(i)

))
= an

(
t(1), · · · , t(n)

)
for all distinct t1, t2, . . . , tn ∈ R+ (0 otherwise), where (t(1), . . . , t(n)) is the
sequence (t1, . . . , tn) arranged in increasing order and where an is defined in
(11).

Proof. Let us first compute the multivariate survival function of (τ1, . . . τn).
Using a similar method as for the computation of Rm (t) in the proof of
Theorem 6, we distinguish the order in which failures occur, that is we write

P(τ1 > t1 . . . τn > tn) =
∑

(k1,··· ,kn)∈An

P(τ1 > t1 . . . τn > tn, τk1 < · · · < τkn)

for all t1, t2, . . . , tn ∈ R+, where An := An,n is the set of all permutations of
{1, · · · , n}.

Noting that the set {τ1 > t1 . . . τn > tn} does not depend on the ordering
of the τi’s, we now have

P (τ1 > t1 . . . τn > tn)

=
∑

(k1,··· ,kn)∈An

P(τk1 > tk1 , τk2 > tk2 , . . . , τkn > tkn , τk1 < · · · < τkn)

=
∑

(k1,··· ,kn)∈An

P(τk1 > tk(1) , τk2 > tk(2) , . . . , τkn > tk(n) , τk1 < · · · < τkn) (20)

where tk(i) := tk1 ∨ · · · ∨ tki , i = 1, . . . , n.
Next, we know that

f(τ1,...τn)(t1, . . . , tn) = (−1)n
∂n

∂t1 . . . ∂tn
P (τ1 > t1 . . . τn > tn) .

To compute this derivative, note that the sequence (tk(1) , tk(2) , . . . , tk(n))
will contain repeated terms unless tk1 < · · · < tkn , that is unless ti’s are all
distinct and t(i) = tki , i = 1, 2, . . . , n. As a consequence, the only term in (20)
which will not vanish after differentiation is the one in which (tk1 , . . . , tkn) =
(t(1), . . . , t(n)).
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Hence we have

f(τ1,...τn)(t1, . . . , tn)

= (−1)n
∂n

∂t1 . . . ∂tn
P(τk1 > t(1), τk2 > t(2), . . . , τkn > tk(n) , τk1 < · · · < τkn)

= (−1)n
∂n

∂t1 . . . ∂tn
P(τ1 > t(1), τ2 > t(2), . . . , τn > tn, τ1 < · · · < τn)

by symmetry. We next compute this expression using similar arguments as
in (18) and (19), which provides

f(τ1,...τn)(t
(1), . . . , t(n)) =

n∏
i=1

fτki |τk1 ,··· ,τki−1

(
t(i)|t(1), · · · , t(i−1)

)
=

n∏
i=1

λi

(
t(i)
)
fτY
(
Λ∗

i

(
t(1), · · · , t(i)

))
, (21)

and gives the result.
We next derive the pdf of (τ (1), . . . τ (n)) in the following corollary.

Corollary 12 The pdf of (τ (1), . . . τ (n)) is given by

f(τ (1),...τ (n))(t1, . . . , tn) = n!
n∏

i=1

λi (ti) fτY (Λ∗
i (t1, · · · , ti)) = n! an (t1, · · · , tn)

for t1 < t2 < · · · < tn (0 otherwise).

Proof. The result is a direct consequence of Theorem 11, considering the n!
possible orderings among the failures.

Finally, we derive the probability density function of (τ (1), . . . τ (k)) for
1 ≤ k ≤ n, which is next used to derive the conditional distributions of the
ordered failure times.

Proposition 13 For each 1 ≤ k ≤ n, the pdf of (τ (1), . . . τ (k)) is given by

f(τ (1),...τ (k))(t1, . . . , tk)

=
n!

(n− k)!

(
F̄τY (Λ∗

k (t1, · · · , tk))
)n−k

ak (t1, · · · , tk) (22)

=
n!

(n− k)!

(
F̄τY (Λ∗

k (t1, · · · , tk))
)n−k

k∏
i=1

λi (ti) fτY (Λ∗
i (t1, · · · , ti)) ,

for t1 < t2 < · · · < tk (0 otherwise).
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Proof. Note that (22) can be obtained by noticing that the first part is k!
times the probability that n − k components have survived to time tk and
the second part is the joint pdf of the first k failure times, divided by k!. For
a more specific proof, we start from

f(τ (1),...τ (k))(t1, . . . , tk)

=

∫ ∞

tk

∫ ∞

uk+1

· · ·
∫ ∞

un−2

∫ ∞

un−1

f(τ (1),...τ (n))(t1, . . . , tk, uk+1, . . . un)duk+1 . . . dun

(23)

Taking into account Corollary 12, the last integral is equal to∫ ∞

un−1

f(τ (1),...τ (n))(t1, . . . , tk, uk+1, . . . un) dun

= n! an−1 (t1, . . . , tk, uk+1, . . . un−1)

∫ ∞

un−1

λn (tn) fτY (Λ∗
n (t1, · · · , tk, uk+1, . . . un)) dun

= n! an−1 (t1, . . . , tk, uk+1, . . . un−1) F̄τY

(
Λ⋆

n−1 (t1, . . . , tk, uk+1, . . . un−1)
)
.

Substituting this expression into (23), we get

f(τ (1),...τ (k))(t1, . . . , tk)

= n!

∫ ∞

tk

∫ ∞

uk+1

· · ·
∫ ∞

un−2

an−1(t1, . . . , tk, uk+1, . . . un−1)

× F̄τY

(
Λ⋆

n−1 (t1, . . . , tk, uk+1, . . . un−1)
)
duk+1 . . . dun−1

= n!

∫ ∞

tk

∫ ∞

uk+1

· · ·
∫ ∞

un−3

an−2(t1, . . . , tk, uk+1, . . . un−2)

× 1

2!

(
F̄τY

(
Λ⋆

n−1(t1, . . . , tk, uk+1, . . . un−2)
))2

duk+1 . . . dun−2

by integrating the last integral. The conclusion follows integrating repeatedly
the last expression.

Proposition 14 The conditional survival function of τ (i) given (τ (1), . . . , τ (i−1))
is provided by

P(τ (i) > t|τ (1) = t1, . . . , τ
(i−1) = ti−1) =

(
F̄τY (Λ∗

i (t1, . . . , ti−1, t))

F̄τY

(
Λ∗

i−1(t1, . . . , ti−1)
))n−i+1

for all 0 < t1 < · · · < ti−1, all t > ti−1 and all i = 2, · · · , n.
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Proof. Taking into account Proposition 13, we have

fτ (i)|τ (1),...τ (i−1) (ti|t1, . . . , ti−1)

=
f(τ (1),...τ (i))(t1, . . . , ti)

f(τ (1),...τ (i−1))(t1, . . . , ti−1)

=
(n− i+ 1)

(
F̄τY (Λ∗

i (t1, . . . , ti))
)n−i

λi (ti) fτY (Λ∗
i (t1, . . . , ti))(

F̄τY

(
Λ∗

i−1(t1, . . . , ti−1)
))n−i+1

for all ti > ti−1. As a consequence of the previous equality, we easily get

P
(
τ (i) > t|τ (1) = t1, . . . , τ

(i−1) = ti−1

)
=

∫ ∞

t

fτ (i)|τ (1),...τ (i−1)(ti|t1, . . . , ti−1)dti

=

(
F̄τY (Λ⋆

i (t1, . . . , ti−1, t))
)n−i+1(

F̄τY

(
Λ⋆

i−1(t1, . . . , ti−1)
))n−i+1 ,

from which the conclusion follows.

6 Dependence and stochastic comparison prop-

erties

6.1 Stochastic orders and aging properties

We here recall the definitions of the stochastic orders and aging properties
that are used further in this section. We begin with univariate stochastic or-
ders, please see [15, Chapter 1] for a more detailed account on these notions.

Definition 15 Let X and Y be non-negative random variables, with cdfs F
and G, and survival functions F̄ and Ḡ, respectively. X is said to be smaller
than Y in the

(a) Usual stochastic order (X ≤st Y ) if Ḡ(x) ≥ F̄ (x) for all x ∈ R.

(b) Hazard rate order (X ≤rh Y ) if
Ḡ(x)

F̄ (x)
is increasing in x (or equivalently

Ḡ(y)F̄ (x)− Ḡ(x)F̄ (y) ≥ 0 for all x ≤ y, to avoid divisions by 0).

(c) Reversed hazard rate order (X ≤rh Y ) if
G(x)

F (x)
is increasing in x (or

G(y)F (x)−G(x)F (y) ≥ 0 for all x ≤ y).
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(c) Likelihood ratio order (X ≤lr Y ) if X and Y are absolutely continu-

ous with respective pdfs f and g such that
g(x)

f(x)
is increasing in x (or

g(y)f(x)− g(x)f(y) ≥ 0 for all x ≤ y).

Remark 16 We recall that the likelihood ratio order implies both the rh and
hr orders and that both rh and hr orders imply the usual stochastic order.

In Section 6.3, we shall also use the multivariate stochastic order as de-
fined in the next definition. Please see [15, Chapter 3] for more details.

Definition 17 Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be two random
vectors. We say that X is less or equal that Y in the multivariate stochastic
order (written X ≤st Y) if E[ϕ(X)] ≤ E[ϕ(Y)] for all bounded increasing
function ϕ : Rn −→ R.

Remark 18 It is well known that, for n = 1 (univariate case), Definitions
15 (a) and 17 are equivalent (see [15, Thm. 1.2.13, p. 6]). However, in the
multivariate case, even though X ≤st Y implies that the survival functions
or cdfs of both vectors are ordered (which correspond to the upper and lower
orthant orders, respectively), these orders are not equivalent any more.

In Section 6.3, we will study dependence properties between the failure
times of a system. Many dependence concepts can be used to this aim (see
[15, Section 3.10]). Here, we will use the concept of Conditionally Increasing
In Sequence property, which we define below and where we use the follow-
ing notation: given two random vectors X and Y, we write X ↑ Y if X is
stochastically increasing in Y, namely if the conditional distribution of X
given Y = y is increasing for all y ∈ Rn.

Definition 19 Let X = (X1, . . . , Xn) be a random vector. It is said to be
Conditionally Increasing in Sequence (CIS) if Xi ↑ (X1, . . . Xi−1), for all
i = 1, . . . n.

Remark 20 The concept of Conditionally Increasing in Sequence describes
a positive dependence property between the random variables under consider-
ation. Among these concepts, it is not the strongest (for instance, the Multi-
variate Totally Positive of order 2 (MTP2) property is stronger), but it im-
plies many other common dependence concepts such as positive upper/lower
orthant dependence or association, for instance. See [15, p. 146] for a sum-
mary of the relationships between these concepts of positive dependence).
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We finally come to the Increasing Failure Rate property, which is used in
reliability to describe the aging of a system which is deteriorating over time
(see e.g. [14, p.104] for more details).

Definition 21 Let X be a non negative random variable with F and F the
corresponding cdf and survival functions. The random variable X (or the
cdf F ) is said to be Increasing failure rate (IFR) if P(X > t + h|X > t) is
decreasing in t for all h > 0 and all t such that the previous expression makes
sense, that is F (t+ h)/F (t) is decreasing in t for all h > 0.

Remark 22 A function ϕ : R −→ R is said to be log-concave if log ϕ is a
concave function (where finite). It is well known that ϕ is log-concave if and
only if (see e.g. [14, p.696])

ϕ(x)ϕ(y + h) ≤ ϕ(y)ϕ(x+ h), for all y ≥ x ≥ 0, h > 0. (24)

Thus, the IFR property for X is equivalent to the log-concavity of the survival
function F [14, p.105].

6.2 Dependence properties

The aim of this section is to study dependence properties of the ordered
failure times (τ (1), . . . , τ (n)). Based on the fact that the failure times are
ordered, we specifically investigate positive dependence properties. With that
aim, we will need the following assumption for the derivatives λj, j = 1, · · · , n
of the time-scaling functions Λj, j = 1, · · · , n :

λi ≤ λj for all i < j, (25)

which mostly means that the deterioration rate of the surviving components
increases with the number of already failed components, and implies that the
larger the number of observed failures, the shorter the waiting time for the
next failure. Under this condition, and assuming also the Increasing Fail-
ure Rate (IFR) property for τY, we show that (τ (1), . . . τ (n)) is conditionally
increasing in sequence (CIS). More specifically, we have the following result.

Proposition 23 Assume τY to be IFR. Under Assumption (25), the ordered
vector (τ (1), . . . τ (n)) is conditionally increasing in sequence, that is, for i =
2, . . . , n,[

τ (i)|τ (1) = t1, . . . , τ
(i−1) = ti−1

]
≤st

[
τ (i)|τ (1) = z1, . . . , τ

(i−1) = zi−1

]
,

for all (t1, . . . , ti) ≤ (z1, . . . , zi), where both vectors are arranged in increasing
order.
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Proof. Let us assume that both sequences t = (t1, . . . , ti−1) and z =
(z1, . . . , zi−1) are arranged in increasing order (in order that the conditional
probability makes sense). Let

Ai
t = {τ (1) = t1, . . . , τ

(i−1) = ti−1}; Ai
z = {τ (1) = z1, . . . , τ

(i−1) = zi−1}. (26)

We have to show that

P
(
τ (i) > t|Ai

t

)
≤ P

(
τ (i) > t|Ai

z

)
(27)

for all t ≥ 0.
Let us first note that if t ≤ zi−1, then P

(
τ (i) > t|Ai

z

)
= 1 so that (27) is

true. Hence we can restrict the study to t > zi−1.
Let us set

Λ1(t) =
i∑

k=1

Λ∗
k (t1, · · · , tk−1, t)1[tk−1,tk) (t) , (28)

Λ2(t) =
i∑

k=1

Λ∗
k (z1, · · · , zk−1, t)1[zk−1,zk) (t) (29)

for all t ≥ 0 with ti = zi = ∞.
Noticing that

Λ1(t) = Λ∗
i (t1, · · · , ti−1, t)

= Λ1(ti−1) + ∆Λi(ti−1, t)

= Λ1(ti−1) + ∆Λi(ti−1, zi−1) + ∆Λi(zi−1, t)

= Λ1(zi−1) + ∆Λi(zi−1, t)

for all t > zi−1 ≥ ti−1, we get from Proposition 17 that

P
(
τ (i) > t|Ai

z

)
=

(
F̄τY (Λ2(zi−1) + ∆Λi(zi−1, t))

F̄τY (Λ2(zi−1))

)n−i+1

, (30)

P
(
τ (i) > t|Ai

t

)
=

(
F̄τY (Λ1(zi−1) + ∆Λi(zi−1, t))

F̄τY (Λ1(ti−1))

)n−i+1

≤
(
F̄τY (Λ1(zi−1) + ∆Λi(zi−1, t))

F̄τY (Λ1(zi−1))

)n−i+1

(31)

due to Λ1 (zi−1) ≥ Λ1 (ti−1) for the last inequality.
Now, let us show that

Λ1(t) ≥ Λ2(t) (32)
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for all t > zi−1. Let λ1 and λ2 be the derivative of Λ1 and Λ2 on R+,
respectively. At first, note that for each u ≥ 0, there exists j1 such that
tj1−1 ≤ u < tj1 and j2 such that zj2−1 ≤ u < zj2 . Also j1 ≥ j2 due to
(t1, . . . , ti) ≤ (z1, . . . , zi). This implies

λj1 (u) = λ1 (u) ≥ λj2 (u) = λ2 (u)

based on Assumption (25). Hence λ1 (u) ≥ λ2 (u) for all u ≥ 0, which implies
(32) for all t > zi−1.

Remembering that τY is increasing failure rate, we know that

F̄τY(y + h)

F̄τY(y)
≤ F̄τY(x+ h)

F̄τY(x)
, for all y ≥ x ≥ 0, h > 0. (33)

Based on (32), we derive that

F̄τY (Λ1(zi−1) + ∆Λi(zi−1, t))

F̄τY (Λ1(zi−1))
≤ F̄τY (Λ2(zi−1) + ∆Λi(zi−1, t))

F̄τY (Λ2(zi−1))
,

which taking into account (30) and (31) shows (27), and therefore the result.

Remark 24 Note that it is not possible to use similar arguments as in the
previous proof to derive a conditionally decreasing in sequence property, be-
cause the reversed inequality of (27) would not be valid, as for ti−1 < t < zi−1

the second term in (27) is 1, whereas the first term can be less than 1.

Finally, let us mention that the IFR property for τY is quite a natural
condition fulfilled by most usual Lévy processes, which can easily derived
from the following Lemma. As an example, it is checked for the inverse
Gaussian process (as we will see in the next section). It is also valid for the
Gamma process, based on similar arguments.

Lemma 25 If the baseline Lévy process Y is such that Y (t) increases with
t in the reversed hazard rate ordering, the crossing time τY of level L is
Increasing Failure Rate (IFR).

Proof. Our aim is to use Proposition 3.1 from [18]. At first, notice that
the constant threshold L can be seen as an IFR random variable and that Y
is a non negative Lévy process, and hence in the class IPII (independent
positive increasing increments) in the sense of [18]. As P(Yt = L) = 0, we
have now checked all conditions from [18, Prop. 3.1 (a)], which allows to
derive that τY is IFR.
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6.3 Stochastic comparisons

In this section, we provide conditions to compare the failure times in two
different deterioration models, with, possibly, different baseline processes
and time-scaling functions. We begin with a simple result comparing the
times of the first failures among components, or equivalently, comparing the
failure times of series systems.

Proposition 26 Let us consider two deterioration models described by the
pair of baseline Lévy processes Y and Z, with

{
Λm

j , j = 1, · · · , n
}
the corre-

sponding time-scaling functions. Assume that Y (t) ≥st Z (t) for all t ≥ 0
and Λ1

1 ≥ Λ2
1. Then, setting τ (1) and τ̂ (1) to be the first failure times in the

first and second models, respectively, we have

τ (1) ≤st τ̂
(1) (34)

Proof. Observe that Λ1
1(t) ≥ Λ2

1(t) implies that

P(τ (1) > t) = P(Y (Λ1
1(t)) ≤ L)n ≤ P(Y (Λ2

1(t)) ≤ L)n. (35)

Now Y (t) ≥st Z(t) implies that

P(Y (Λ2
1(t)) ≤ L)n ≤ P(Z(Λ2

1(t)) ≤ L)n = P(τ̂ (1) > t) (36)

for all t > 0. Gathering (35) and (36) shows (34).

Remark 27 As a specific case, assume that the two deterioration models in
Proposition 26 share the same baseline Lévy processes Y. As Y (t) ≤st Y (t)
for all t ≥ 0, if Λ1

1 ≥ Λ2
1, we get that τ (1) ≤st τ̂

(1). Considering Λm
2 (t) = t

for all t ≥ 0 and all m (which means that the second deterioration process is
the baseline process), we can see that if Λ1

1(t) ≥ (≤)t for all t, then the time
of the first failure in the deterioration model is stochastically smaller (larger)
than the time of the first failure in the baseline model. Equivalently, this
provides comparison results between the lifetimes τX (deterioration model)
and τY (baseline model) in case of a common series structure.

We next study the multivariate stochastic ordering property of the or-
dered failure times. As previous steps, we prove two technical lemmas, which
have some interest in themselves.

Lemma 28 Let Y and Z be two baseline Lévy processes such that Y (t) ≥rh

Z (t) for all t ≥ 0. Then τY ≤hr τZ.
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Proof. The assumption Y (t) ≥rh Z (t) for all t ≥ 0 means that

FZ(t) (x)

FZ(t) (x+ h)
≥

FY (t) (x)

FY (t) (x+ h)
(37)

for all h, t ≥ 0 and x > −h, where FY (t) and FZ(t) stand for the cumulative
distribution functions of Y (t) and Z (t), respectively. The point is to show
that τY ≤hr τZ, that is

P (τY > s+ t)

P (τY > t)
≤ P (τZ > s+ t)

P (τZ > t)
(38)

for all s, t ≥ 0. Note that, based on the independent and homogenous incre-
ment property of Y, we have

Y (s+ t) =st Y (t) + Y ∗ (s) ,

where Y∗ is an independent copy of Y. Hence

P (τY > s+ t) = P (Y (s+ t) ≤ L)

= P (Y (t) ≤ L− Y ∗ (s))

= E
[
FY (t) (L− Y ∗ (s))

]
= E

[
FY (t) (L− Y (s))

]
We derive

P (τY > s+ t)

P (τY > t)
= E

(
FY (t) (L− Y (s))

FY (t) (L)

)
≤ E

(
FZ(t) (L− Y (s))

FZ(t) (L)

)
, (39)

due to (37) for the last inequality, taking x = L− Y (s) and h = Y (s).
Now, as Y (s) ≥rh Z (s), we also have Y (s) ≥st Z (s), which entails that

E
(
FZ(t) (L− Y (s))

FZ(t) (L)

)
≤ E

(
FZ(t) (L− Z (s))

FZ(t) (L)

)
=

P (τZ > s+ t)

P (τZ > t)
(40)

and consequently (38) is true, gathering (39) and (40).

Lemma 29 Let Λ1 and Λ2 be two time-scaling functions such that Λ1 ≥ Λ2.
Let ϕ : R −→ R+ be a log-concave decreasing function. Then, for all 0 ≤ s <
t such that ∆Λ1(s, t) ≥ ∆Λ2(s, t) we have

ϕ
(
Λ1(t)

)
ϕ
(
Λ2(s)

)
≤ ϕ

(
Λ2(t)

)
ϕ
(
Λ1(s)

)
. (41)
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Proof. By assumption, we know that Λ1(s) ≥ Λ2(s). Then, using (24) for
the second line and the decreasing property for the third one, we have

ϕ
(
Λ1(t)

)
ϕ
(
Λ2(s)

)
= ϕ

(
Λ1(s) + ∆Λ1(s, t)

)
ϕ
(
Λ2(s)

)
≤ ϕ

(
Λ2(s) + ∆Λ1(s, t)

)
ϕ
(
Λ1(s)

)
≤ ϕ

(
Λ2(s) + ∆Λ2(s, t)

)
ϕ
(
Λ1(s)

)
= ϕ

(
Λ2(t)

)
ϕ
(
Λ1(s)

)
,

and the conclusion follows.

Proposition 30 Let us consider two deterioration models described by the
pair of baseline Lévy processes Y and Z, with

{
Λm

j , j = 1, · · · , n
}
and{

λm
j , j = 1, · · · , n

}
, m = 1, 2, as corresponding time-scaling functions and

derivatives, respectively. Assume the following conditions to hold:

(a) Y (t) ≥rh Z (t) for all t ≥ 0 and Λ1
1 ≥ Λ2

1.

(b) λ1
j ≥ λ2

j , for all j = 2, · · · , n.

(c) One of the deterioration models satisfies conditions in Proposition 23
(that is, Condition (25) for the time-scaling functions, as well as the
IFR property for the failure time in the baseline Lévy process).

Then, setting (τ (1), . . . τ (n)) and (τ̂ (1), . . . τ̂ (n)) to be the ordered failure
times in the first and second models, respectively, we have

(τ (1), . . . τ (n)) ≤st (τ̂
(1), . . . τ̂ (n)).

Proof. Taking into account condition (a) and that the fact that the hazard
rate order implies the usual stochastic order, we know from Proposition 26
that τ (1) ≤st τ̂

(1). As a second step, let us use the notation introduced in
(26), and let Âi

t and Âi
z be the corresponding overcomes for the second model.

With these notations, we want to show that[
τ (i)|Ai

t

]
≤st

[
τ̂ (i)|Âi

z

]
(42)

for all (t1, . . . tn) ≤ (z1, . . . zn) and all 2 ≤ i ≤ n.
Assume first that Condition (c) is satisfied for the first model. Based on

Proposition 23, we then have
[
τ (i)|Ai

t

]
≤st

[
τ (i)|Ai

z

]
, so that (42) will follow

if we show that [
τ (i)|Ai

z

]
≤st

[
τ̂ (i)|Âi

z

]
. (43)
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Let us set

Λl(t) =
i∑

k=1

Λ∗l
k (z1, · · · , zk−1, t)1[zk−1,zk) (t) ,

with zi = ∞ for all t ≥ 0 and l = 1, 2, where Λ∗l
k , l = 1, 2 is defined as Λ∗

k in
(10) for 1 ≤ k ≤ i.

Then, due to (30), we have

P
(
τ (i) > t|Ai

z

)
=

(
F̄τY (Λ1(t))

F̄τY (Λ1(zi−1))

)n−i+1

,

P
(
τ̂ (i) > t|Âi

z

)
=

(
F̄τZ (Λ

2(t))

F̄τZ (Λ
2(zi−1))

)n−i+1

(44)

for all t > zi−1.
Condition (a), together with the condition λ1

j ≥ λ2
j , j ≥ 2 obviously

implies that Λ1(zi−1) ≥ Λ2(zi−1). Moreover, ∆Λ1(zi−1, t) ≥ ∆Λ2(zi−1, t)
(because λ1

j ≥ λ2
j , j ≥ 2). As τY is increasing failure rate, conditions in

Lemma 29 are satisfied and we have

F̄τY (Λ1(t))

F̄τY (Λ1(zi−1))
≤ F̄τY (Λ2(t))

F̄τY (Λ2(zi−1))
(45)

Now based on Y (t) ≥rh Z (t) for all t ≥ 0, we can derive from Lemma 28
that τY ≤hr τZ, and consequently (38) is true. This provides

F̄τY (Λ2(t))

F̄τY (Λ2(zi−1))
≤ F̄τZ (Λ

2(t))

F̄τZ (Λ
2(zi−1))

(46)

for all t > zi−1. Then, from (45) and (46), we conclude that

F̄τY (Λ1(t))

F̄τY (Λ1(zi−1))
≤ F̄τZ (Λ

2(t))

F̄τZ (Λ
2(zi−1))

,

and this last inequality together with (44) show (43). Finally, the result
follows by (34) and (42) (see [15, Thm. 3.3.7, p. 93]). In the case where
Condition (b) is satisfied for the second model, it is easy to check that similar
arguments remain valid.

Remark 31 Let Rk,n(t) and R̂k,n(t) be the reliability functions of a k-out-of-
n system for two deterioration models as defined in Proposition 30. Proposi-
tion 26 gives conditions for the case k = 1 (series system). Moreover, as the
multivariate stochastic order implies the univariate stochastic order of the
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marginals (see [15, Thm.3.3.10, p.94]), we immediately deduce from Propo-
sition 30 that Rk,n(t) ≤ R̂k,n(t), k = 2, . . . , n. In particular, this includes
stochastic comparisons for parallel systems (k = n). Moreover, if R(t) and
R̂(t) are the reliability functions of a specific coherent system for both models,
we have by Proposition 9 that R(t) ≤ R̂(t).

Remark 32 Let us assume that the two deterioration models in Proposition
30 share the same baseline Lévy process Y and that Λ2

j (t) = t for all t ≥ 0
and all j = 1, · · · , n. Then Condition (25) is true for the second deterioration
process (which is the baseline Lévy process). Assume further that τY is IFR
and that λ1

j (t) ≥ (≤) 1, for all j = 1, · · · , n. Then, as Y (t) ≥rh Y (t) for all
t ≥ 0, we know from Proposition 30 that

(τ (1), . . . , τ (n)) ≤st (≥st) (τ̂
(1), . . . , τ̂ (n))

where τ̂ (1), . . . , τ̂ (n) stand for the ordered failure times of the baseline Lévy
process model. Proposition 30 hence provides us with conditions under which
the ordered failure times of the deterioration model are stochastically smaller
or larger than those of the baseline process. Based on Remark 31, the reliabil-
ity functions of a specific coherent system for both deterioration and baseline
models are also comparable under the same conditions.

7 Illustration in the case of inverse Gaussian

processes

We here consider n identical and dependent components as in Section 3, with
an inverse Gaussian process as underlying deterioration process Y. As a first
step, we recall some well-known facts about inverse Gaussian processes.

7.1 The inverse Gaussian process

Following the parametrization of [21], we recall that an inverse Gaussian
process Y is a Lévy process such that Y (t) ∼ IG (t, bt2) with pdf and cdf

ft (y) = t

√
b

2πy3
exp

[
−b (y − t)2

2y

]
,

Ft (y) = Φ

[
(y − t)

√
b

y

]
+ e2btΦ

[
− (y + t)

√
b

y

]
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for all t, y > 0, respectively, where b > 0 and Φ is the cdf of the standard
normal distribution.

The technical assumptions from Section 3 are clearly true and remember-
ing that τY stands for the crossing time of level L, then

F̄τY (t) = Ft (L)

and

fτY (t) = −∂Ft (L)

∂t

=

√
b

L
ϕ

[
(L− t)

√
b

L

]
+ e2bt

√
b

L
ϕ

[
− (L+ t)

√
b

L

]

− 2be2btΦ

[
− (L+ t)

√
b

L

]
,

where ϕ is the pdf of the standard normal distribution.
Finally, based on [14, Section 13.A.e page 458], it is known that Y (t)

increases with t in the likelihood hazard rate ordering, and consequently, it
also increases in the reversed hazard rate ordering. Based on Lemma 25, we
hence derive that the crossing time τY of level L is Increasing Failure Rate.
Finally

As a consequence, we now have all the material to illustrate the previous
results considering an inverse Gaussian process as baseline Lévy process Y.
Note however that IG (t, bt2) is not monotonous in the reversed hazard rate
ordering with respect to b, so that for Proposition 30, we have to consider
the same inverse gaussian process as baseline Lévy process Y.

7.2 Numerical experiments

We assume in all this section that Y is an inverse Gaussian process such that
Y (t) ∼ IG (t, t2) (that is b = 1) and L = 1. The collection of time-scaling
functions is denoted by {Λj, j = 1, · · · , n}, as in Section 3.

As a first step, the results provided by Theorem 6 are compared to those
obtained by Monte-Carlo simulations on an example.

7.2.1 Comparison with Monte-Carlo simulations

We here consider a 2-out-of-3 system. Then Theorem 6 provides

R2,3 (t) =
(
FΛ1(t) (L)

)3
+ 3

∫ t

0

(
FΛ1(t1)+∆Λ2(t1,t) (L)

)2
λ1 (t1) fτY [Λ1 (t1)] dt1

(47)
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for all t ≥ 0.
We take

Λ1 (t) = et − 1,

Λ2 (t) = e2t − 1,

Λ3 (t) = e3t − 1

for all t ≥ 0 and compute the reliability on [0, 1.75] through (47) and also
through (MC) Monte-Carlo simulations, using Matlab software. As for the
MC simulations, 104 trajectories of (Y (t))0≤t≤2.5 are simulated through ran-
dom walk approximation with a small time-step (h = 0.001), in order to get
mostly reliable crossing times for level L. This provides an empirical estimate
of R2,3 (t) denoted by R̂2,3 (t). The results are provided in Figure 2, where

we can see that R̂2,3 (t) and R2,3 (t) are mostly superimposed (left plot), with
a difference less than 5 × 10−3 (right plot). Hence, both methods provide
similar results. However, the computation takes 242 cpu time on a standard
laptop computer for the MC simulation and around 0.5 cpu time for the
computation though (47). Even though the code might surely be bettered
for the MC simulation, there clearly is a huge gap between the computing
times through MC simulations and through (47). In the following, all com-
putations are hence made through the theoretical results from the previous
sections.

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

0.5 1 1.5

-4

-2

0

2

4

10-3

Figure 2: R̂2,3 (t) and R2,3 (t) (left plot) and R̂2,3 (t) −R2,3 (t) (right plot)
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7.2.2 Conditionally Increasing in Sequence property

The point here is to illustrate the results from Proposition 23. For each
2 ≤ i ≤ 9, t = (tj)1≤j≤i−1 and z = (zj)1≤j≤i−1≥ t, we set

Gt (u) = P(τ (i) > u|τ (1) = t1, . . . , τ
(i−1) = ti−1)

=

 F̄τY

(∑i−1
j=1∆Λj (tj−1, tj) + ∆Λi (ti−1, u)

)
F̄τY

(∑i−1
j=1∆Λj (tj−1, tj)

)
n−i+1

for all u > ti−1 and a similar expression for Gz (u), with t substituted by z.
Considering n = 10, k = 6 and tj = 0.1 j for 1 ≤ j ≤ 5, we envision two

different sets of scaling functions and two different z. As a first case, we take

Λj (t) = 0.1
(
etαj − 1

)
for all t ≥ 0, with αj = 0.1 j for 1 ≤ j ≤ 10, so that Assumption (25) is
fulfilled. We set z = 4t ≥ t. The functions Gt (u) and Gz (u) are plotted
in Figure 3 (left plot). As expected, we can see that Gt (u) ≤ Gz (u) for all
u > zi−1, which is coherent with the fact that (τ (1), . . . τ (n)) is conditionally
increasing in sequence (CIS property), as shown in Proposition 23.

As a second case, we take Λj (t) = 0.1 tαj with αj = 0.2 (11− j) for
1 ≤ j ≤ 10 and z = 10t. Note that Assumption (25) is not fulfilled any
more. The functions Gt (u) and Gz (u) are plotted in Figure 3 (right plot).
It can be seen that the functions Gt (u) and Gz (u) are crossing, which shows
that the CIS property does not hold any more for (τ (1), . . . τ (n)).

Hence, Assumption (25) appears to be a necessary assumption, in order
to guaranty that (τ (1), . . . τ (n)) is conditionally increasing in sequence.

7.2.3 Stochastic comparisons

The point here is to illustrate the results from Proposition 30. We here
consider n components and look at the survival and cumulative distribution
functions of (τ (1), τ (2)). Starting from the joint pdf of (τ (1), τ (2)) provided in
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Figure 3: The functions Gt (u) and Gz (u). Left plot: first case; right plot:
second case.

Proposition 13, we obtain that

F̄(τ (1),τ (2))(t1, t2)

= P
(
τ (1) > t1, τ

(2) > t2
)

= n

∫ ∞

t1

λ1 (u1) fτY (Λ∗
1 (u1))

×
(∫ ∞

t2

1{u1<u2} (n− 1)λ2 (u2) fτY (Λ∗
2 (u1, u2))

[
F̄τY (Λ∗

2 (u1, u2))
]n−2

du2

)
du1

= n

∫ ∞

t1

λ1 (u1) fτY (Λ1 (u1))
[
F̄τY (Λ∗

2 (u1,max (t2, u1)))
]n−1

du1

=
[
F̄τY

(
Λ1

(
t(2)
))]n

+ 1{t1<t2} n

∫ t2

t1

λ1 (u1) fτY (Λ1 (u1))
[
F̄τY (Λ1 (u1) + ∆Λ2 (u1, t2))

]n−1
du1

(48)

for all t1, t2 ≥ 0, where we distinguish the two cases t1 < t2 and t2 ≤ t1 to
derive the last line, remembering that t(2) = max (t1, t2).
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Similar computations provide

F(τ (1),τ (2))(t1, t2)

= n

∫ t(1)

0

λ1 (u1) fτY (Λ∗
1 (u1))

×
(∫ t2

u1

(n− 1)λ2 (u2) fτY (Λ∗
2 (u1, u2))

[
F̄τY (Λ∗

2 (u1, u2))
]n−2

du2

)
du1

= n

∫ t(1)

0

λ1 (u1) fτY (Λ1 (u1))
([

F̄τY (Λ1 (u1))
]n−1 −

[
F̄τY (Λ∗

2 (u1, t2))
]n−1

)
du1

= 1−
[
F̄τY

(
Λ1

(
t(1)
))]n − n

∫ t(1)

0

λ1 (u1) fτY (Λ1 (u1))
[
F̄τY (Λ∗

2 (u1, t2))
]n−1

du1

(49)

for all t1, t2 ≥ 0, where we remind that t(1) = min (t1, t2).
Using the notations of Proposition 30, we take Y (t) = Z(t) ∼ IG (t, t2)

(based on the remark at the end of Section 7.1),

Λm
j (t) = βm

j

(
etα

m
j − 1

)
for all t ≥ 0 and j = 1, · · · , n, m = 1, 2, with

α1
1 = 1.25, β1

1 = 1, α1
2 = 1.25, β1

2 = 1.5, α2
1 = 1, β2

1 = 1, α2
2 = 1, β2

2 = 0.5.

Then it is easy to check that Assumption (25) is true for {Λ1
1,Λ

1
2}, but not

for {Λ2
1,Λ

2
2}. Also λ1

j ≥ λ2
j for j = 1, · · · , n.

Let F̄m(t1, t2) and Fm(t1, t2), m = 1, 2 be the survival and cumula-
tive distribution functions of (τ (1), τ (2)) and (τ̂ (1), τ̂ (2)), respectively, which
are computed through (48) and (49). The differences

(
F̄2 − F̄1

)
(t1, t2) and

(F1 − F2) (t1, t2) are plotted in Figure 4. As expected from Proposition 30, we
can see that F̄2(t1, t2) ≥ F̄1(t1, t2) and F1(t1, t2) ≥ F2(t1, t2) for all t1, t2 ≥ 0,
which is coherent with the fact that

(τ (1), τ (2)) ≤st (τ̂
(1), τ̂ (2))

(recall Remark 18).

Remark 33 Note that we have not been able to find any counter-example
such that λ1

j ≥ λ2
j j = 1, 2, where neither

{
Λ1

j , j = 2, · · · , n
}
nor

{
Λ2

j , j = 2, · · · , n
}

fulfills Assumption (25), and such that (τ (1), τ (2)) is not stochastically smaller
than (τ̂ (1), τ̂ (2)). Hence, Assumption (25) may be not required for the stochas-
tic comparison result to hold, but we have not been able to prove it without
this assumption. Then the question remains open whether Assumption (25)
is required to hold for one of the two models or not.
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Figure 4:
(
F̄2 − F̄1

)
(t1, t2) (left plot) and (F1 − F2) (t1, t2) (right plot)

We next explore the results of Proposition 30 and Remark 31, which allow
to compare the reliability of systems with identical structures and different
impacts of component failures on the time-scaling functions of the surviving
components.

Example 1 As a first example, 2-out-of-5 systems are considered, with

R2,5 (t) =
3∑

m=0

Rm (t)
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α1 α2 α3 α4

Set 1 (independent case) 1 1 1 1
Set 2 1 1.5 2 2.5
Set 3 1 2 3 4
Set 4 1 2.5 3.5 4.5

Table 1: The four parameter sets for Figure 5

and

R0 (t) =
(
FΛ1(t) (L)

)5
(50)

R1 (t) = 5

∫ t

0

(
F̄τY (Λ1 (t1) + ∆Λ2 (t1, t))

)4
λ1 (t1) fτY [Λ1 (t1)] dt1, (51)

R2 (t) = 20

∫
[0,t]2

1{t1<t2}
(
F̄τY (Λ1 (t1) + ∆Λ2 (t1, t2) + ∆Λ3 (t2, t))

)3
× λ1 (t1) fτY [Λ1 (t1)] λ2 (t2) fτY [Λ1 (t1) + ∆Λ2 (t1, t2)] dt1 dt2,

(52)

R3 (t) = 60

∫
[0,t]3

1{t1<t2<t3}
(
F̄τY (Λ1 (t1) + ∆Λ2 (t1, t2) + ∆Λ3 (t2, t3) + ∆Λ4 (t3, t))

)2
× λ1 (t1) fτY [Λ1 (t1)] λ2 (t2) fτY [Λ1 (t1) + ∆Λ2 (t1, t2)]

× λ3 (t3) fτY [Λ1 (t1) + ∆Λ2 (t1, t2) + ∆Λ3 (t2, t3)] dt1 dt2 dt3
(53)

(please see Theorem 6).
For illustration purpose, we take Λj (t) = eαjt − 1 for j = 1, 2, 3, 4 (note

that Λ5 is not involved in R2,5 (t)) and consider four different sets of param-
eters αj’s, which are described in Table 1.

As can be seen, αj (and hence λj) increases with the set number, and for
each parameter set, Assumption (25) is true. Based on the fact that R2,5 (t) =
P
(
τ (4) > t

)
, we hence expect R2,5 (t) to decrease with the set number due to

Proposition 30. This is illustrated in Figure 5, where R2,5 (t) is plotted for
the four parameter sets (including the independence case which corresponds
to the first set of parameters), where we can see that the results are coherent
with Proposition 30 and Remark 31.

Example 2 We next consider a 5-component system with a bridge structure,
as shown in Figure 6.

The corresponding signature is given by p = (0, 1/5, 3/5, 1/5, 0), please
see Example 4.1 page 50 in [17]. We hence derive from Proposition 9 that
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Figure 5: The reliability function R2,5 (t) for the different parameter sets of
Example 1 (2-out-of-5 system)

C1

C2 C5

C4

C3

Figure 6: The bridge structure

the reliability function is

R (t) =
1

5
R2,5 (t) +

3

5
R3,5 (t) +

1

5
R4,5 (t)

where

Rk,5 (t) =
5−k∑
m=0

Rm (t)

for k ∈ {2, 3, 4} and the Rm (t)’s are given in (50)–(53).This easily provides

R (t) =
1

5

3∑
m=0

Rm (t) +
3

5

2∑
m=0

Rm (t) +
1

5

1∑
m=0

Rm (t)

= R0 (t) +R1 (t) +
4

5
R2 (t) +

1

5
R3 (t)
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We take again Λj (t) = eαjt − 1 for j = 1, 2, 3, 4 and consider α1 = 1,
α2 = 2, α3 = 3, α4 = 4 as a first parameter set and α1 = 1, α2 = 1.75,
α3 = 5, α4 = 5 as a second parameter set.

We can see that the corresponding time-scaling functions both fulfill As-
sumption (25). However we do not have λ1

j ≤ λ2
j for all j, nor λ1

j ≥ λ2
j for

all j so that we cannot apply the results of Proposition 30 and Remark 31.
The corresponding reliability functions are plotted in the left plot of Figure
7 together with their difference in the right plot. We can see that the two
reliability functions are crossing, showing that they are not comparable.
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Figure 7: The reliability functions for the two parameter sets of Example 2
(left plot) together with their difference (right plot)

As a conclusion from Example 2, Assumption λ1
j ≤ λ2

j for all j is a neces-
sary condition to derive the stochastic comparison results from Proposition
30 and Remark 31.

8 Conclusion and perspectives

Mimicking some existing lifetime models where failures among components
entail an increase in the failure rates of surviving components, we have here
suggested to consider Lévy-deteriorating components, with an increase in the
time-scaling functions of the Lévy processes for the surviving components.
The reliability of a coherent system with components linked by this specific
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stochastic dependence has been computed, together with the joint distribu-
tion of the component lifetimes. Some dependence and comparison results
have been provided and illustrated considering inverse Gaussian processes as
baseline Lévy processes.

We remind that for the stochastic comparison result of Proposition 30, we
have not been able to conclude about the necessity of Assumption (25) for the
result to hold. Hence, the question remains open whether this assumption
is necessary, and this requires further research. Also, this paper has focused
on the most usual multivariate stochastic order for comparison purpose. It
should be possible to consider other types of multivariate stochastic orders
and try to derive other results. Beyond that, one could also think about
other types of conditions to derive stochastic comparison results, such as
conditions on the Lévy measures of the baseline Lévy processes, in a similar
spirit as [3].

Furthermore, beyond the few papers quoted in the introduction [7, 24, 25]
and the present paper, there remains many work left for adapting previous
stochastic dependence models (following the vocabulary of [10]) to the case
of Lévy-deteriorating components. At first, we have here chosen to model
the impact of a failure as a change in the time-scaling function of the Lévy
processes. Other possibilities include the multiplication by a given function of
the Lévy process itself or maybe use similar ideas as those developed by [9] for
sequential order statistics of lifetimes. Also, we could consider both sudden
increase in the component deterioration levels as in [24, 25] and some change
in the Lévy process for the surviving components as in the present paper.
Other ideas include trying to adapt existing models for cascading failures,
load-sharing or spare-part-sharing systems, starting for instance from the
literature provided in [10].
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