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APPROXIMATION OF POLYNOMIALS FROM WALSH TAIL SPACES

ALEXANDROS ESKENAZIS AND HAONAN ZHANG

Abstract. We derive various bounds for the Lp distance of polynomials on the hypercube from
Walsh tail spaces, extending some of Oleszkiewicz’s results (2017) for Rademacher sums.
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1. Introduction

Given n ∈N, every function f : {−1,1}n→R admits a unique Fourier–Walsh expansion

∀ x ∈ {−1,1}n, f (x) =
∑

S⊆{1,...,n}
f̂ (S)wS(x), (1)

where the Walsh function wS is given by wS(x) =
∏
i∈S xi for x = (x1, . . . ,xn) ∈ {−1,1}n. We shall

say that f is of degree at most k ∈ {1, . . . ,n} if f̂ (S) = 0 for every subset S of {1, . . . ,n} with |S | > k.
Similarly, we say that f belongs on the k-th tail space, where k ∈ {1, . . . ,n}, if f̂ (S) = 0 for every
subset S with |S | ≤ k. More generally, given a nonempty subset I ⊆ {0,1, . . . ,n}, we denote by

PnI
def=

{
f : {−1,1}n→R : f̂ (S) = 0 for every S with |S | < I

}
. (2)

We shall also adopt the natural notations Pn>k = Pn{k+1,...,n}, P
n
≤k = Pn{0,1,...,k}, P

n
=k = Pn{k} and so on.

Many modern developments in discrete analysis (see [18]) are centered around quantitative
properties of functions whose spectrum is bounded above or below, in analogy with estimates
established for polynomials in classical approximation theory on the torus T

n or on R
n. One

of the first results of this nature, going back at least to [3, 4], is the important fact that all finite
moments of low-degree Walsh polynomials are equivalent to each other up to dimension-free
factors. Namely, given any 1 ≤ p ≤ q <∞ and k ∈N, there exists a (sharp) constant Mp,q(k) such
that for any n ≥ k, every polynomial f : {−1,1}n→R of degree at most k satisfies

‖f ‖q ≤Mp,q(k)‖f ‖p, (3)

where ‖ · ‖r always denotes the Lr norm on {−1,1}n with respect to the uniform probability
measure. Note that the reverse of (3) holds trivially with constant 1 by Hölder’s inequality. We
refer to [8, 13, 16] for the best known bounds on the implicit constant Mp,q(k). In the special
case k = 1, (3) is the celebrated Khintchine inequality [15] for Rademacher sums.

Our starting point is the simple observation that the moment comparison estimates (3) have
the following (equivalent) dual formulation in terms of distances from tail spaces.

Proposition 1. For every 1 ≤ p ≤ q < ∞ and d ∈N, the constant Mp,q(k) in inequality (3) is also
the least constant for which every function f : {−1,1}n→R, where n ≥ k, satisfies

inf
g∈Pn>k

‖f − g‖p∗ ≤Mp,q(k) inf
g∈Pn>k

‖f − g‖q∗ , (4)

where the conjugate exponent r∗ of r ∈ [1,∞] satisfies 1
r∗ + 1

r = 1.

This material is based upon work supported by the NSF grant DMS-1929284 while the authors were in residence
at ICERM for the Harmonic Analysis and Convexity program.
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Again, the reverse of (4) holds with constant 1. In the special case k = 0, inequality (4)
becomes trivial with Mp,q(0) = 1 as both sides are equal to |Ef |. When k = 1, which corresponds
to the dual of the classical Khintchine inequality, one can derive the following more precise
formula for the distance from the tail space Pn>1.

Theorem 2. For every 1 < r ≤∞ and n ∈N, every f : {−1,1}n→R satisfies1

inf
g∈Pn>1

‖f − g‖r � |Ef |+ max
i∈{1,...,n}

∣∣∣f̂ ({i})
∣∣∣+

√
r − 1
r

( n∑
i=1

f̂ ({i})2
)1/2

. (5)

This is the dual to a well-known result of Hitczenko [10] (see also [17, 11]), obtaining p-
independent upper and lower bounds for the Lp-norms of Rademacher sums, where p ∈ [1,∞).

At this point, we should point out that in both Proposition 1 and Theorem 2, the exponents
of the norms are always strictly greater than 1. For instance, choosing f1(x) =

∑n
i=1 xi , (4) gives

∀ r ∈ (1,∞], inf
g∈Pn>k

‖f1 − g‖r �r,k inf
g∈Pn>k

‖f1 − g‖2 =
√
n. (6)

On the other hand, it follows from a result of Oleszkiewicz [19], which is the main precursor
to this work, that the L1-distance of f1 from the k-th tail space satisfies

inf
g∈Pn>k

‖f1 − g‖1 �min{k,
√
n}, (7)

and thus exhibits a starkly different behavior as n→∞ from the Lr norms with r > 1.
More generally, it is shown in [19] that for every a1 ≥ · · · ≥ an ≥ 0, we have

inf
g∈Pn>k

‖faaa − g‖1 � min
r∈{0,1,...,n}

{( r∑
i=1

a2
i

)1/2
+ kar+1

}
, (8)

where for aaa = (a1, . . . , an) we denote faaa(x) =
∑n
i=1 aixi and we make the convention that an+1 = 0.

The quantity appearing on the right hand side of (8) can be rephrased in terms of the K-
functional of real interpolation (see [1, Chapter 3]). Recall that if (A0,A1) is an interpolation
pair, then the Lions–Peetre K-functional is defined for every t ≥ 0 and a ∈ A0 +A1 as

K(a, t;A0,A1) def= inf
{
‖a0‖A0

+ t‖a1‖A1
: a = a0 + a1

}
. (9)

It is elementary to check (see [12]), that if a1 ≥ · · · ≥ an ≥ 0 and k ∈N, then

min
r∈{0,1,...,n}

{( r∑
i=1

a2
i

)1/2
+ kar+1

}
� K(aaa,k;`n2 , `

n
∞). (10)

Note that the right-hand side is invariant under permutations of the entries of aaa. The main
result of this work is an appropriate extension of the upper bound in Oleszkiewicz’s result (8)
to polynomials of arbitrary degree on the discrete hypercube.

Theorem 3. For every d ∈N, there exists Cd ∈ (0,∞) such that for any n ≥ k ≥ d, every polynomial
f : {−1,1}n→R of degree at most d satisfies

inf
g∈Pn>k

‖f − g‖1 ≤ K
(
f̂ ,Cdk

d ;`m2 , `
m
2d
d−1

)
, (11)

where f̂ is the vector of Fourier coefficients of f , viewed as an element of Rm with m =
(n

0
)

+ · · ·+
(n
d

)
.

As was already pointed out by Oleszkiewicz, the method of [19] does not appear to extend
beyond Rademacher sums. Instead, in our proof we shall employ the discrete Bohnenblust–
Hille inequality from approximation theory (see [2, 7, 6, 5]) along with a classical bound of

1Throughout the paper we shall use standard asymptotic notation. For instance, ξ . η (or η & ξ) means that
there exists a universal constant c > 0 such that ξ ≤ cη and ξ � η stands for (ξ . η)∧(η . ξ). We shall use subscripts
of the form .t ,&t ,�t when the implicit constant c depends on some prespecified parameter t.
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Figiel on the Rademacher projection of polynomials. A discussion concerning the size of the
implicit constant Cd appearing in (11) is postponed to Section 2 (see Remark 8 there).

Unlike the two-sided inequality (8), our bound (11) is only one-sided and as a matter of
fact there are examples in which it is far from optimal. In particular, for functions which are
permutationally symmetric, we obtain a more accurate estimate. In what follows, we shall
denote by Tk(x) =

∑k
`=0 c(k,`)x

` the k-th Chebyshev polynomial of the first kind characterized
by the property Tk(cosθ) = cos(kθ), where θ ∈R. Moreover, we shall use the ad hoc notation

c̃(k,`) def=

c(k,`), if k − ` is even
c(k − 1, `), if k − ` is odd

. (12)

For ` ∈ {1, . . . ,n}, let f` be the `-th elementary symmetric multilinear polynomial

∀ x ∈ {−1,1}n, f`(x) def=
∑

S⊆{1,...,n}:
|S |=`

wS(x). (13)

We have the following bound on the distance of symmetric polynomials from tail spaces.

Theorem 4. Let n,k,d ∈N with n ≥ k ≥ d. Then, every symmetric polynomial

f =
d∑
`=0

α`f` (14)

of degree at most d on {−1,1}n satisfies

inf
g∈Pn>k

‖f − g‖1 ≤
d∑
`=0

|α` ||c̃(k,`)|. (15)

This bound can sometimes be reversed and, in particular, it gives a sharp estimate as n→∞
for the L1-distance of the elementary symmetric polynomial fd from the k-th tail space.

Corollary 5. For every n,k,d ∈N with n ≥ k ≥ d, there exists εn(k,d) > 0 such that

|c̃(k,d)| − εn(k,d) ≤ inf
g∈Pn>k

‖fd − g‖1 ≤ |c̃(k,d)| (16)

and limn→∞ εn(k,d) = 0.

The main motivation behind the work [19] was a question of Bogucki, Nayar and Woj-
ciechowski, asking to estimate the L1-distance of the Rademacher sum f1 from the k-th tail
space. Corollary 5 extends (at least asymptotically in n) the answer given by Oleszkiewicz to
all symmetric homogeneous polynomials. We point out though that for k = 1, (16) is sharper
than Oleszkiewicz’s bound (7) as n→∞, as (7) is tight only up to a multiplicative constant.

Acknowledgements. We are grateful to Krzysztof Oleszkiewicz for valuable discussions. H.
Z. is grateful to Institut de Mathématiques de Jussieu for the hospitality during a visit in 2023.

2. Proofs

We proceed to the proofs of our results. We start with the simple duality argument leading
to Proposition 1, variants of which will be used throughout the paper.

Proof of Proposition 1. Consider the identity operator acting as id(h) = h on a function of the
form h : {−1,1}n→R. Then, the optimal constant Mp,q(k) can be expressed as

Mp,q(k) =
∥∥∥id : (Pn≤k ,‖ · ‖p)→ (Pn≤k ,‖ · ‖q)

∥∥∥ =
∥∥∥id∗ : (Pn≤k ,‖ · ‖q)

∗→ (Pn≤k ,‖ · ‖p)∗
∥∥∥ (17)

by duality. Moreover, observe that since (Pn≤k ,‖ · ‖r ) is a subspace of Lr , its dual is isometric to

(Pn≤k ,‖ · ‖r )
∗ = Lr∗

/
(Pn≤k)

⊥ = Lr∗
/
Pn>k , (18)

where A⊥ is the annihilator of A. Since it is also clear that id∗ = id, (17) concludes the proof. �
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Using a theorem of Hitczenko [10] as input and the same duality, we deduce Theorem 2.

Proof of Theorem 2. The result of [10] asserts that if aaa = (a0, a1, . . . , an) and faaa(x) = a0 +
∑n
i=1 aixi ,

‖faaa‖r∗ =
(
E

∣∣∣∣ n∑
i=0

aixi

∣∣∣∣r∗)1/r∗

� K(aaa,
√
r∗;`n+1

1 , `n+1
2 ), (19)

where x0,x1, . . . ,xn are independent Bernoulli random variables, and the first equality holds
due to symmetry. In other words, the linear operator

T :
(
R
n+1,K(·,

√
r∗;`n+1

1 , `n+1
2 )

)
→ (Pn≤1,‖ · ‖r∗) (20)

given by Taaa = faaa is an isomorphism, and thus the same holds for its adjoint. Recalling that

K(aaa,
√
r∗;`n+1

1 , `n+1
2 ) = inf

{
‖bbb‖`n+1

1
+
√
r∗‖ccc‖`n+1

2
: aaa = bbb+ccc

}
(21)

and the duality between sums and intersections of normed spaces [1, Theorem 2.7.1], we see
that the dual space of (Rn+1,K(·,

√
r∗;`n+1

1 , `n+1
2 )) can be identified with

∀ y ∈Rn+1, ‖y‖(Rn+1,K(·,
√
r∗;`n+1

1 ,`n+1
2 ))∗ = max

{
‖y‖`n+1

∞
,
‖y‖`n+1

2√
r∗

}
. (22)

By Parseval’s identity, the action of the adjoint

T ∗ : Lr
/
Pn>1→ (Rn+1,K(·,

√
r∗;`n+1

1 , `n+1
2 ))∗ (23)

is given by
T ∗(f +Pn>1) =

(
Ef , f̂ ({1}), . . . , f̂ ({n})

)
(24)

and thus the conclusion is equivalent to fact that T ∗ is an isomorphism. �

We now proceed to the proof of the general upper bound for polynomials given in Theorem
3. The first ingredient for the proof is a discrete version of the classical Bohnenblust–Hille
inequality from approximation theory (see the survey [7]) proven in [2, 6]. This asserts that
for every d ∈ N, there exists a (sharp) constant Bd ∈ (0,∞) such that for any n ≥ d, every
polynomial f : {−1,1}n→R of degree at most d satisfies( ∑

S⊆{1,...,n}
|f̂ (S)|

2d
d+1

) d+1
2d
≤ Bd‖f ‖∞. (25)

Moreover, 2d
d+1 is the least exponent for which the implicit constant becomes independent of

the ambient dimension n. The best known upper bound Bd ≤ exp(C
√
d logd) for the constant

Bd is due to the work of Defant, Mastyło and Pérez [6].
The level `-Rademacher projection of a function f : {−1,1}n→R is defined as

∀ x ∈ {−1,1}n, Rad`f (x) def=
∑

S⊆{1,...,n}:
|S |=`

f̂ (S)wS(x). (26)

Moreover, we write Rad≤d =
∑
`≤d Rad`. Apart from the discrete Bohnenblust–Hille inequality

(25), we will also use a standard bound on the norm of the `-Rademacher projections which is
usually attributed to Figiel (see also [9, Section 3] for a short proof).

Proposition 6. Let n ≥ k ≥ d. Then, every function f : {−1,1}n→R of degree at most k satisfies∥∥∥Rad≤df
∥∥∥∞ ≤ d∑

`=0

∥∥∥Rad`f
∥∥∥∞ ≤ d∑

`=0

|c̃(k,`)| ‖f ‖∞, (27)

where c̃(k,`) is given by (12). It is moreover known that |c̃(k,`)| ≤ k`

`! .

Combining the above with Parseval’s identity, we deduce the following bound.
4



Lemma 7. Let n ≥ k ≥ d. Then, every function f : {−1,1}n→R of degree at most k satisfies

max
{∥∥∥ ̂Rad≤d(f )

∥∥∥
`m2
,σ (k,d)−1

∥∥∥ ̂Rad≤d(f )
∥∥∥
`m2d
d+1

}
≤ inf
g∈Pn>d∩P

n
≤k

‖f − g‖∞, (28)

where m =
(n

0
)

+ · · ·+
(n
d

)
and σ (k,d) = Bd

∑d
`=0 |c̃(k,`)|.

Proof. Fix a function g ∈ Pn>d ∩P
n
≤k . Then,∥∥∥ ̂Rad≤d(f )
∥∥∥
`m2
≤

∥∥∥f̂ − ĝ∥∥∥
`M2

= ‖f − g‖2 ≤ ‖f − g‖∞, (29)

where M =
(n

0
)

+ · · ·+
(n
k

)
. Moreover, we have∥∥∥ ̂Rad≤d(f )

∥∥∥
`m2d
d+1

(25)
≤ Bd

∥∥∥Rad≤d(f )
∥∥∥∞ = Bd

∥∥∥Rad≤d(f − g)
∥∥∥∞ (27)
≤ Bd

d∑
`=0

|c̃(k,`)| ‖f − g‖∞. �

Equipped with Lemma 7, we can complete the proof of Theorem 3.

Proof of Theorem 3. Consider the normed spaces X = (Pn≤k ,‖ · ‖∞) and Y = (Rm,‖ · ‖Y ) with

∀ y ∈Rm, ‖y‖Y = max
{
‖y‖`m2 ,σ (k,d)−1‖y‖`m2d

d+1

}
(30)

and m =
(n

0
)

+ · · · +
(n
d

)
. Moreover, let Z = Pn>d ∩ Pn≤k ⊂ X, viewed as a normed subspace of X.

Lemma 7 asserts that the linear operator A : X/Z→ Y given by

∀ f ∈ X, A(f +Z) =
(
f̂ (S)

)
|S |≤d

(31)

has norm ‖A‖ ≤ 1. Therefore, the same holds for its adjoint A∗ : Y ∗→ (X/Z)∗.
By the usual duality between sums and intersections of normed spaces [1, Theorem 2.7.1],

we see that the space Y ∗ is isometric to

∀ w ∈Rm, ‖w‖Y ∗ = K
(
w,σ (k,d);`m2 , `

m
2d
d−1

)
. (32)

Moreover, as X/Z is a quotient of X, its dual is the subspace of X∗ = L1/P
n
>k which is identified

with the annihilator of Z inside X∗. In other words, it is the set

(X/Z)∗ =
{
f +Pn>k : E[f g] = 0 for every g ∈ Z

}
=

{
f +Pn>k : f ∈ Pn≤d

}
= span(Pn≤d∪P

n
>k)

/
Pn>k (33)

equipped with the L1 quotient norm. Finally, for a sequence aaa = (aS )|S |≤d ∈ Y ∗ and an equiva-
lence class f +Z ∈ X/Z, we have

〈aaa,A(f +Z)〉 =
∑

S⊆{1,...,n}:
|S |≤d

aS f̂ (S) =
〈 ∑
S⊆{1,...,n}:
|S |≤d

aSwS +Pn>k , f +Z
〉

= 〈A∗(aaa), f +Z〉, (34)

where the first brackets 〈·, ·〉 denote the duality in Y and the following brackets denote the
duality in X/Z. Therefore, we conclude that

∀ aaa ∈ Y ∗, A∗(aaa) =
∑

S⊆{1,...,n}:
|S |≤d

aSwS +Pn>k (35)

and thus, the condition ‖A∗‖ ≤ 1 means that for any f : {−1,1}n→R of degree at most d,

inf
g∈Pn>k

‖f − g‖1 =
∥∥∥A∗(f̂ )∥∥∥

(X/Z)∗
≤

∥∥∥f̂ ∥∥∥
Y ∗

= K
(
f̂ ,σ (k,d);`m2 , `

m
2d
d−1

)
. (36)

Finally, since

σ (k,d) ≤ Bd

d∑
`=0

|c̃(k,`)| ≤ Bd

d∑
`=0

k`

`!
≤ eBdkd , (37)

we deduce the conclusion of the theorem with Cd = eBd . �
5



Remark 8. To the best of our knowledge, there are no nonconstant lower bounds on the size of the
discrete Bohnenblust–Hille constant Bd , so it is even conceivable that the constant Cd in (11) can be
chosen to be independent of d.

Remark 9. A duality argument similar to that employed for Theorem 3 shows that for every d ∈N,
the constant Bd in inequality (25) is also the least constant for which every function f : {−1,1}n→R,
where n ≥ d, satisfies

inf
g∈Pn>d

‖f − g‖1 ≤ Bd

( ∑
S⊆{1,...,n}:
|S |≤d

|f̂ (S)|
2d
d−1

) d−1
2d

. (38)

Remark 10. It was pointed out to us by Oleszkiewicz that the main result (8) of [19] also admits a
dual formulation. Namely, for every aaa = (a1, . . . , an) ∈Rn, we have

inf
{
‖faaa − g‖∞ : g ∈ Pn{0}∪{2,...,k}

}
�max

{
‖aaa‖`n2 ,

‖aaa‖`n1
k

}
. (39)

This can be proven using similar ideas as in the proof of Theorem 3.

A slight variant of the arguments above also yields Theorem 4 for symmetric functions.

Proof of Theorem 4. Let f be a symmetric function of the form f =
∑d
`=0α`f` where f` is the

`-th elementary symmetric polynomial. Then, the Hahn–Banach theorem gives

inf
g∈Pn>k

‖f − g‖1 = sup
0,h∈Pn≤k

E[f h]
‖h‖∞

. (40)

Observe now that we can write

E[f h] =
d∑
`=0

α`E[f`h] =
d∑
`=0

α`
∑

S⊆{1,...,n}:
|S |=`

ĥ(S) =
d∑
`=0

α`Rad`h(1, . . . ,1). (41)

Thus, by Figiel’s bound (27),

E[f h] ≤
d∑
`=0

|α` | ‖Rad`h‖∞ ≤
d∑
`=0

|α` ||c̃(k,`)| ‖h‖∞ (42)

and the desired inequality follows from (40). �

Equipped with Theorem 4, we present the proof of Corollary 5.

Proof of Corollary 5. The upper bound in (16) follows immediately from Theorem 4. For the
lower bound, consider the auxiliary symmetric function Hk,n : {−1,1}n→R given by

∀ x ∈ {−1,1}n, Hk,n(x) def= Tk

(x1 + · · ·+ xn
n

)
=

k∑
`=0

β`,k,n f`(x), (43)

where f` is the `-th elementary symmetric polynomial, and notice that Hk,n has degree at most
k. As Tk(x) is odd or even when k is odd or even respectively, it follows that β`,k,n = 0 if k − ` is
odd. We distinguish two cases depending on the parity of k − d.
• Suppose that k − d is even and consider the function ϕd,k,n : {−1,1}n→R given by

∀ x ∈ {−1,1}n, ϕd,k,n(x) def=
∑

0≤`≤d: 2|d−`
sign(β`,k,n)f`(x) (44)

that is also symmetric and of degree at most d. Then, on one hand we know that

inf
g∈Pn>k

‖ϕd,k,n − g‖1
(15)
≤

∑
0≤`≤d: 2|d−`

|c̃(k,`)| =
∑

0≤`≤d: 2|d−`
|c(k,`)|. (45)

6



On the other hand, we have the following lower estimate,

inf
g∈Pn>k

‖ϕd,k,n − g‖1
(40)
= sup

0,h∈Pn≤k

E[ϕd,k,nh]
‖h‖∞

≥
|E[ϕd,k,nHk,n]|
‖Hk,n‖∞

. (46)

By definition, ‖Hk,n‖∞ ≤ supx∈[−1,1] |Tk(x)| ≤ 1 and Hk,n(1, . . . ,1) = Tk(1) = 1. Therefore,

inf
g∈Pn>k

‖ϕd,k,n − g‖1 ≥ |E[ϕd,k,nHk,n]| =
∣∣∣∣∣ ∑
0≤`≤d: 2|d−`

sign(β`,k,n)Rad`Hk,n(1, . . . ,1)
∣∣∣∣∣

=
∑

0≤`≤d: 2|d−`

∣∣∣Rad`Hk,n(1, . . . ,1)
∣∣∣ . (47)

To further estimate this sum, we use [14, Lemma 27] which implies that there exists a positive
constant εn(k,d) > 0 with εn(k,d) =Ok,d(1/n) as n→∞, such that∑

0≤`≤d: 2|d−`

∣∣∣Rad`Hk,n(1, . . . ,1)
∣∣∣ ≥ ∑

0≤`≤d: 2|d−`
|c(k,`)| − εn(k,d). (48)

Hence, combining the above we conclude that

inf
g∈Pn>k

‖ϕd,k,n − g‖1 ≥
∑

0≤`≤d: 2|d−`
|c(k,`)| − εn(k,d). (49)

Finally, to bound from below the L1-distance of fd from the tail space, we write

fd = sign(βd,k,n)(ϕd,k,n −ϕd−2,k,n) (50)

and using the triangle inequality, we get

inf
g∈Pn>k

‖fd − g‖1 ≥ inf
g∈Pn>k

∥∥∥ϕd,k,n − g∥∥∥1
− inf
g∈Pn>k

∥∥∥ϕd−2,k,n − g
∥∥∥

1

(45)∧(49)
≥

∑
0≤`≤d: 2|d−`

|c(k,`)| − εn(k,d)−
∑

0≤`≤d−2: 2|d−2−`
|c(k,`)| = |c(k,d)| − εn(k,d),

(51)

thus concluding the proof of the lower bound in (16).
• If k − d is odd, we use the identity

fd = sign(βd,k−1,n)(ϕd,k−1,n −ϕd−2,k−1,n). (52)

The rest of the argument is identical. �

Remark 11. In this paper, we studied dual versions of moment comparison estimates on the hyper-
cube (3) and investigated the endpoint case of their duals (4) for polynomials. By formal reasoning
similar to the proof of Proposition 1, one can derive dual versions of various other polynomial in-
equalities, including Bernstein–Markov inequalities and their reverses and bounds for the action of
the heat semigroup. We refer to [8] for a systematic treatment of such estimates.
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