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Introduction

Given n ∈ N, every function f : {-1, 1} n → R admits a unique Fourier-Walsh expansion

∀ x ∈ {-1, 1} n , f (x) = S⊆{1,...,n} f (S)w S (x), (1) 
where the Walsh function w S is given by w S (x) = i∈S x i for x = (x 1 , . . . , x n ) ∈ {-1, 1} n . We shall say that f is of degree at most k ∈ {1, . . . , n} if f (S) = 0 for every subset S of {1, . . . , n} with |S| > k.

Similarly, we say that f belongs on the k-th tail space, where k ∈ {1, . . . , n}, if f (S) = 0 for every subset S with |S| ≤ k. More generally, given a nonempty subset I ⊆ {0, 1, . . . , n}, we denote by

P n I def = f : {-1, 1} n → R : f (S) = 0 for every S with |S| I . ( 2 
)
We shall also adopt the natural notations P n >k = P n {k+1,...,n} , P n ≤k = P n {0,1,...,k} , P n =k = P n {k} and so on. Many modern developments in discrete analysis (see [START_REF] Ryan | Analysis of Boolean functions[END_REF]) are centered around quantitative properties of functions whose spectrum is bounded above or below, in analogy with estimates established for polynomials in classical approximation theory on the torus T n or on R n . One of the first results of this nature, going back at least to [START_REF] Bonami | Étude des coefficients de Fourier des fonctions de L p (G)[END_REF][START_REF] Bourgain | Walsh subspaces of L p -product spaces[END_REF], is the important fact that all finite moments of low-degree Walsh polynomials are equivalent to each other up to dimension-free factors. Namely, given any 1 ≤ p ≤ q < ∞ and k ∈ N, there exists a (sharp) constant M p,q (k) such that for any n ≥ k, every polynomial f : {-1, 1} n → R of degree at most k satisfies

f q ≤ M p,q (k) f p , (3) 
where • r always denotes the L r norm on {-1, 1} n with respect to the uniform probability measure. Note that the reverse of (3) holds trivially with constant 1 by Hölder's inequality. We refer to [START_REF] Eskenazis | Polynomial inequalities on the Hamming cube[END_REF][START_REF] Ivanisvili | Comparison of moments of Rademacher chaoses[END_REF][START_REF] Levhari | Hypercontractive inequalities for the second norm of highly concentrated functions, and Mrs. Gerber's-type inequalities for the second Rényi entropy[END_REF] for the best known bounds on the implicit constant M p,q (k). In the special case k = 1, (3) is the celebrated Khintchine inequality [START_REF] Khintchine | Über dyadische Brüche[END_REF] for Rademacher sums. Our starting point is the simple observation that the moment comparison estimates (3) have the following (equivalent) dual formulation in terms of distances from tail spaces. Proposition 1. For every 1 ≤ p ≤ q < ∞ and d ∈ N, the constant M p,q (k) in inequality (3) is also the least constant for which every function

f : {-1, 1} n → R, where n ≥ k, satisfies inf g∈P n >k f -g p * ≤ M p,q (k) inf g∈P n >k f -g q * , ( 4 
)
where the conjugate exponent

r * of r ∈ [1, ∞] satisfies 1 r * + 1 r = 1.
This material is based upon work supported by the NSF grant DMS-1929284 while the authors were in residence at ICERM for the Harmonic Analysis and Convexity program.

Again, the reverse of (4) holds with constant 1. In the special case k = 0, inequality (4) becomes trivial with M p,q (0) = 1 as both sides are equal to |Ef |. When k = 1, which corresponds to the dual of the classical Khintchine inequality, one can derive the following more precise formula for the distance from the tail space P n >1 .

Theorem 2. For every 1 < r ≤ ∞ and n ∈ N, every f :

{-1, 1} n → R satisfies 1 inf g∈P n >1 f -g r |Ef | + max i∈{1,...,n} f ({i}) + r -1 r n i=1 f ({i}) 2 1/2 . ( 5 
)
This is the dual to a well-known result of Hitczenko [START_REF] Hitczenko | Domination inequality for martingale transforms of a Rademacher sequence[END_REF] (see also [START_REF] Stephen | The distribution of Rademacher sums[END_REF][START_REF] Hitczenko | On the Rademacher series[END_REF]), obtaining pindependent upper and lower bounds for the L p -norms of Rademacher sums, where p ∈ [1, ∞).

At this point, we should point out that in both Proposition 1 and Theorem 2, the exponents of the norms are always strictly greater than 1. For instance, choosing

f 1 (x) = n i=1 x i , (4) gives ∀ r ∈ (1, ∞],
inf

g∈P n >k f 1 -g r r,k inf g∈P n >k f 1 -g 2 = √ n. ( 6 
)
On the other hand, it follows from a result of Oleszkiewicz [START_REF] Oleszkiewicz | On mimicking Rademacher sums in tail spaces[END_REF], which is the main precursor to this work, that the L 1 -distance of f 1 from the k-th tail space satisfies inf

g∈P n >k f 1 -g 1 min{k, √ n}, ( 7 
)
and thus exhibits a starkly different behavior as n → ∞ from the L r norms with r > 1.

More generally, it is shown in [START_REF] Oleszkiewicz | On mimicking Rademacher sums in tail spaces[END_REF] that for every

a 1 ≥ • • • ≥ a n ≥ 0, we have inf g∈P n >k f a a a -g 1 min r∈{0,1,...,n} r i=1 a 2 i 1/2 + ka r+1 , (8) 
where for a a a = (a 1 , . . . , a n ) we denote f a a a (x) = n i=1 a i x i and we make the convention that a n+1 = 0. The quantity appearing on the right hand side of (8) can be rephrased in terms of the Kfunctional of real interpolation (see [START_REF] Bergh | Interpolation spaces. An introduction[END_REF]Chapter 3]). Recall that if (A 0 , A 1 ) is an interpolation pair, then the Lions-Peetre K-functional is defined for every t ≥ 0 and a ∈ A 0 + A 1 as

K(a, t; A 0 , A 1 ) def = inf a 0 A 0 + t a 1 A 1 : a = a 0 + a 1 . ( 9 
)
It is elementary to check (see [START_REF] Holmstedt | Interpolation of quasi-normed spaces[END_REF]), that if

a 1 ≥ • • • ≥ a n ≥ 0 and k ∈ N, then min r∈{0,1,...,n} r i=1 a 2 i 1/2 + ka r+1 K(a a a, k; n 2 , n ∞ ). ( 10 
)
Note that the right-hand side is invariant under permutations of the entries of a a a. The main result of this work is an appropriate extension of the upper bound in Oleszkiewicz's result [START_REF] Eskenazis | Polynomial inequalities on the Hamming cube[END_REF] to polynomials of arbitrary degree on the discrete hypercube.

Theorem 3. For every d ∈ N, there exists

C d ∈ (0, ∞) such that for any n ≥ k ≥ d, every polynomial f : {-1, 1} n → R of degree at most d satisfies inf g∈P n >k f -g 1 ≤ K f , C d k d ; m 2 , m 2d d-1 , ( 11 
)
where f is the vector of Fourier coefficients of f , viewed as an element of

R m with m = n 0 + • • • + n d .
As was already pointed out by Oleszkiewicz, the method of [START_REF] Oleszkiewicz | On mimicking Rademacher sums in tail spaces[END_REF] does not appear to extend beyond Rademacher sums. Instead, in our proof we shall employ the discrete Bohnenblust-Hille inequality from approximation theory (see [START_REF] Blei | Analysis in integer and fractional dimensions[END_REF][START_REF] Defant | The Bohnenblust-Hille cycle of ideas from a modern point of view[END_REF][START_REF] Defant | On the Fourier spectrum of functions on Boolean cubes[END_REF][START_REF] Defant | Dirichlet series and holomorphic functions in high dimensions[END_REF]) along with a classical bound of 1 Throughout the paper we shall use standard asymptotic notation. For instance, ξ η (or η ξ) means that there exists a universal constant c > 0 such that ξ ≤ cη and ξ η stands for (ξ η)∧(η ξ). We shall use subscripts of the form t , t , t when the implicit constant c depends on some prespecified parameter t.

Figiel on the Rademacher projection of polynomials. A discussion concerning the size of the implicit constant C d appearing in [START_REF] Hitczenko | On the Rademacher series[END_REF] is postponed to Section 2 (see Remark 8 there).

Unlike the two-sided inequality (8), our bound ( 11) is only one-sided and as a matter of fact there are examples in which it is far from optimal. In particular, for functions which are permutationally symmetric, we obtain a more accurate estimate. In what follows, we shall denote by T k (x) = k =0 c(k, )x the k-th Chebyshev polynomial of the first kind characterized by the property T k (cos θ) = cos(kθ), where θ ∈ R. Moreover, we shall use the ad hoc notation

c(k, ) def =      c(k, ), if k -is even c(k -1, ), if k -is odd . ( 12 
)
For ∈ {1, . . . , n}, let f be the -th elementary symmetric multilinear polynomial

∀ x ∈ {-1, 1} n , f (x) def = S⊆{1,...,n}: |S|= w S (x). ( 13 
)
We have the following bound on the distance of symmetric polynomials from tail spaces.

Theorem 4. Let n, k, d ∈ N with n ≥ k ≥ d. Then, every symmetric polynomial f = d =0 α f (14) of degree at most d on {-1, 1} n satisfies inf g∈P n >k f -g 1 ≤ d =0 |α || c(k, )|. ( 15 
)
This bound can sometimes be reversed and, in particular, it gives a sharp estimate as n → ∞ for the L 1 -distance of the elementary symmetric polynomial f d from the k-th tail space.

Corollary 5. For every n, k, d ∈ N with n ≥ k ≥ d, there exists ε n (k, d) > 0 such that | c(k, d)| -ε n (k, d) ≤ inf g∈P n >k f d -g 1 ≤ | c(k, d)| ( 16 
)
and

lim n→∞ ε n (k, d) = 0.
The main motivation behind the work [START_REF] Oleszkiewicz | On mimicking Rademacher sums in tail spaces[END_REF] was a question of Bogucki, Nayar and Wojciechowski, asking to estimate the L 1 -distance of the Rademacher sum f 1 from the k-th tail space. Corollary 5 extends (at least asymptotically in n) the answer given by Oleszkiewicz to all symmetric homogeneous polynomials. We point out though that for k = 1, ( 16) is sharper than Oleszkiewicz's bound [START_REF] Defant | The Bohnenblust-Hille cycle of ideas from a modern point of view[END_REF] as n → ∞, as ( 7) is tight only up to a multiplicative constant.
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Proofs

We proceed to the proofs of our results. We start with the simple duality argument leading to Proposition 1, variants of which will be used throughout the paper.

Proof of Proposition 1. Consider the identity operator acting as id(h) = h on a function of the form h : {-1, 1} n → R. Then, the optimal constant M p,q (k) can be expressed as

M p,q (k) = id : (P n ≤k , • p ) → (P n ≤k , • q ) = id * : (P n ≤k , • q ) * → (P n ≤k , • p ) * (17) 
by duality. Moreover, observe that since (P n ≤k , • r ) is a subspace of L r , its dual is isometric to

(P n ≤k , • r ) * = L r * (P n ≤k ) ⊥ = L r * P n >k , ( 18 
)
where A ⊥ is the annihilator of A. Since it is also clear that id * = id, (17) concludes the proof.

Using a theorem of Hitczenko [START_REF] Hitczenko | Domination inequality for martingale transforms of a Rademacher sequence[END_REF] as input and the same duality, we deduce Theorem 2.

Proof of Theorem 2. The result of [START_REF] Hitczenko | Domination inequality for martingale transforms of a Rademacher sequence[END_REF] asserts that if a a a = (a 0 , a 1 , . . . , a n ) and f a a a (x) = a 0 + n i=1 a i x i ,

f a a a r * = E n i=0 a i x i r * 1/r * K(a a a, √ r * ; n+1 1 , n+1 2 ), (19) 
where x 0 , x 1 , . . . , x n are independent Bernoulli random variables, and the first equality holds due to symmetry. In other words, the linear operator

T : R n+1 , K(•, √ r * ; n+1 1 , n+1 2 ) → (P n ≤1 , • r * ) (20)
given by T a a a = f a a a is an isomorphism, and thus the same holds for its adjoint. Recalling that

K(a a a, √ r * ; n+1 1 , n+1 2 ) = inf b b b n+1 1 + √ r * c c c n+1 2 : a a a = b b b + c c c (21)
and the duality between sums and intersections of normed spaces [1, Theorem 2.7.1], we see that the dual space of (R n+1 , K(•,

√ r * ; n+1 1 , n+1 2 )
) can be identified with

∀ y ∈ R n+1 , y (R n+1 ,K(•, √ r * ; n+1 1 , n+1 2 )) * = max y n+1 ∞ , y n+1 2 √ r * . ( 22 
)
By Parseval's identity, the action of the adjoint

T * : L r P n >1 → (R n+1 , K(•, √ r * ; n+1 1 , n+1 2 )) * (23) 
is given by

T * (f + P n >1 ) = Ef , f ({1}), . . . , f ({n}) (24) 
and thus the conclusion is equivalent to fact that T * is an isomorphism.

We now proceed to the proof of the general upper bound for polynomials given in Theorem 3. The first ingredient for the proof is a discrete version of the classical Bohnenblust-Hille inequality from approximation theory (see the survey [START_REF] Defant | The Bohnenblust-Hille cycle of ideas from a modern point of view[END_REF]) proven in [START_REF] Blei | Analysis in integer and fractional dimensions[END_REF][START_REF] Defant | On the Fourier spectrum of functions on Boolean cubes[END_REF]. This asserts that for every d ∈ N, there exists a (sharp) constant B d ∈ (0, ∞) such that for any n ≥ d, every polynomial f : {-1, 1} n → R of degree at most d satisfies

S⊆{1,...,n} | f (S)| 2d d+1 d+1 2d ≤ B d f ∞ . ( 25 
)
Moreover, 2d d+1 is the least exponent for which the implicit constant becomes independent of the ambient dimension n. The best known upper bound B d ≤ exp(C d log d) for the constant B d is due to the work of Defant, Mastyło and Pérez [START_REF] Defant | On the Fourier spectrum of functions on Boolean cubes[END_REF].

The level -Rademacher projection of a function f : {-1, 1} n → R is defined as

∀ x ∈ {-1, 1} n , Rad f (x) def = S⊆{1,...,n}: |S|= f (S)w S (x). ( 26 
)
Moreover, we write Rad ≤d = ≤d Rad . Apart from the discrete Bohnenblust-Hille inequality (25), we will also use a standard bound on the norm of the -Rademacher projections which is usually attributed to Figiel (see also [START_REF] Eskenazis | Learning low-degree functions from a logarithmic number of random queries[END_REF]Section 3] for a short proof).

Proposition 6. Let n ≥ k ≥ d. Then, every function f : {-1, 1} n → R of degree at most k satisfies Rad ≤d f ∞ ≤ d =0 Rad f ∞ ≤ d =0 | c(k, )| f ∞ , ( 27 
)
where c(k, ) is given by [START_REF] Holmstedt | Interpolation of quasi-normed spaces[END_REF]. It is moreover known that | c(k, )| ≤ k ! . Combining the above with Parseval's identity, we deduce the following bound.

Lemma 7. Let n ≥ k ≥ d. Then, every function f : {-1, 1} n → R of degree at most k satisfies max Rad ≤d (f ) m 2 , σ (k, d) -1 Rad ≤d (f ) m 2d d+1 ≤ inf g∈P n >d ∩P n ≤k f -g ∞ , ( 28 
)
where m = n 0 + • • • + n d and σ (k, d) = B d d =0 | c(k, )|. Proof. Fix a function g ∈ P n >d ∩ P n ≤k . Then, Rad ≤d (f ) m 2 ≤ f -g M 2 = f -g 2 ≤ f -g ∞ , ( 29 
)
where

M = n 0 + • • • + n k . Moreover, we have Rad ≤d (f ) m 2d d+1 (25) ≤ B d Rad ≤d (f ) ∞ = B d Rad ≤d (f -g) ∞ (27) ≤ B d d =0 | c(k, )| f -g ∞ .
Equipped with Lemma 7, we can complete the proof of Theorem 3.

Proof of Theorem 3. Consider the normed spaces

X = (P n ≤k , • ∞ ) and Y = (R m , • Y ) with ∀ y ∈ R m , y Y = max y m 2 , σ (k, d) -1 y m 2d d+1 (30) 
and

m = n 0 + • • • + n d .
Moreover, let Z = P n >d ∩ P n ≤k ⊂ X, viewed as a normed subspace of X. Lemma 7 asserts that the linear operator A : X/Z → Y given by

∀ f ∈ X, A(f + Z) = f (S) |S|≤d (31) 
has norm A ≤ 1. Therefore, the same holds for its adjoint A * : Y * → (X/Z) * . By the usual duality between sums and intersections of normed spaces [1, Theorem 2.7.1], we see that the space Y * is isometric to

∀ w ∈ R m , w Y * = K w, σ (k, d); m 2 , m 2d d-1 . ( 32 
)
Moreover, as X/Z is a quotient of X, its dual is the subspace of X * = L 1 /P n >k which is identified with the annihilator of Z inside X * . In other words, it is the set (X/Z) * = f + P n >k : E[f g] = 0 for every g ∈ Z = f + P n >k : f ∈ P n ≤d = span(P n ≤d ∪ P n >k ) P n >k (33) equipped with the L 1 quotient norm. Finally, for a sequence a a a = (a S ) |S|≤d ∈ Y * and an equivalence class f + Z ∈ X/Z, we have

a a a, A(f + Z) = S⊆{1,...,n}: |S|≤d a S f (S) = S⊆{1,...,n}: |S|≤d a S w S + P n >k , f + Z = A * (a a a), f + Z , (34) 
where the first brackets •, • denote the duality in Y and the following brackets denote the duality in X/Z. Therefore, we conclude that

∀ a a a ∈ Y * , A * (a a a) = S⊆{1,...,n}: |S|≤d a S w S + P n >k ( 35 
)
and thus, the condition A * ≤ 1 means that for any f :

{-1, 1} n → R of degree at most d, inf g∈P n >k f -g 1 = A * f (X/Z) * ≤ f Y * = K f , σ (k, d); m 2 , m 2d d-1 . ( 36 
)
Finally, since 

σ (k, d) ≤ B d d =0 | c(k, )| ≤ B d d =0 k ! ≤ eB d k d , ( 37 
k . ( 39 
)
This can be proven using similar ideas as in the proof of Theorem 3.

A slight variant of the arguments above also yields Theorem 4 for symmetric functions.

Proof of Theorem 4. Let f be a symmetric function of the form f = d =0 α f where f is the -th elementary symmetric polynomial. Then, the Hahn-Banach theorem gives inf

g∈P n >k f -g 1 = sup 0 h∈P n ≤k E[f h] h ∞ . ( 40 
)
Observe now that we can write

E[f h] = d =0 α E[f h] = d =0 α S⊆{1,...,n}: |S|= h(S) = d =0 α Rad h(1, . . . , 1). (41) 
Thus, by Figiel's bound (27),

E[f h] ≤ d =0 |α | Rad h ∞ ≤ d =0 |α || c(k, )| h ∞ (42) 
and the desired inequality follows from (40).

Equipped with Theorem 4, we present the proof of Corollary 5.

Proof of Corollary 5. The upper bound in [START_REF] Levhari | Hypercontractive inequalities for the second norm of highly concentrated functions, and Mrs. Gerber's-type inequalities for the second Rényi entropy[END_REF] follows immediately from Theorem 4. For the lower bound, consider the auxiliary symmetric function H k,n : {-1, 1} n → R given by

∀ x ∈ {-1, 1} n , H k,n (x) def = T k x 1 + • • • + x n n = k =0 β ,k,n f (x), ( 43 
)
where f is the -th elementary symmetric polynomial, and notice that H k,n has degree at most k. As T k (x) is odd or even when k is odd or even respectively, it follows that β ,k,n = 0 if kis odd. We distinguish two cases depending on the parity of kd.

• Suppose that kd is even and consider the function

ϕ d,k,n : {-1, 1} n → R given by ∀ x ∈ {-1, 1} n , ϕ d,k,n (x) def = 0≤ ≤d: 2|d- sign(β ,k,n )f (x) (44) 
that is also symmetric and of degree at most d. Then, on one hand we know that inf

g∈P n >k ϕ d,k,n -g 1 (15) ≤ 0≤ ≤d: 2|d- | c(k, )| = 0≤ ≤d: 2|d- |c(k, )|. ( 45 
)
On the other hand, we have the following lower estimate, inf 

g∈P n >k ϕ d,k,n -g 1 (40) = sup 0 h∈P n ≤k E[ϕ d,k,n h] h ∞ ≥ |E[ϕ d,k,n H k,n ]| H k,n ∞ . ( 46 
thus concluding the proof of the lower bound in [START_REF] Levhari | Hypercontractive inequalities for the second norm of highly concentrated functions, and Mrs. Gerber's-type inequalities for the second Rényi entropy[END_REF].

• If kd is odd, we use the identity

f d = sign(β d,k-1,n )(ϕ d,k-1,n -ϕ d-2,k-1,n ). ( 52 
)
The rest of the argument is identical.

Remark 11. In this paper, we studied dual versions of moment comparison estimates on the hypercube (3) and investigated the endpoint case of their duals (4) for polynomials. By formal reasoning similar to the proof of Proposition 1, one can derive dual versions of various other polynomial inequalities, including Bernstein-Markov inequalities and their reverses and bounds for the action of the heat semigroup. We refer to [START_REF] Eskenazis | Polynomial inequalities on the Hamming cube[END_REF] for a systematic treatment of such estimates.

≥

  bound from below the L 1 -distance of f d from the tail space, we writef d = sign(β d,k,n )(ϕ d,k,nϕ d-2,k,n ) 0≤ ≤d: 2|d-|c(k, )|ε n (k, d) -0≤ ≤d-2: 2|d-2-|c(k, )| = |c(k, d)|ε n (k, d),

  )we deduce the conclusion of the theorem with C d = eB d . Remark 8. To the best of our knowledge, there are no nonconstant lower bounds on the size of the discrete Bohnenblust-Hille constant B d , so it is even conceivable that the constant C d in[START_REF] Hitczenko | On the Rademacher series[END_REF] can be chosen to be independent of d. Remark 9. A duality argument similar to that employed for Theorem 3 shows that for every d ∈ N, the constant B d in inequality (25) is also the least constant for which every function f : {-1, 1} n → R, where n ≥ d, satisfies Remark 10. It was pointed out to us by Oleszkiewicz that the main result (8) of[START_REF] Oleszkiewicz | On mimicking Rademacher sums in tail spaces[END_REF] also admits a dual formulation. Namely, for every a a a = (a 1 , . . . , a n ) ∈ R n , we have inf f a a ag ∞ : g ∈ P n

							d-1	
	inf >d g∈P n	f -g 1 ≤ B d	S⊆{1,...,n}:	| f (S)|	2d d-1	2d	.	(38)
			|S|≤d					
		{0}∪{2,...,k}	max a a a n 2 ,	a a a n 1

)

  By definition, H k,n∞ ≤ sup x∈[-1,1] |T k (x)| ≤ 1 and H k,n (1, . . . , 1) = T k (1) = 1. Therefore,To further estimate this sum, we use [14, Lemma 27] which implies that there exists a positive constantε n (k, d) > 0 with ε n (k, d) = O k,d (1/n) as n → ∞, such that 0≤ ≤d: 2|d-Rad H k,n (1, . . . , 1) ≥

	inf g∈P n >k	ϕ d,k,n -g 1 ≥ |E[ϕ d,k,n H k,n ]| =	0≤ ≤d: 2|d-	sign(β ,k,n )Rad H k,n (1, . . . , 1)	(47)
				=		Rad H k,n (1, . . . , 1) .
					0≤ ≤d: 2|d-
						|c(k, )| -ε n (k, d).	(48)
					0≤ ≤d: 2|d-
	Hence, combining the above we conclude that
		inf g∈P n >k	ϕ d,k,n -g 1 ≥	0≤ ≤d: 2|d-

|c(k, )|ε n (k, d).
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