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Abstract  

The design of new acoustic metasurfaces with desirable properties is challenging due to their artificial 

nature and the large search space of physical and geometrical parameters. This paper presents an efficient 

two-stage data-driven approach for analyzing and designing membrane-type metasurface absorbers with 

desirable characteristics. In the first stage, a forward model consisting of a neural network is trained to map 

an input, comprising the membrane parameters, to the observed sound absorption spectrum. Then, in the 

second stage, the learned forward model is inverted to infer the input parameters that produce the desired 

absorption response. The metasurface membrane parameters, which serve as input to the neural network, 

are estimated by minimizing a loss function between the desired absorption profile and the output of the 

learned forward model. Finally, two devices are fabricated using the estimated membrane parameters. The 

measured acoustic absorption responses of the fabricated devices show a very close agreement with the 

desired responses.  
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1. Introduction 

 

The first successful fabrication of metamaterials by Smith et al. [1] two decades ago revolutionized the 

conventional view of electromagnetic and acoustic wave propagation. It opened the doors to engineer new 

materials with variable properties not found in natural materials [2-4]. In essence, metamaterials are 

artificially structured composite materials characterized by built-in locally resonant structures (LRS). These 

structures restrain/localize strongly oscillating acoustic or electromagnetic fields in the bulk of the 

structured materials or on the surface, in the case of metasurfaces, to specific frequencies. The presence of 

these LRSs allows the control and modulation of incident waves at subwavelength frequency.  

Over the past two decades, various metamaterials and metasurfaces have been developed with new acoustic 

properties: acoustic cloaking [5-7], complete sound reflection and transmission [8-10], complete sound 

absorption [11-17], and wavefront tailoring [18]. This study concerns sound absorption applications in 

which conventional approaches rely on materials with limited acoustic performance, such as glass, wool, 

and perforated panels backed by air cavities [19-21]. These conventional absorbers are characterized by 

thicknesses having wavelengths in the audible range, which require large mass, limiting the scope of their 

applications and efficiency. One innovative way to overcome this limitation is using decorated metasurface 

membranes that can achieve nearly total absorption at low frequency with dimensions much smaller than 

the wavelength of incident sound waves.  

Until recently, however, the analysis of metasurface-based absorbers was primarily based on numerical 

simulations of physics-based models using either Finite Element methods (FEM) via solvers such as the 

COMSOL Multiphysics or through finite-difference time-domain (FDTD) methods. The former approach 

can model complex scenarios and geometries at the cost of slow simulation. This limitation adds to the 

inconvenience of the black-box nature of the calculations of these commercial packages, which can only 



provide a posteriori explanation. By contrast, the latter approach is appropriate only for scenarios of low to 

moderate complexity [22]. The fast development of deep learning (DL) techniques in the last decade 

coupled with the increasing computing power and the growth in data availability has made them a feasible 

surrogate of FEM for the analysis of acoustic wave systems, both in the time and in the frequency domains 

[23-26]. DL is based on universal function approximators leveraged to specific problems through learning 

from data. This data is usually generated from high-fidelity numerical simulations or through physical 

experiments. One significant advantage of these data-driven approaches is that they do not require 

knowledge of the governing equations of the system and are much faster than physics-based simulations. 

The inverse design of metasurfaces is a high-dimensional non-convex optimization problem that seeks to 

find optimal metamaterial parameters to achieve a desired behavior. Conventional approaches rely either 

on nonlinear optimization approaches, such as genetic algorithms (GAs), or heuristic methods. Nonlinear 

optimization approaches are computationally expensive due to repeated sampling and are susceptible to 

convergence failure. On the other hand, heuristic approaches cannot systematically search a large design 

space as they rely heavily on trial and error and extensive experimentation [27]. The emergence of new 

data-driven approaches in recent years has led to a shift in the design paradigm of metamaterials [28-30].  

The idea of inverse design using data-driven approaches was initially proposed to analyze neural network 

architectures [31-32]. The adaptive control community used these approaches to circumvent the limitations 

and unfeasibility of direct inverse modeling of dynamical systems, which is an ill-posed problem in the 

Hadamard sense [33]. These approaches have recently gained significant attention in electromagnetic and 

acoustic metamaterials [34-36]. Popular inverse design approaches include iterative gradient-based and 

indirect inversion using tandem configuration. In this configuration, a particular inverse solution of an 

already trained network is connected in series with another network to accomplish an auto-association task 

(learning an identity mapping across the composite network). In this setup, the forward model allocates one 

output to each frequency sampling point in the absorption spectrum which leads to significant number of 

free parameters [37-38]. Other alternative inversion approaches include direct inverse design and global 

optimization algorithms enabled by generative neural network approaches and NN inversion through 

constrained optimization formulations [39-41].  

This paper deploys a data-driven approach for forward modeling and inverse design of membrane-based 

metasurface absorbers. By observing the metasurface parameters (input) and the sound absorption spectrum 

(output), a forward neural network (NN) model learns a nonlinear function that maps inputs to outputs 

through the minimization of the prediction error. Once trained, the NN model reduces the high 

computational demands of conventional forward physics simulations into a single forward pass.We 

demonstrate the effectiveness of the learned model by producing accurate outputs from parameters that 

were not used in the training phase. The learned model is then inverted to estimate the membrane parameters 

(input) that yield the desired response. The inversion is cast as an optimization problem by minimizing the 

error between the desired response and the predicted output. The objective is to find the set of membrane 

parameters that minimize the prediction error over a set of frequencies while keeping the forward model 

parameters (weights and biases) fixed. The proposed inversion approach provides flexibility in 

optimization, enabling consideration of only the desired absorption at a specific frequency or range of 

frequencies of interest. In contrast, the tandem architecture does not allow for such specificity. Furthermore, 

since the inverse problem is purely an optimization-based approach, there is more flexibility to vary the 

objective function or introduce appropriate constraints, e.g., adding a regularization term without having 

recourse to retraining of the entire model. Such flexibility is not possible with the tandem configuration.  

The rest of the paper is organized as follows. Section 2 presents an exposition of the mathematics of the 

NN based forward model and a formulation of the inverse design as an optimization problem. Section 3 

describes the generation of the training dataset using FEM. Section 4 discusses the training of the forward 

NN and evaluates its performance against the FEM model. The results of NN inversion to determine the 

membrane parameters for a given sound absorption spectrum are discussed in Section 5. Finally, Section 6 

presents some concluding remarks. 



2. Forward and inverse modeling 

 

This section describes the forward and inverse models adopted in this study. First, a forward model is 

learned by training a neural network to predict the sound absorption spectrum, using the membrane's 

physical parameters and the frequency as input. Second, an inverse model is learned indirectly using the 

forward model to find the membrane parameters which produce a desired sound absorption profile. 

 

2.1 The forward model   

 

An 𝐿 layer feedforward neural network, with 𝑁 inputs (𝒙 ∈ ℝ𝑁) and one output (𝑦 ∈ ℝ), is trained to 

approximate the physical model, 𝚽(𝒙), that generates the training data. The network realizes a composite 

function, which can be expressed as: 

𝑭(𝒙; 𝜽) = 𝑭𝐿−1(𝑭𝐿−2(⋯ 𝑭𝑙 ⋯ (𝑭1( 𝒙)),                                                (1) 

 

where 𝜽 denotes the network free parameters. The expression (1) means that the output 𝒚𝑙 of each 

elementary function 𝑭𝑙: ℝ𝑁𝑙−1 ⟶ ℝ𝑁𝑙   becomes the input of the following function. Each of these 

elementary functions comprises two parts, a linear affine transformation (𝑾𝑙  𝒚𝑙−1 + 𝒃𝑙) and a nonlinear 

elementwise activation function 𝑯(∙) . We can write 𝒚𝑙 in the form:  

𝒚1 = 𝑭1(𝒚0) = 𝑯( 𝑾1𝒚0 + 𝒃1) ,    𝒚0 = 𝒙 , 

                     𝒚𝑙 = 𝑭𝑙(𝒚𝑙−1) = 𝑯( 𝑾𝑙  𝒚𝑙−1 + 𝒃𝑙) = ,   𝑙 = 2, ⋯ 𝐿 − 1                                            (2) 

 

The parameters 𝜽𝑙 = [𝒃𝑙  𝑾𝑙] represent the network parameters including the weights (𝑾𝑙 ∈ ℝ𝑁𝑙−1×𝑁𝑙) and 

biases (𝒃𝑙 ∈ ℝ𝑁𝑙). Popular nonlinear elementwise functions 𝑯(∙) include the sigmoid, hyperbolic tangent 

the ReLU activation functions. 

 

The training involves adjusting the network parameters to minimize a loss function that measures the 

discrepancy between the network output 𝑦 = 𝑦𝐿−1 = 𝑭(𝒙; 𝜽) and the desired (ground-truth) output 𝑟 =
𝚽(𝒙) when subjected to same input, as summarized in Fig. 1.    

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. A block diagram of the forward model learning from the inputs and outputs of the physics-based 

model. The same input 𝒙 is applied to the system 𝚽(𝒙)  and  to the network   𝑭(𝒙; 𝜽) . The desired 

network weights are found by minimizing a loss function of the prediction error  𝑒 = (𝑟 − 𝑦). 

 

Given a training dataset D of 𝑃 typical input and desired output samples {𝒙(𝑖), 𝑟(𝑖)}
𝑖=1

𝑃
 , where  𝑟(𝑖) =

𝚽(𝒙(𝑖)). The network input vector 𝒙(𝑖) = [𝑥1
(𝑖)

, 𝑥2
(𝑖)

, ⋯ , 𝑥𝑁
(𝑖)

]𝑻 comprises the frequency 𝑓(𝑖) = 𝑥1
(𝑖)

 and the 
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membrane parameters 𝒙2:𝑁
(𝑖)

=  [𝑥2
(𝑖)

, ⋯ , 𝑥𝑁
(𝑖)

]𝑇. The task of training a network is to find the best set of 

parameters (i.e., weights)  𝜽∗ that minimize the mean sum of squares of the network errors over the training 

set: 

 

𝑔(𝜽) =
1

𝑃
෍(𝑟(𝑖) − 𝑦(𝑖))2

𝑃

𝑖=1

=
1

𝑃
෍(𝑟(𝑖) − 𝑭(𝒙(𝑖); 𝜽))2

𝑃

𝑖=1

                                       (3) 

 

There exist several optimization techniques to minimize 𝑔(𝜽), such as the Gradient-descent and its variants, 

Newton’s method, and Levenburg-Marquard algorithm. Most Gradient-descent-like methods involve 

recursive calculation of the partial derivatives of the loss function 𝑔 with respect to the network parameters 

𝜽 and then use of these derivatives to update the network parameters in the direction that reduces the overall 

loss 𝑔, i.e., the negative gradient direction. The standard gradient-descent update rule for the weights has 

the form: 

𝜽(𝑘+1) = 𝜽(𝑘) − 𝜂𝛁𝜽𝑔(𝜽(𝑘)),                                                          (4) 

where (0 < 𝜂 < 1) is the learning rate and 𝛁𝜽  is the gradient operator with respect to 𝜽 . In practice, the 

partial derivative forming the gradient 𝛁𝜽 are calculated using the backpropagation algorithm, an efficient 

algorithm that exploits the composite and the differentiability nature of 𝑭 to compute the derivatives in 

reverse mode according to the chain rule. 

 

2.2 The inverse model 

 

In this part, we aim to estimate the metamaterial parameters 𝒙2:𝑁
  for which the earlier learned forward 

model 𝑭(𝒙; 𝜽∗) approximates a ‘fictitious’ desired sound absorption profile (𝒓𝑑 = [𝑟1, 𝑟2, ⋯ , 𝑟𝑚, ⋯ , 𝑟𝑀 ]𝑇) 

specified by the user, where 𝑟𝑚  is the desired absorption coefficient at frequency 𝑓𝑚.   

 

Let 𝒚 = [𝑦1, 𝑦2, ⋯ 𝑦𝑀 ]𝑇 be the actual network output sound absorption profile as function of frequency 

when its inputs are {[𝑓
𝑚

, 𝒙2:𝑁
 ]

𝑇}
𝑚=1

𝑚=𝑀
.The problem of inverting a neural network model can be then cast 

as an optimization problem over the network inputs 𝒙2:𝑁
 : 

 

min
𝒙2:𝑁 

𝐸(𝒙) = min
𝒙2:𝑁 

‖𝒓𝑑 − 𝒚(𝒙)‖
2

= min
𝒙2:𝑁 

෍ ‖𝑟𝑚 −  𝑭([𝑓𝑚 , 𝒙2:𝑁
 ]𝑻; 𝜽∗)‖

2
                   (5)

𝑀

𝑚=1

 

 

An efficient way to solve (5) uses gradient-based optimization whereby the gradient 𝛁𝒙 with respect to 

(w.r.t.) the network input elements 𝑥2, 𝑥2, … , 𝑥𝑁  are calculated using a variant of the backpropagation 

algorithm similar to the one used for the training of forward model. The partial derivative of 𝐸(𝒙) w.r.t. 

𝑥𝑖 (𝑖 = 2, … , 𝑁) is given by    

 

𝜕𝐸(𝒙)

𝜕𝑥𝑖
=

𝜕‖𝒓𝑑−𝑭(𝒙,𝜽∗)‖
2

𝜕𝑥𝑖
= 2 (𝒓𝑑 − 𝑭(𝒙, 𝜽∗))

𝜕𝑭(𝒙,𝜽∗)

𝜕𝑥𝑖
,    𝑖 = 2,3, ⋯ , 𝑁.                     (6) 

 

Since the first elements of 𝒙 is the frequency 𝑓𝑚, it is not included in the optimization  search for parameters. 

The input update rule adjusts iteratively the remaining elements  𝒙2:𝑁  to minimize the difference between 

the desired outputs 𝑟𝑚 and the actual network outputs 𝑦𝑚 = 𝑭([𝑓𝑚 , 𝒙2:𝑁
 ]𝑻, 𝜽∗) such that: 

 

  𝒙2:𝑁
(𝑘+1)

= 𝒙2:𝑁
(𝑘)

− 𝜂𝛁𝒙𝐸 (𝒙2:𝑁
(𝑘)

)                                                      (7) 

 



Fig. 2 summarizes the computation of the gradient 𝛁𝒙 using a variant of the backpropagation algorithm, 

where the network inputs are adjusted instead of its parameters which are held constants. 

 

 

 

 

 

  

 

 

 

Fig. 2. Iterative inversion of the forward model 

 

The iterative network inversion algorithm can be summarized by the following steps: 

 

Step1: At iteration 𝑘 = 0 assume random values for the of the membrane parameters within their respective 

ranges 𝒙2:𝑁
(𝑘)

. 

 

Step2: Compute the outputs of the previously trained network for all the frequencies 𝑓𝑚:  
 

𝑦𝑚
(𝑘)

= 𝑭 ([𝑓𝑚, 𝒙2:𝑁
(𝑘)

]𝑇 , 𝜽∗) , 𝑚 = 1: 𝑀  . 

 

Step3: Compute the sum-squared error: 𝑬(𝒙(𝑘)) = ‖𝒓𝑑 − 𝒚(𝑘)‖
2
 

 

Step4: Compute the gradient of 𝑬(𝒙(𝑘)) with respect to 𝒙2:𝑁
(𝑘)

 and update  𝒙2:𝑁
  :    

 

𝒙2:𝑁
(𝑘+1)

= 𝒙2:𝑁
(𝑘)

− 𝜂𝛁𝒙𝐸 (𝒙2:𝑁
(𝑘)

), 
 

Step5: Go to Step 2 and repeat until 𝑬(𝒙(𝑘)) < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 or 𝑘 = 𝑘𝑚𝑎𝑥 

 

3. Generation of training data 

 

The first step in the process of constructing a forward data driven model consists of generating a 

representative dataset with known ground-truth that captures different characteristics of the membrane-type 

acoustic metasurface under investigation. To this end, we generated a realistic dataset D of sound absorption 

responses for a range of membrane geometric parameter values using numerical simulations. The 

independent model parameters considered in this study consist of the membrane radius (a ∈ [20, 60]mm), 

thickness (ℎ ∈ [0.01, 0.5]mm) and cavity depth (𝑒𝑐 ∈  [1, 40]mm). The focus on geometrical parameters 

is justified by the strong dependence of the acoustic response on membrane geometry. The elastic constants 

of the material were selected from COMSOL material library as a stainless steel and are considered to be 

fixed including the Young’s modulus (E = 2 ∙ 1011   Pa), mass density (𝜌 = 7850 kg/m3 ]), Poison’s ratio 

(𝜈 = 0.27) and effective loss coefficient (𝜉 = 0.0613). The independent parameters are drawn randomly 

from uniform distributions within their respective ranges.  

The FE software COMSOL was used to calculate the acoustic wave reflections in an environment that 

mimics measurements in an impedance tube according to the ISO 10534-2 protocol. The cylindrical 

membrane assumed to be backed by an air cavity and clamped in a tube with a square outer section and 

circular inner hollow section. The acoustical behavior of the membrane is investigated inside a rectangular 

impedance tube of inner width equals to the outer width of the clamping cube. A unit pressure is applied 

on the opposite side of the membrane to serve as a normal incidence excitation. The acoustic pressure 

𝑭(𝒙; 𝜽∗) 

𝒓𝑑 

𝒚(𝑘) 

 
෍   Input update rule 

𝒙(𝑘) 𝒙(𝑘+1) 

𝐸(𝒙(𝑘)) 



interacts with the elastic vibration mode of the membrane inducing sound losses through the visco-thermal 

effect modeled as an absorbed thin layer attached to the membrane. The simulation configuration is shown 

in Fig. 3. For each combination of the independent parameters, the normal sound absorption coefficient was 

recorded for the frequency range 1 to 3000 Hz in 3 Hz increments. 

 

                


Fig.3. Schematic of the impedance tube configuration  
 
4. Forward model Network architecture 

 

The aim is to train a feedforward neural network to approximate the physics-based membrane model using 

the training inputs and corresponding targets. The selection of the network topology in terms of number of 

layers and neurons at each hidden layer is usually found with several trial-and-error training runs. Larger 

networks can create more complex functions with the risk of overfitting. i.e., small error on the training set 

and large error on unseen data. Preventing overfitting can be achieved either through regularization, early 

stopping or by increasing the size of the training set. In this study, the network size was kept large enough 

to provide a good fit while the size of the training set was increased to ovoid overfitting. A neural network 

with 5 hidden layers and out output (4-24-16-8-4-1) was trained using 50 million data points (100 thousand 

absorption profiles each contains 500 frequencies). The actual network inputs comprise the membrane 

radius a, thickness ℎ , cavity depth 𝑒𝑐, and frequency (𝑓). The desired output is the normal absorption 

coefficient (𝛼 ) at the frequency 𝑓. Prior to training, the data is partitioned into three subsets training, 

validation, and test sets, with ratios 70 %, 15 %, and 15 %, respectively. All hidden layers use the standard 

logistic sigmoid activation function, while the output neuron uses a linear activation function. The network 

was trained using the Levenberg-Marquardt algorithm, which is characterized by an efficient update rule 

that varies between the gradient descent (Section 2) and the Gauss-Newton method. 

Fig.4 shows the plots of the mean squared error (mse) loss as a function of the number of training epochs 

for the training and validation sets. The training and validation errors exhibit similar characteristic, a 

decreasing function of the  number of epochs. The model achieves the lowest validation mse of 0.0004 at 

epoch 556. The agreement between the actual and predicted values is further evaluated statistically through 

Pearson's correlation coefficient (R) between the model output relative to FEM's desired output. The model 

performed well with a correlation coefficient of over 0.98. 

Pressure 
wave 
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mic. 
2 

Metasurface 
sample 



 
Fig. 4. Mean square error loss function of the training and validation sets as a function of training epochs. 
 

Fig.5 illustrates the network response as a function of frequency for four different sets of input parameters 

chosen from the test set, except for Fig.5 (d) whose parameters are chosen outside the range of the training 

parameters. The curves are produced by fixing the physical parameters (a, h, and 𝑒c) and varying the input 

frequency. The sound absorption curves generated based on the learned model show high fidelity with those 

based on the FEM simulation across different spectral patterns. Figs.5 (a) and (b) show resonator responses 

with one and two prominent peaks, respectively. Fig. 5(c) is a broadband absorber with a relative bandwidth 

of 15 % for an absorption coefficient 𝛼 = 0.8 at the frequency f = 1165 Hz.  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 5. The model predicted absorption spectrum (blue) and the COMSOL simulated FEM response (red) 

for four different sets of parameters {radius, thickness, depth}: (a) {45.5, 0.37, 27.5} mm, (b) 

{33.4, 0.02, 26.5} mm, (c)  {45, 0.04, 7.5} mm, and (d)  {32, 0.025, 54} mm. 



 

The ability of the model to generalize beyond the range of the training parameters is also evaluated by 

generating the broadband spectrum of Fig.5 (d). This spectrum is generated with a cavity depth  𝑒c = 54 

mm, a relative bandwidth of 31 %, and 𝛼 = 0.6 around the central frequency fc = 509 Hz. The plots in Fig. 

5 clearly show that the trained model produces sound absorptions that are in good agreement with the 

simulated FEM responses. The correlation coefficients between the model and the FEM responses in these 

examples were greater than 0.99. The proposed forward model resulted in a speed improvement of over four orders 

of magnitude compared to FEM simulation on a typical personal computer. 

 

5. Inverse design of membrane-type metasurface absorber 

 

The membrane absorbers presented in this study are characterized by high and narrow absorption peaks at 

specific frequencies. Broader frequency absorption using these structures can be achieved through the 

coupling of the high-order elastic modes of the single membrane. These couplings occur with specific 

geometrical parameters of the membrane and the air cavity. They are, however, not easy to describe using 

simple analytical models. This section aims to illustrate the application of the proposed inverse design 

approach (Section 2.2) to realize absorbers with prominent absorption peaks at selected subwavelength 

frequencies and broadband absorbers. Subsection 5.1 describes the estimation of the membrane parameters 

for a given reference absorption profile, Subsection 5.2 discusses the fabrication process, and Subsection 

5.3 presents the experimental protocol and the results. 

 

5.1 Reference absorption profile and parameters estimation  

Depending on the intended response of the absorber, a desired (reference) absorption profile 𝒓𝑑 should be 

first defined. The membrane parameters 𝒙∗ are then estimated by minimizing the deviation between the 

model output  𝒚 and 𝒓𝑑 using the inverse design approach (see Section 2.2). The algorithm remains the 

same, except that the error computation in Step 3 should include only the frequency range or the frequency 

values of interest. The algorithm starts from a random initial point 𝒙0  and produces a sequence of parameter 

estimates  𝒙𝑘 (𝑘 = 0, 1, 2, … ) with the objective to minimize the cost function 𝐸(𝒙) =  ‖𝒓𝑑 − 𝒚(𝒙)‖
2
. 

Depending on the starting point (𝒙0), the algorithm might converge to different local minima; this is due to 

the fact that different combination of parameters may yield similar values of the cost function. Different 

random initial values are evaluated, and the best fit is presented. In this section, three case studies are 

presented: single narrow-band, dual narrow-band, and wideband absorber. Here, we consider only the 

frequency range covered by the impedance tube (up to 1500 Hz). 

a) Single narrow-band absorber. One way to define the reference absorption profile  𝒓𝑑 is using the 

frequency response of a second-order resonator of the form: 

𝐻(𝑠) = 𝐾
𝑠

𝑠2 + Δ𝜔𝑝𝑠 + 𝜔𝑝
2  ,                                                            (8) 

 

 where 𝐾 is a constant gain, Δ𝜔𝑝 represents the half-power (3 dB) bandwidth, and 𝜔𝑝 = 2𝜋𝑓𝑝 is the 

peak or resonant frequency. The bandwidth is inversely proportional to the Q-factor 𝑄_𝑝,  Δ𝜔𝑝 =

𝜔𝑝/𝑄𝑝. Fig. 6 shows an example of a reference absorption spectrum (green dashed line) with 

absorption level 𝛼 =1 at 𝑓𝑝 = 1,252 Hz and Q-factor 𝑄𝑝 = 32, along with the estimated model (blue 

dotted line) and FEM responses (red solid line). The estimated parameters are summarized in Table 1. 

The estimated model response is highly correlated with the desired response around the peak 

frequency. It contains a second small peak at frequency 𝑓 = 624. The estimated model response is 

then validated numerically using FEM simulation, and the two responses match very well.   



 

Fig. 6. Single narrow-band absorber:  desired spectrum absorption profile (dashed), the estimated model 

response (dotted line) and FEM response (solid line) 
 

b) Dual narrow-band absorber. The reference response in this case can be defined as the desired 

absorption level (𝛼) at specific frequencies  𝑓1 and 𝑓2. Fig. 7 is an example of a reference response with 

absorption level 𝛼 = 1 at  𝑓1 = 540 Hz and 𝑓2 = 889 Hz.  The estimated model response and the FEM 

simulation are also included. The estimated membrane parameters are summarized in Table 1. The 

inverse parameters estimation converges to 𝛼 values equal to 0.99 at the selected frequencies. The 

predicted response, obtained using the estimated parameters, is very close to the response obtained with 

FEM simulation; the FEM response has a slightly lower absorption coefficient, 𝛼 = 0.9, at 𝑓1.  

 
 

Fig. 7. Dual narrow-band absorber:  desired spectrum absorption profile (dashed), the estimated 

model response (dotted line) and FEM response (solid line) 
 

c) Wideband absorber. The reference response in this case can be the desired absorption level (𝛼) over 

the specific frequency band of interest.  Fig. 8 is an illustration of a wideband reference response with 

a relative bandwidth of 23 % for  𝛼 = 0.8 around the central frequency 𝑓𝑐 = 975 Hz. The estimated 

spectrum correlates well with the desired response in terms of general tendencies. The discrepancies 

between the two spectra are due to the constraints of the natural shape of the resonance of the 

membrane as well as the complexity of the desired response.    



 
 

Fig. 8. Wideband absorber:  desired spectrum absorption profile (dashed), the estimated model 

response (dotted line) and FEM response (solid line) 

Table 1: Estimated membrane parameters  

Estimated parameters Simple absorber Dual-band absorber Wideband absorber 

Radius a (mm) 25.5 24.7 30.9 

Thickness ℎ (mm) 0.0509 0.0500 0.0247 

Cavity depth 𝑒𝑐 (mm) 4.0 13.5 16.9 

 

5.2 Fabrication of the membranes 

Based on the finding of Section 5.1, we selected the single and the dual narrow band absorbers for 

fabrication. Each of these elasto-acoustic metasurfaces comprises a circular membrane backed by an air 

cavity with rigid endings. Each device is made up of two polymer cuboids with cylindrical cavities and a 

steel sheet membrane. The cuboids were created layer-by-layer using an additive manufacturing technique. 

For the first device, the first cuboid is of dimension 70x70x10 mm with a cylindrical cavity of radius a = 

25.5 mm and a cavity depth 𝑒𝑐 = 4 mm. The second cuboid has a dimension of 70x70x 5 mm with a 

cylindrical hollow air cavity of radius a = 25.5 mm. For the second device, the first cuboid is of dimension 

70x70x10 mm with a cylindrical cavity of radius a = 24.7 mm and a cavity depth 𝑒𝑐 = 13.5 mm. For both 

devices, a membrane of a side length of 70 mm and a thickness of 0.05 mm was sandwiched between the 

cuboids and secured using eight cap screws. The different parts of the membrane are illustrated in Fig.9.  

 
                                      (a)                                                                             (b) 

Fig.9. Example of sound absorber, (a) Schematic (b) Fabricated.  



 

5.3 Experimental protocol and results 

A non-commercial impedance tube apparatus based on the Two-Microphone transfer function method 

specified in the ISO 10534-2 protocol was used in this experiment, see Fig. 10. It serves at determining the 

complex reflection factor (𝑅) and the dimensionless sound absorption coefficient (𝛼) curve of the 

metasurface at different frequencies for normal sound incidence. The apparatus consists of a rigid 

rectangular impedance tube of inner cross section of 7x7 cm and length 60 cm, a loudspeaker mounted on 

one end of the tube, the metasurface membrane mounted at the other end and two identical microphones 

located on the side of the membrane to measure the acoustic pressure of the incident and reflected waves 

inside the tube. The two microphones are respectively located at 20 cm and 30 cm away from the surface 

of the structure. The loudspeaker generates broadband random signal covering the frequency range of 

interest namely, 50 to 1500 Hz. The pressure signals measured at the microphones are used to solve the 

pressure equation in the tube:  

𝑝(𝑥) = 𝑝0(𝑒𝑗𝑘𝑥 + 𝑅𝑒−𝑗𝑘𝑥),                                                           (9) 

where 𝑝0 is a constant; k is the wavenumber; the membrane is assumed to be at 𝑥 = 0 . The first and the 

second term in (9) represent respectively the incident and reflected waves.   

 

By computing transfer function, ratio of pressures  𝐻12 =  
𝑝(𝑥2)

𝑝(𝑥1)
 , at the two microphone positions we can 

solve for the refection factor (𝑅 =
𝐻12𝑒𝑗𝑘𝑥1−𝑒𝑗𝑘𝑥2

𝑒−𝑗𝑘𝑥2−𝐻12𝑒𝑗𝑘𝑥1
)  and deduce the absorption coefficient as 𝛼 = 1 −

|𝑅|2 . 

 

 

Fig 10. Experimental setup   

The generated signals were amplified then processed using a multi-channel high-accuracy dynamic signal 

acquisition module connected to a computer for data analysis, Fig.9, depicts the results.  

The experimental results show a good agreement with the estimated absorption spectrum (𝛼FEM 1)  in terms 

of general tendencies and spread around the peaking frequency. The main difference between the results in 



the case of single narrow-band (Fig.9 a) is a shift in the frequency response of the experimental absorption 

curve towards the higher frequencies with a relative frequency shift of about 3 % and a 1.8 % decrease of 

the value of the resonance amplitude. Similar behavior was observed with the dual narrow-band absorber 

(Fig.9 b) with a slight difference in the shift between the first and second prominent peaks. 

Replacing the COMSOL default value of the Young Modulus (E = 200 GPa) used in the first simulation 

(blue curve in Fig. 11) by the actual value (E = 275 GPa) of the reinforced stainless steel used in the 

experiment resulted in an upward shift in resonance frequencies ((red curve in Fig. 11) towards the 

experimental values. Other shifts and discrepancies are due to modeling errors caused by the deformation 

in the fabrication of the 3D-printed frame and the inaccuracies that occur during the assembly process. In 

the numerical model, we assumed rigid condition on the lateral boundaries of the membrane, which is very 

difficult to achieve experimentally. Practically, sandwiching and pressing the steel membrane between the 

rigid frame induces a static stress in the clamped boundary, which affects the mechanical vibration and 

results in a shift of the resonant frequency.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 11. Measured and FEM simulated absorption spectrums with COMSOL default (blue curve) and 

actual (red curve) Young modulus, (a) single narrow band absorber, (b) dual narrow-band absorber 

6 Conclusion  

This study presented a systematic framework for the forward modeling and inverse design of membrane-

type metasurfaces sound-absorbers. Once trained, the forward model reduces the computational time by 

orders of magnitude compared to conventional approaches. The iterative inversion method finds the input 

that reconstructs the desired output when cascaded with the forward model. We validated the proposed 

approach numerically and experimentally. This data-driven approach simplifies the way of designing 

metasurfaces with desired acoustic properties.  
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