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ADLAKHA ET AL.: STRATIFIED AUTOCALIBRATION OF CAMERAS WITH EIP

This paper tackles the problem of stratified autocalibration of a moving camera with Euclidean image plane (i.e. zero skew and unit aspect ratio) and constant intrinsic parameters. We show that with these assumptions, in addition to the polynomial derived from the so-called modulus constraint, each image pair provides a new quartic polynomial in the unknown plane at infinity. For three or more images, the plane at infinity estimation is stated as a constrained polynomial optimization problem that can efficiently be solved using Lasserre's hierarchy of semidefinite relaxations. The calibration parameters and thus a metric reconstruction are subsequently obtained by solving a system of linear equations. Synthetic data and real image experiments show that the new polynomial in our proposed algorithm leads to a more reliable performance than existing methods.

Introduction

Retrieving the camera calibration parameters from feature correspondences across images, i.e. camera autocalibration, is a prerequisite to recover the metric structure of an unknown scene imaged by uncalibrated perspective cameras. Autocalibration methods rely on some assumptions on the calibration parameters, such as constant [START_REF] Heyden | Euclidean reconstruction from constant intrinsic parameters[END_REF][START_REF] Luong | Self-Calibration of a Moving Camera from Point Correspondences and Fundamental Matrices[END_REF][START_REF] Pollefeys | Stratified self-calibration with the modulus constraint[END_REF][START_REF] Triggs | Autocalibration and the absolute quadric[END_REF] or partially known intrinsic parameters [START_REF] Gherardi | Practical Autocalibration[END_REF][START_REF] Heyden | Flexible Calibration: Minimal Cases for Auto-calibration[END_REF][START_REF] Pollefeys | Self-Calibration and Metric Reconstruction Inspite of Varying and Unknown Intrinsic Camera Parameters[END_REF][START_REF] Ponce | On the absolute quadratic complex and its application to autocalibration[END_REF][START_REF] Valdés | The absolute line quadric and camera autocalibration[END_REF]. When the images are captured by the same moving camera, its internal geometry remains unchanged in the absence of zooming and focusing. The sensor's aspect ratio and skew factor also remain quite stable despite a change in focus or zoom. Moreover, modern cameras commonly have square pixels, i.e. zero skew and unit aspect ratio. Such cameras are said to have a Euclidean Image Plane (EIP) [START_REF] Heyden | Euclidean Reconstruction from Image Sequences with Varying and Unknown Focal Length and Principal Point[END_REF].

The EIP assumption has often been exploited in direct autocalibration methods, which simultaneously estimate the plane at infinity (π ∞ ) and the intrinsic parameters. Direct methods rely mainly on either the Dual Absolute Quadric (DAQ) [START_REF] Triggs | Autocalibration and the absolute quadric[END_REF] or Absolute Line Quadric [START_REF] Ponce | On the absolute quadratic complex and its application to autocalibration[END_REF][START_REF] Valdés | The absolute line quadric and camera autocalibration[END_REF] formulations that encode both π ∞ and the intrinsic parameters. A practical difficulty with these virtual quadrics is to enforce the nonlinear rank-3 constraint in their estimation. Linearization, on the other hand, results in artificial degeneracies [START_REF] Gurdjos | Is dual linear self-calibration artificially ambiguous?[END_REF]. Unlike direct methods, a stratified approach first tackles the more challenging problem of estimating π ∞ . Once π ∞ is located, the intrinsic parameters can be retrieved by solving linear equations for the Dual Image of the Absolute Conic (DIAC) [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF]. The advantage of this approach over a direct quadricbased one is that the nonlinearity is confined to fewer unknowns and a rank condition is not required. Most stratified methods assume constant intrinsic parameters [START_REF] Adlakha | QUARCH: A New Quasi-Affine Reconstruction Stratum From Vague Relative Camera Orientation Knowledge[END_REF][START_REF] Chandraker | Globally Optimal Algorithms for Stratified Autocalibration[END_REF][START_REF] Habed | A New Set of Quartic Trivariate Polynomial Equations for Stratified Camera Self-calibration under Zero-Skew and Constant Parameters Assumptions[END_REF][START_REF] Pollefeys | Stratified self-calibration with the modulus constraint[END_REF][START_REF] Wu | Self-Calibration Under the Cayley Framework[END_REF] and rely on the polynomial derived from the modulus constraint [START_REF] Pollefeys | Stratified self-calibration with the modulus constraint[END_REF]. The zero skew assumption was exploited in [START_REF] Habed | A New Set of Quartic Trivariate Polynomial Equations for Stratified Camera Self-calibration under Zero-Skew and Constant Parameters Assumptions[END_REF][START_REF] Wu | Self-Calibration Under the Cayley Framework[END_REF] using the Infinite Cayley Transform (ICT) [START_REF] Wu | Self-Calibration Under the Cayley Framework[END_REF] to derive quartic polynomials in π ∞ for image triplets. However, using triplets introduces several unknown projective scale factors that render these polynomials not very practical to use. To the best of our knowledge, the assumption of a camera with EIP and constant intrinsic parameters has not been exploited so far in stratified autocalibration.

The autocalibration problem is inherently nonlinear and methods have traditionally relied on local optimization to obtain the calibration parameters. More recent work has also investigated globally optimal optimization approaches, either based on Branch-and-Bound algorithms [START_REF] Bocquillon | On Constant Focal Length Self-Calibration From Multiple Views[END_REF][START_REF] Chandraker | Globally Optimal Algorithms for Stratified Autocalibration[END_REF][START_REF] Fusiello | Globally convergent autocalibration using interval analysis[END_REF][START_REF] Habed | Efficient Pruning LMI Conditions for Branch-and-Prune Rank and Chirality-Constrained Estimation of the Dual Absolute Quadric[END_REF] or on polynomial optimization [5] using Lasserre's hierarchy of semidefinite relaxations [START_REF] Henrion | GloptiPoly 3: Moments, Optimization and Semidefinite Programming[END_REF][START_REF] Lasserre | Global Optimization with Polynomials and the Problem of Moments[END_REF]. In [START_REF] Chandraker | Autocalibration via Rank-Constrained Estimation of the Absolute Quadric[END_REF], Lasserre's hierarchy has been used to estimate the DAQ under rank, semi-definiteness, and chirality [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF] constraints.

In this paper, we present a stratified autocalibration method for a moving camera with EIP and constant intrinsic parameters. Our key contribution is in the formulation of a new quartic polynomial in the unknown π ∞ , that, in addition to the polynomial from the modulus constraint, is obtained for each image pair with the assumed camera model. This polynomial is derived using a yet unexploited property of the ICT. For three or more images, estimating π ∞ is stated as a constrained polynomial optimization problem that is solved using Lasserre's hierarchy. The estimated π ∞ is refined using local optimization of a normalized cost and the intrinsic parameters are recovered subsequently by estimating the DIAC. Experiments with synthetic data and real images show that the new polynomial in our proposed algorithm leads to a more reliable performance than existing methods, especially for short sequences.

Background and related work

We consider a scene embedded in a projective 3-space and imaged n times by a moving perspective camera. The 3 × 4 uncalibrated projection matrices [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF] P i are of the form,

P i = [ A i | a i ], i = 1, 2, . . . , n,
where A i is a 3 × 3 matrix and a i is a 3-vector. The world frame is attached to camera 1 such that A 1 = I (identity) and a 1 = 0.

Inter-image homography: An inter-image homography maps image projections of coplanar scene points from one image to another. It was shown in [START_REF] Habed | A New Set of Quartic Trivariate Polynomial Equations for Stratified Camera Self-calibration under Zero-Skew and Constant Parameters Assumptions[END_REF] that given projection matrices P i , all inter-image homographies induced by planes not containing the origin of the world frame are linear functions of a real 3-vector π,

H i j = A j A * i -A j [ π ] × A i [ a i ] × -a j π A * i for all i = j, (1) 
where A * is the adjoint matrix of A (the transpose of the cofactor matrix) and [ π ] × denotes the skew-symmetric matrix associated with vector π. The more usual forward,

H 1i = A i - a i π , and inverse, H i1 = A * i -[ π ] × A i [ a i ] × ,
mappings relating any view i and the reference image can be extracted from [START_REF] Adlakha | QUARCH: A New Quasi-Affine Reconstruction Stratum From Vague Relative Camera Orientation Knowledge[END_REF]. Note that,

H i1 = H * 1i = det(H 1i )H -1 1i , (2) 
where det(H 1i ) is the determinant of H 1i , and that H i j in (1) is obtained through

H i j = H 1 j H i1 .
Infinite homography: For a fixed π, all H i j represent inter-image homographies induced by the same plane. In particular, for some appropriate π = π ∞ , the inter-image homograhies expressed by [START_REF] Adlakha | QUARCH: A New Quasi-Affine Reconstruction Stratum From Vague Relative Camera Orientation Knowledge[END_REF] and denoted hereafter by H ∞i j , are those induced by the plane at infinity. Such a homography H ∞i j , referred to as an infinite homography, is distinctively independent of the camera translation. In particular, when the camera intrinsic parameters are constant,

H ∞i j = A j A * i -A j [ π ∞ ] × A i [ a i ] × -a j π ∞ A * i , (3a) 
= λ 2 i λ j KR i j K -1 , (3b) 
for all i = j, where R i j is the rotation matrix relating cameras i and j. The scalar λ i is such that H ∞1i = λ i KR 1i K -1 with λ 1 = 1. Matrix K is the intrinsic parameters matrix of the form,

K =   f x γ u 0 f y v 0 0 1   , (4) 
encapsulating the focal lengths ( f x , f y ), the principal point coordinates (u, v), and the skew γ.

Modulus constraint: When the camera intrinsic parameters are constant, H ∞i j is similar to a scaled rotation matrix (3b). Since a rotation matrix has eigenvalues with unit modulus, those of H ∞i j necessarily have equal moduli. A necessary condition on π ∞ (the so-called modulus constraint) for a given H ∞i j to carry this property was derived and exploited in [START_REF] Pollefeys | Stratified self-calibration with the modulus constraint[END_REF]. For any two views i and j, this condition involves the coefficients of the characteristic polynomial,

det H ∞1 j -λ H ∞1i = -c i (π ∞ )λ 3 + t i j (π ∞ )λ 2 -t ji (π ∞ )λ + c j (π ∞ ) = 0, (5) 
where c i and t i j are affine functions of π ∞ . For H ∞i j to satisfy the modulus constraint, it was shown in [START_REF] Pollefeys | Stratified self-calibration with the modulus constraint[END_REF] that π ∞ must satisfy the following quartic polynomial equation,

m i j (π ∞ ) = c i (π ∞ )t 3 ji (π ∞ ) -c j (π ∞ )t 3 i j (π ∞ ) = 0 for all i = j. (6) 
This polynomial can also be derived from (3a) and (3b) by noticing that, on the one hand,

c i (π ∞ ) = det(H ∞1i ), i = 1, 2, . . . , n and t i j (π ∞ ) = tr(H ∞i j ) for all i = j, (7) 
and, on the other hand, that these are related to the scaling of the infinite homographies,

det(H ∞1i ) = λ 3 i , tr(H ∞i j )/tr(H ∞ ji ) = λ i /λ j , (8) 
where tr(H ∞i j ) denotes the trace of H ∞i j . Using (6), a finite number of candidate solutions for π ∞ can be obtained when at least 3 such polynomials (i.e. as many images) are available.

Infinite Cayley Transform:

The matrix Q ∞i j , defined as,

Q ∞i j = λ j H ∞i j -λ i H ∞ ji = λ 2 i λ 2 j K[ r ij ] × K -1 , (9) 
was introduced in [START_REF] Habed | A New Set of Quartic Trivariate Polynomial Equations for Stratified Camera Self-calibration under Zero-Skew and Constant Parameters Assumptions[END_REF] and [START_REF] Wu | Self-Calibration Under the Cayley Framework[END_REF] in the context of stratified autocalibration. This matrix, referred to as the Infinite Cayley Transform (ICT) in [START_REF] Wu | Self-Calibration Under the Cayley Framework[END_REF], is similar to the skew-symmetric

matrix [ r ij ] × = R i j -R i j .
As such, it carries interesting properties that allow the derivation of constraints on π ∞ that are complementary to the modulus constraint [START_REF] Chandraker | Globally Optimal Algorithms for Stratified Autocalibration[END_REF]. For instance, tr(Q * ∞i j ) > 0, [START_REF] Gurdjos | Is dual linear self-calibration artificially ambiguous?[END_REF] combined with the modulus constraint, are necessary and sufficient conditions for Q ∞i j to be similar to a skew-symmetric matrix [START_REF] Wu | Self-Calibration Under the Cayley Framework[END_REF]. Note that, using (3a) and ( 8), inequality ( 10) is a polynomial in π ∞ . Furthermore, in [START_REF] Habed | A New Set of Quartic Trivariate Polynomial Equations for Stratified Camera Self-calibration under Zero-Skew and Constant Parameters Assumptions[END_REF] the authors showed that for cameras with zero skew i.e. γ = 0, the coordinates (u, v) of the principal point can be expressed as follows,

u = (Q ∞i j ) 11 /(Q ∞i j ) 31 , v = (Q ∞i j ) 22 /(Q ∞i j ) 32 , (11) 
where (•) hk is the element in the hth row and kth column of a matrix. New polynomials in π ∞ , enforcing the constancy of (u, v) across images, were derived from image triplets in [START_REF] Habed | A New Set of Quartic Trivariate Polynomial Equations for Stratified Camera Self-calibration under Zero-Skew and Constant Parameters Assumptions[END_REF].

Polynomial optimization: Consider the, generally nonconvex, optimization problem,

min x f (x) s.t. g i (x) ≥ 0, i = 1, 2, . . . , , (12) 
where f (x) and all g i (x) are multivariate scalar polynomials in x, an m-vector. Lasserre, in [START_REF] Lasserre | Global Optimization with Polynomials and the Problem of Moments[END_REF], has shown that ( 12) can be solved through a hierarchy of convex LMI (Linear Matrix Inequality) relaxations of increasing order d = 1, 2, . . . , yielding monotonically nonincreasing lower bounds on the original problem and converging to its global minimum. At each order d, the problem is linearized and a surrogate Semidefinite Program (SDP) is solved.

Linearization is possible at a starting relaxation order d, in which no monomial in the problem is of a degree higher than 2d. Lasserre's method, implemented in GloptiPoly [START_REF] Henrion | GloptiPoly 3: Moments, Optimization and Semidefinite Programming[END_REF], has been used to solve several polynomial optimization problems in computer vision [START_REF] Bugarin | Rank-Constrained Fundamental Matrix Estimation by Polynomial Global Optimization Versus the Eight-Point Algorithm[END_REF][START_REF] Kahl | Globally Optimal Estimates for Geometric Reconstruction Problems[END_REF][START_REF] Magerand | Global Optimization of Object Pose and Motion from a Single Rolling Shutter Image with Automatic 2D-3D Matching[END_REF].

The interested reader may refer to [START_REF] Henrion | GloptiPoly 3: Moments, Optimization and Semidefinite Programming[END_REF][START_REF] Lasserre | Global Optimization with Polynomials and the Problem of Moments[END_REF] for more details on this method.

EIP-based polynomial constraint

We consider a camera with a Euclidean image plane, EIP (i.e. zero skew, γ = 0, and unit aspect ratio, f x / f y = 1) whose focal length and principal point coordinates are constant but unknown. We first show that the Infinite Cayley Transform (ICT) satisfies a yet unexploited property under these assumptions (Proposition 1). Using this property, we then derive a new quartic polynomial constraint on π ∞ (Proposition 2).

Definition 1. Given a 3 × 3 matrix B, we define the matrix operator Φ(•) as,

Φ(B) = (B * • B) 31 + (B * • B) 32 , (13) 
where • denotes the Hadamard (elementwise) product, i.e. (B • C) hk = (B) hk (C) hk for any two matrices B and C of the same dimensions.

Proposition 1. Consider two images i and j captured by a moving camera with EIP and constant intrinsic parameters. The ICT Q ∞i j of these images satisfies,

Φ(Q ∞i j ) = 0. ( 14 
)
Proof. The ICT Q ∞i j , as given by ( 9), is similar to a skew-symmetric matrix. As such, the matrix K -1 Q ∞i j K is skew-symmetric. Given a camera with EIP, the 2 × 2 matrix,

(Q ∞i j ) 11 -u(Q ∞i j ) 31 (Q ∞i j ) 12 -u(Q ∞i j ) 32 (Q ∞i j ) 21 -v(Q ∞i j ) 31 (Q ∞i j ) 22 -v(Q ∞i j ) 32 , (15) 
obtained by eliminating the 3rd row and 3rd column of

K -1 Q ∞i j K is also skew-symmetric.
Enforcing the diagonal entries of ( 15) to be zero leads to the expressions of u and v given in [START_REF] Habed | A New Set of Quartic Trivariate Polynomial Equations for Stratified Camera Self-calibration under Zero-Skew and Constant Parameters Assumptions[END_REF], as obtained in [START_REF] Habed | A New Set of Quartic Trivariate Polynomial Equations for Stratified Camera Self-calibration under Zero-Skew and Constant Parameters Assumptions[END_REF] for zero-skew cameras. Furthermore, the sum of the off-diagonal elements of (15) also being zero yields:

(Q ∞i j ) 12 + (Q ∞i j ) 21 -u(Q ∞i j ) 32 -v(Q ∞i j ) 31 = 0.
Substituting the expressions of u and v in [START_REF] Habed | A New Set of Quartic Trivariate Polynomial Equations for Stratified Camera Self-calibration under Zero-Skew and Constant Parameters Assumptions[END_REF] in this equation leads exactly to [START_REF] Henrion | GloptiPoly 3: Moments, Optimization and Semidefinite Programming[END_REF].

Expressing the ICT in terms of π ∞ using ( 9) and (3a), we observe that Φ(Q ∞i j ) expands as,

Φ(Q ∞i j ) = a i j (π ∞ )λ 3 j -b i j (π ∞ )λ i λ 2 j + b ji (π ∞ )λ 2 i λ j -a ji (π ∞ )λ 3 i , (16) 
where the coefficients a i j and b i j , for any combination of i and j, are cubic polynomials in π ∞ . Substituting for λ i and λ j using (8) leads to a polynomial of degree 6 at best. We show, however, that equation ( 14) can be used to derive a quartic polynomial in π ∞ . Although a i j , b i j are fully defined through expansion ( 16), it is interesting to note that

a i j (π ∞ ) = Φ(H ∞i j ) and a ji (π ∞ ) = Φ(H ∞ ji ).
As such, we show that the terms involving a i j (π ∞ ) and a ji (π ∞ ) can be eliminated from ( 16), so long as the modulus constraint is satisfied. To show this, we recall here some properties of the Hadamard product and adjoint matrices.

Property 1. Let B and C be two 3 × 3 matrices and λ a scalar. We have,

B • C = C • B, (17a) (λ B) • C = B • (λ C) = λ (B • C), (17b) (BC) * = C * B * , (18a) (B * ) * = det(B)B. ( 18b 
)
Using the adjoint matrix properties, one can deduce that,

H * ∞i j = λ 3 i H ∞ ji . (19) 
This is because, with property (18a),

H * ∞i j = (H ∞1 j H ∞i1 ) * = H * ∞i1 H * ∞1 j . In addition, using (2), H * ∞i j = (H * ∞1i ) * H ∞ j1
. Now, property (18b) leads to [START_REF] Lasserre | Global Optimization with Polynomials and the Problem of Moments[END_REF]. Note that the same procedure applies to obtain, H * ∞ ji = λ 3 j H ∞i j . We can deduce, using [START_REF] Lasserre | Global Optimization with Polynomials and the Problem of Moments[END_REF] and property (17b), that

H * ∞i j • H ∞i j = λ 3 i (H ∞ ji • H ∞i j ) and also that H * ∞ ji • H ∞ ji = λ 3 j (H ∞i j • H ∞ ji ). It must be clear now, with property (17a), that λ 3 j (H * ∞i j • H ∞i j ) = λ 3 i (H * ∞ ji • H ∞ ji )
and, as a consequence, λ 3 j a i j (π ∞ ) = λ 3 i a ji (π ∞ ). This constitutes the proof to our main proposition, which we state below. Proposition 2. Consider two images i and j captured by a moving camera with EIP and constant intrinsic parameters. The plane at infinity π ∞ satisfies the quartic polynomial equation,

p i j (π ∞ ) = -b i j (π ∞ )t ji (π ∞ ) + b ji (π ∞ )t i j (π ∞ ) = 0, ( 20 
)
for all i = j. The expressions b i j and b ji are cubic polynomials in π ∞ defined by the expansion in (16) while t i j and t ji are linear functions of π ∞ defined by [START_REF] Chandraker | Autocalibration via Rank-Constrained Estimation of the Absolute Quadric[END_REF].

We refer to the polynomial p i j as the EIP polynomial. It is obtained from ( 14) by substituting λ i and λ j in ( 16) using ( 8) and eliminating the a i j and a ji terms.

Stratified autocalibration

Our stratified method relies on polynomial optimization using Lasserre's hierarchy to estimate π ∞ . The modulus constraint m i j (6) and the EIP polynomial p i j [START_REF] Luong | Self-Calibration of a Moving Camera from Point Correspondences and Fundamental Matrices[END_REF] are used to define a suitable cost function. Since these two polynomials are obtained for each image pair, our method can be used with three or more images. Additional polynomial inequality constraints, such as those derived from the ICT (based on [START_REF] Gurdjos | Is dual linear self-calibration artificially ambiguous?[END_REF] and ( 11)) as well as Hartley's chirality inequalities [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF], can be easily incorporated in Lasserre's method. These constraints are especially useful when few images are used as multiple solutions may persist. The estimated π ∞ is refined using local optimization to fit a normalized cost. The camera intrisics are subsequently recovered by solving a linear system of equations. The steps of our algorithm are summarized at the end of this section. We first detail the inequality constraints on π ∞ , followed by a description of the polynomial and local optimization problems to obtain π ∞ .

ICT-based inequalities: Inequality (10), a necessary condition for the ICT Q ∞i j to be similar to a skew-symmetric matrix, can be expressed in terms of π ∞ . This can be done in different ways. For instance, denoting by the equality up to scale, one can consider (8) to obtain,

Q ∞i j Q ∞i j = tr(H ∞ ji )H ∞i j -tr(H ∞i j )H ∞ ji , (21) 
and the constraint q i j (π ∞ ) = tr( Q * ∞i j ) > 0. Note that the sign of the unknown scale in (21) does not affect the sign of q i j (π ∞ ) since it is squared in the adjoint matrix. One may also exploit [START_REF] Habed | A New Set of Quartic Trivariate Polynomial Equations for Stratified Camera Self-calibration under Zero-Skew and Constant Parameters Assumptions[END_REF] to restrict the principal point to lie within the image bounds. Assuming a 2u × 2v image and an image-centered frame, the principal point (u, v) is within the image bounds if

u i j (π ∞ ) = u 2 (Q ∞i j ) 2 31 -(Q ∞i j ) 2 11 ≥ 0 and v i j (π ∞ ) = v 2 (Q ∞i j ) 2 32 -(Q ∞i j ) 2 22 ≥ 0.
Chirality inequalities: Hartley's chirality inequalities [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF] can be used to preserve the convex hull of camera centers. They impose that all c i (π ∞ ), i = 1, 2, . . . , n, as defined in [START_REF] Cox | Using Algebraic Geometry[END_REF], carry the same sign, provided that all P i matrices are sign-corrected [START_REF] Hartley | Multiple View Geometry in Computer Vision[END_REF][START_REF] Nistér | Untwisting a Projective Reconstruction[END_REF]. Although the same can be done for scene points, these are generally considered to be less reliable [START_REF] Nistér | Untwisting a Projective Reconstruction[END_REF].

Polynomial optimization with Lasserre's hierarchy: A normalized cost function is preferred in uncalibrated vision problems to eliminate the effect of projective scale factors. This usually leads to a cost in the form of a sum of rational functions. This problem is difficult to solve globally and optimally [START_REF] Bugarin | Minimizing the sum of many rational functions[END_REF] and is not handled well by Lasserre's method. To reduce the effect of the scaling with an unnormalized cost, we propose to use homogenized polynomials [START_REF] Cox | Using Algebraic Geometry[END_REF]. Doing so allows us to include an additional constraint to impose some global scaling. Though this is not equivalent to the normalized case, it works well in practice. The homogeneous counterpart of a polynomial f of degree d in π , denoted h f , is defined by introducing an additional variable π 4 such that h f (π, π 4 ) = π d 4 f (π/π 4 ). Note that the degree of h f remains the same as that of f . We solve the following problem to estimate π ∞ , min π, π 4 n-1

∑ i = 1 n ∑ j = i+1 h m 2 i j (π, π 4 ) + h p 2 i j (π, π 4 ) (22a) s.t. h c i (π, π 4 ) > 0, i = 1, . . . , n, (22b) h q i j (π, π 4 ) > 0, i = 1, . . . , n -1, j = i + 1, . . . , n, (22c) h u i j (π, π 4 ) ≥ 0, h v i j (π, π 4 ) ≥ 0, i = 1, . . . , n -1, j = i + 1, . . . , n, (22d) h c 1 (π, π 4 ) h c n (π, π 4 ) + 1 n -1 n-1 ∑ i = 1 h c i (π, π 4 ) h c i+1 (π, π 4 ) = 1, (22e) 
where (22e) is the global scaling constraint that we have found most appropriate. We have observed that this constraint improves the numerical stability and leads more often to a certified optimal solution with the minimal relaxation order of 4. We suggest using the pairwise constraints (22c)-(22d) only between consecutive views so that their number grows linearly and not quadratically with increasing views. For short sequences, constraints between all image pairs can be included. With long sequences, all but (22e) are optional and can be dropped. Even if the EIP assumption is not exactly satisfied in practice, problem [START_REF] Magerand | Global Optimization of Object Pose and Motion from a Single Rolling Shutter Image with Automatic 2D-3D Matching[END_REF] is still suitable since the EIP polynomial is minimized in the cost (22a), allowing for residual errors.

Refinement: We locally refine the π ∞ estimated from ( 22) using the normalized cost,

min π n-1 ∑ i = 1 n ∑ j = i+1 m 2 i j (π) + p 2 i j (π) (c i (π) c j (π)) 4 . ( 23 
)
Though the constraint (22e) scales the polynomials suitably, it is recommended, particularly with high levels of noise, to refine the solution to fit a normalized cost.

Algorithm: Given a projective reconstruction, our autocalibration algorithm proceeds as follows: (i) estimate π ∞ by solving problem ( 22), (ii) refine the estimated π ∞ using [START_REF] Mosek Aps | Manual of the MOSEK optimization toolbox for MATLAB[END_REF], and (iii) solve a system of linear equations for the Dual Image of the Absolute Conic (DIAC) and extract the intrinsic parameters matrix K through Cholesky factorization (see [13, p. 479]).

Experimental results

We tested our autocalibration method using both synthetic data and real images. We computed the 3D RMS error and the following calibration error metrics to assess our results,

∆ f = ( f x -f x ) 2 + ( f y -f y ) 2 f x 2 + f y 2 , ∆uv = (u -u) 2 + (v -v) 2 u 2 + v 2 , ∆γ = |γ -γ|,
where ( f x , f y ), ( u, v), and γ are the estimated focal lengths, principal point, and skew, respectively. The 3D RMS error was computed after aligning the estimated metric point cloud to the ground truth Euclidean point cloud by a best-fit similarity transformation in the least-squares sense. Our algorithm was implemented in MATLAB R2018b. We used GloptiPoly [START_REF] Henrion | GloptiPoly 3: Moments, Optimization and Semidefinite Programming[END_REF] for problem [START_REF] Magerand | Global Optimization of Object Pose and Motion from a Single Rolling Shutter Image with Automatic 2D-3D Matching[END_REF] and set a relaxation order of d = 4 in all the experiments. We used MOSEK [START_REF] Mosek Aps | Manual of the MOSEK optimization toolbox for MATLAB[END_REF] as the SDP solver and set MSK_DPAR_INTPNT_CO_TOL_{P|D}FEAS = 10 -20 . All the experiments were conducted on an i7 3.10 GHz 32 GB RAM computer. We denote our algorithm by EIP*, and the same algorithm without the EIP polynomial, which then relies only on the modulus constraint in (22a) and [START_REF] Mosek Aps | Manual of the MOSEK optimization toolbox for MATLAB[END_REF], by MODULUS*. In addition, the two approaches EIP* and MODULUS* excluding the inequality constraints in problem [START_REF] Magerand | Global Optimization of Object Pose and Motion from a Single Rolling Shutter Image with Automatic 2D-3D Matching[END_REF] are denoted by EIP and MODULUS, respectively. In these experiments, we used the inequalities in problem [START_REF] Magerand | Global Optimization of Object Pose and Motion from a Single Rolling Shutter Image with Automatic 2D-3D Matching[END_REF] only between consecutive views. Furthermore, we estimated all five intrinsic parameters in step (iii) of our algorithm. This ensured a fair comparison with the selected existing methods, all of which solve for five intrinsic parameters.

Synthetic data experiments

Each synthetic scene consisted of 200 points sampled randomly from the surface of the unit sphere. The cameras were positioned at a distance of 3.5-4 units from the sphere center, and oriented such that their optical axes passed close to the sphere center. All cameras were simulated to have an EIP with focal length f x = f y = 800, and an image-centered principal point, (u, v) = (256, 256), in pixels. Noise, modeled as a zero-mean Gaussian distribution with standard deviation in the range [0, 2] pixels, was added to the pixel coordinates in increments of 0.5 pixels. Projective reconstructions were obtained using [START_REF] Oliensis | Iterative Extensions of the Sturm/Triggs Algorithm: Convergence and Nonconvergence[END_REF] implemented in [START_REF] Rabaud | Vincent's Structure from Motion Toolbox[END_REF]. We report the statistics collected over 100 generated scenes.

Benefits of EIP polynomial:

We assessed the contribution of the EIP polynomial (20) in our algorithm's performance by comparing the reliability of EIP(*) in obtaining a metric reconstruction with that of MODULUS(*). We focused on short sequences and considered a 3D error above 0.25 as a failed metric upgrade. Figure 1 shows the success rate using 3 and 4 views for varying noise levels. With 3 views, MODULUS failed most of the time (result not shown) as multiple solutions exist using the modulus constraint alone. A higher success rate was obtained using MODULUS* due to the inequality constraints, but it declined considerably with increasing noise. On the other hand, EIP led to a reliable metric upgrade even with high noise levels, and the inequalities in EIP* further improved the success rate. With 4 views, there are sufficient polynomials from the modulus constraint to obtain a unique solution. Even so, the success rate of EIP was significantly higher than that of MODULUS. With additional views, all the approaches performed reliably. For the successful trials, the estimated plane at infinity and consequently the 3D errors were similar using all the approaches. These results show that the EIP polynomial is especially useful for short sequences.

Effect of refinement: We analyzed the impact of the refinement step (step (ii)) in our algorithm. Figure 2 shows the 3D error distribution using EIP and EIP* with and without refinement for 4 views. The errors decreased overall after refinement, particularly for high levels of noise. Moreover, a few reconstructions that failed in the metric upgrade without refinement were recovered after refinement. We clipped errors above the 0.25 threshold to the axis limit in Figure 2. The observations were similar when varying the number of views. Thus, refinement using a normalized cost improves the accuracy of our algorithm.

Comparisons with the state of the art: We compared EIP and EIP* with two stratified methods, GO-Stratified [START_REF] Chandraker | Globally Optimal Algorithms for Stratified Autocalibration[END_REF] and QUARCH*M [START_REF] Adlakha | QUARCH: A New Quasi-Affine Reconstruction Stratum From Vague Relative Camera Orientation Knowledge[END_REF], and a DAQ-based method, GO-DAQ [START_REF] Chandraker | Autocalibration via Rank-Constrained Estimation of the Absolute Quadric[END_REF].

For GO-Stratified, we computed solutions for both signs of chirality and retained the one with lower calibration error (the authors' implementation was used). For GO-DAQ, we set a relaxation order of d = 2. The rotation angle assumption of QUARCH*M is satisfied in our simulations. Figure 3 shows the success rate (top row) of the tested methods. With three views, the success rate of GO-DAQ was lower than that of EIP* and it dropped below that of EIP with increasing noise. Although GO-DAQ uses additional priors on the principal point location, the results are inferior because our simulated cameras are close to an artificial degenerate configuration for the DAQ estimation (when all optical axes intersect in one point) [START_REF] Gurdjos | Is dual linear self-calibration artificially ambiguous?[END_REF]. GO-DAQ then fails when its rank-3 constraint is not well enforced due to numerical scaling issues, as has also been reported in [START_REF] Adlakha | QUARCH: A New Quasi-Affine Reconstruction Stratum From Vague Relative Camera Orientation Knowledge[END_REF]. With four views, EIP and EIP* outperformed GO-Stratified and QUARCH*M as well due to the additional EIP constraint. With more views, all the methods succeeded most of the time. The 3D and focal length error distributions as well as the runtime results are shown in Figure 3 (bottom row). GO-Stratified obtained relatively higher 3D and calibration errors and was also two orders of magnitude slower (not shown) than the other methods. For our algorithm, we report the computation time excluding the problem modeling overhead in GloptiPoly. The time complexity of EIP is constant with respect to the number of images as it does not use the pairwise inequalities. From 4 views onward, EIP can thus be used instead of EIP* for a speedup.

Real image experiments

We used four sequences, fountain-P11, Herz-Jesu-P8, Herz-Jesu-P25 [START_REF] Strecha | On Benchmarking Camera Calibration and Multi-View Stereo for High Resolution Imagery[END_REF], and City hall Leuven [START_REF] Strecha | Dense Matching of Multiple Wide-baseline Views[END_REF], with known ground truth calibration, to quantitatively compare our algorithm with existing methods. We also qualitatively assessed the metric reconstructions obtained with our algorithm using different sequences (see supplementary material). The projective reconstructions were obtained using P2SfM [START_REF] Magerand | Revisiting Projective Structure from Motion: A Robust and Efficient Incremental Solution[END_REF] and feature matches using COLMAP [START_REF] Schönberger | Structure-from-Motion Revisited[END_REF].

Quantitative assessment: Table 1 reports the calibration errors from EIP, MODULUS, and state-of-the-art methods on three tested sequences. With fountain-P11, MODULUS led to large calibration errors and thus it failed to obtain a metric upgrade. While MODULUS* provided a calibration similar to that from EIP, it required 10 times the computation time. MOD-ULUS and EIP otherwise yielded the same calibration as MODULUS* and EIP*, respectively. With Herz-Jesu-P8, GO-Stratified failed to obtain a metric upgrade. Moreover, while the results improved with the longer Herz-Jesu-P25 sequence (not shown) for all the methods, GO-Stratified still led to an erroneous calibration. This is due to the method relying on scene points that prove unreliable with noise and outliers. With City hall Leuven, the reference calibration parameters do not fit the assumptions of GO-DAQ as closely as those of the previous sequences. The principal point is farther from the image center and the skew is not null. As a result, the errors are larger using GO-DAQ. In contrast, EIP provided an accurate calibration for all the sequences and required only half a second of computation time. The errors from MODULUS and QUARCH*M are similar as they rely on the same cost.

Quantitative assessment using three views: To test the minimal case of three views, we sampled image triplets sequentially from the Herz-Jesu-P25 sequence, discarding those with insufficient feature matches, leaving a set of 20 triplets. Figure 4 shows the results from EIP(*), MODULUS(*), and GO-DAQ on this set. We considered a focal length error above 25% as a failure in this experiment. From our tests, the quality of the metric reconstruction was mostly influenced by the estimated focal length, and errors above this threshold corresponded to distorted reconstructions. The results in Figure 4 are consistent with those on the synthetic data as MODULUS failed most of the time and EIP performed reliably. Both EIP* and GO-DAQ succeeded with all the triplets. GO-DAQ also consistently provided an accurate calibration as its assumptions on the calibration parameters are closely satisfied in this sequence. The skew parameter was also accurately estimated by all the methods (not shown), resulting in less than 1 • deviation from a rectangular image plane on average.

Conclusion

We presented a stratified autocalibration method for a moving camera with a Euclidean image plane and constant intrinsic parameters. Our method relies on a new quartic polynomial in the plane at infinity that is obtained for each image pair with these assumptions. For three or more images, estimating the plane at infinity is formulated as a constrained polynomial optimization problem that is solved using Lasserre's hierarchy of semidefinite relaxations. Experiments with synthetic data and real images showed that our method performs more reliably than existing ones, especially for short sequences.
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 1 Figure 1: Benefits of EIP polynomial. Success rate of EIP and EIP* compared with MODULUS and MODULUS* using 3 views (left) and 4 views (right).

Figure 2 :

 2 Figure 2: Effect of refinement. 3D errors with and without refinement using 4 views.

Figure 3 :

 3 Figure3: Comparisons with the state of the art. Top: success rate using 3 views (left) and 4 views (middle) with varying noise levels, and using 3-6 views with 1 pixel noise level (right). Bottom: distribution of 3D error (left) and focal length error (middle), and runtime results (right) using 3-6 views with 1 pixel noise level.

Figure 4 :

 4 Figure 4: Quantitative assessment using 3 views. Success rate (top), and error distribution (bottom) over 20 triplets sampled from Herz-Jesu-P25.

Table 1 :

 1 Quantitative assessment. Autocalibration results on the real image sequences from[START_REF] Strecha | Dense Matching of Multiple Wide-baseline Views[END_REF][START_REF] Strecha | On Benchmarking Camera Calibration and Multi-View Stereo for High Resolution Imagery[END_REF].

	Sequence	Method	∆ f (%) ∆uv(%)	∆γ	Time (s)
	fountain-P11	MODULUS	62.90	66.39	2172.12	0.91
		EIP	0.08	0.25	1.06	0.59
		GO-Stratified	0.10	0.19	1.08	302.90
		QUARCH*M	0.05	0.23	1.05	2.44
		GO-DAQ	0.36	1.26	0.01	1.49
	Herz-Jesu-P8	MODULUS	0.89	3.12	2.16	0.82
		EIP	0.55	2.84	3.98	0.57
		GO-Stratified	43.86	31.13	157.31	243.18
		QUARCH*M	0.88	3.11	2.03	1.26
		GO-DAQ	1.43	1.27	0.05	1.53
	City hall Leuven MODULUS	2.96	6.73	5.90	0.62
		EIP	0.78	0.72	2.80	0.56
		GO-Stratified	7.09	10.10	25.85	169.21
		QUARCH*M	2.94	6.70	5.81	1.02
		GO-DAQ	9.93	7.68	9.70	1.38
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