Supporting information for

Environmental significance of kaolinite variability over the last centuries in crater lake sediments from Central Mexico

Nathalie Fagel¹, Isabel Israde-Alcantara², Reza Safaierad¹, Marttiina Rantala¹, Sabine Schmidt³, Gilles Lepoint⁴, Pierre Pellenard⁵, Nadine Mattielli⁶ and Sarah Metcalfe⁷

- 1. AGEs, Department of Geology, Université de Liège, Belgium, nathalie.fagel@uliege.be.
- 2. Instituto de Investigaciones en Ciencias de la Tierra, Universidad Michoacana de San Nicolás de Hidalgo. Morelia, Michoacán, México
- 3. Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, F-33600 Pessac, France
- 4. LETIS, Université de Liège, Belgium
- 5. Biogéosciences UMR 6282 CNRS/ub/EPHE, University of Burgundy, Dijon, France
- 6.G-Time, Université Libre de Bruxelles, Belgium
- 7. School of Geography, University of Nottingham, Nottingham NG7 2RD, United Kingdom

Figure S1. Comparison of XRD spectra measured on bulk sediment powders of core LTa19-3 with identification of the main minerals. The reflection at 4.45Å corresponds to the common reflection of clay minerals, represented here by kaolinite.

Blue line: initial XRD pattern, red line: reconstructed pattern, lower curve: kaolinite contribution

Figure S2. Example of Topas-derived reconstructed profile (red curve) with the raw XRD profile (blue curve) for the sample LTa19-3 15-16 cm. The quantification of the different identified mineral phases is given on the right side of the figure.

Figure S3. SEM images of kaolinite particles from sample LLEs19-2 45-46 cm (photo 1 and 2) with EDX composition of particle A located in photo 2; SEM image (photo 3) from sample LTa19-3 51-52 cm and EDX composition of crystal B located in photo 3B. The EDX composition of areas A and B are given as atomic %. The composition of A corresponds to a kaolinitic particle whereas the composition of B is consistent with diaspore. The SEM-EDX observations have been made at the University of Bourgogne (Dijon, France).

(a). LLEs19-2

(b). LTa19-3

(c). LTe19-4

Figure S4. PC1-PC2 biplot diagram established from the X-ray fluorescence (XRF) core scanner and correlation coefficient matrix of XRF core scanner data (14 elements) for the three lacustrine cores LLEs19-2 (a), LTa19-3 (b) and LTe19-4 (c). The lower scale gives the strength of the correlation (negative in red, positive in blue). Only significant correlations (p value < 0.01) are displayed in the matrix.

Figure S5. ²¹⁰Pbxs profiles in the upper part of cores LLEs19-2 (0-17 cm), LTa19-3 (0-61 cm) and LTe19-4 (0-23 cm). The dark symbols show the levels used to estimate sediment accumulation rate (SAR).

Figure S6. Comparison between reconstructed XRD pattern (red curve) and raw pattern (blue curve) for soil sample STe22-3 from Lake Teremendo (19°48'22.8"N, 101°27'4.9"W). Reconstructed contribution (brown curve) and unit cell parameters reported for kaolinite (a) and hydrohalloysite (b). The calculated abundance of the mineral phases is given on the left side of the XRD spectra.

Core LLEs19-2													
Comple	Mid-	clay %	silt %	sand % >	fine %	silt 2	2-63 µı	n %	sand > 63 µm %				
Sample	(cm)	< 2 µm	2-63 µm	63 µm	≤10 µm	2- 10	10- 30	30- 63	63- 125	125- 250	250- 500	500- 1000	
2-3	2.75	1.41	69.0	29.5	14.3	12.9	26.8	29.3	18.5	8.21	0.95	0.0	
7.5-8	7.75	2.09	72.8	25.1	19.5	17.5	29.5	25.9	15.1	8.05	1.70	0.0	
10-11	10.5	2.71	76.0	21.3	19.6	16.9	33.6	25.4	14.9	5.54	0.81	0.0	
14-15	14.5	4.32	66.8	28.8	20.9	16.6	25.5	24.7	18.9	9.26	0.64	0.0	
17-17.5	17.25	2.39	78.3	19.3	19.1	16.7	39.2	22.4	12.6	4.06	2.20	0.40	
18-19	18.5	1.78	71.6	26.7	14.5	12.8	34.3	24.5	12.4	9.52	4.76	0.0	
21-22	21.5	1.30	79.0	19.7	14.6	13.3	39.7	25.9	14.3	4.92	0.53	0.0	
23-24	23.5	1.42	82.4	16.2	17.8	16.3	40.6	25.4	12.2	3.82	0.19	0.0	
29-30	29.5	1.69	86.6	11.7	21.6	19.9	44.2	22.5	8.28	2.83	0.57	0.0	
34-35	34.5	3.98	71.9	24.1	23.7	19.6	30.8	21.4	15.9	7.28	0.88	0.0	
36-37	36.5	3.32	79.8	16.9	24.6	21.2	36.9	21.5	12.0	4.04	0.77	0.0	
40-41	40.5	3.22	79.9	16.9	26.1	22.9	38.3	18.7	11.4	4.26	1.22	0.0	
45-46	45.5	2.93	79.3	17.8	23.5	20.6	37.7	20.9	12.7	3.96	1.07	0.04	
48-49	48.5	2.83	81.4	15.7	23.9	21.1	39.8	20.5	11.6	3.48	0.60	0.0	
52-52.5	52.25	2.60	79.8	17.5	21.7	19.1	39.6	21.0	11.7	5.06	0.77	0.0	
mean		2.61	77.5	19.8	20.8	18.2	36.4	22.9	13.1	5.43	1.19	0.03	
std		0.91	5.18	4.80	3.53	2.98	5.07	2.35	2.54	2.19	1.15	0.12	
min		1.30	66.8	11.7	14.5	12.8	25.5	18.7	8.28	2.83	0.19	0.0	
max		4.32	86.6	29.5	26.1	22.9	44.2	25.9	18.9	9.52	4.76	0.43	

Table S1a. Grain-size distribution of samples from core LLEs19-2.

				C	ore LT	a19-3	3					
	Mid-	clay	silt	sand	fine				c	and >	63 um '	%
Sample	depth	%	%	% >	%	silt 2	2-63 µi	m %	3		oo µm	/0
Campio	(cm)	< 2	2-63	63	≤10	2-	10-	30-	63-	125-	250-	500-
<u> </u>	0.5	μm	μm	μm	μm	10	30	63	125	250	500	1000
0-1	0.5	4.20	83.2	16.8	28.0	23.8	34.0	205	11.8	2.75	1.60	0.68
4-5	4.5	5.34	78.6	21.4	28.1	22.1	32.8	17.7	10.9	8.52	2.00	0.0
9-10	9.5	6.11	90.3	9.74	36.2	30.1	35.8	18.3	1.23	1.27	1.06	0.18
13-14	13.5	3.88	79.7 77 F	20.3	24.2	20.3	33.4	22.1	12.0	4.47	3.12	0.71
17-18	17.5	4.25	77.5	22.5	27.3	23.0	32.5	17.8	9.69	5.49	5.73	1.55
22-23	22.5	4.34	76.3	23.7	25.5	21.1	31.7	19.1	10.4	4.28	6.27	2.75
26-27	26.5	5.76	76.3	23.7	32.3	26.5	27.9	16.1	10.2	6.57	4.99	1.94
30-31	30.5	5.31	81.2	18.8	29.3	24.0	32.1	19.8	8.87	3.75	4.69	1.48
35-36	35.5	5.88	80.7	19.3	34.5	28.6	29.5	16.7	11.7	6.05	1.30	0.22
39-40	39.5	14.8	92.8	1.17	57.9	43.2	26.3	8.54	3.23	1.32	2.05	0.57
43-44	43.5	10.3	78.6	21.3	45.5	35.2	23.9	9.20	5.28	1.62	10.2	4.28
47-48	47.5	10.3	90.0	9.96	48.7	38.4	28.8	12.5	4.68	0.80	3.03	1.45
51-52	51.5	12.8	98.4	1.63	58.1	45.2	31.2	9.11	1.64	0.0	0.0	0.0
55-56	55.5	4.00	70.5	29.5	24.4	20.4	26.6	19.5	15.4	9.53	4.07	0.52
59-60	59.5	4.04	66.3	33.7	22.2	18.2	25.3	18.8	15.2	9.58	6.96	1.97
63-64	63.5	3.85	74.2	25.8	26.6	22.8	28.9	18.6	13.5	6.52	4.07	1.72
67-68	67.5	3.00	80.0	20.1	23.5	20.5	33.2	23.3	13.3	4.03	2.20	0.49
71-72	71.5	2.20	75.1	24.9	19.3	17.1	31.4	24.4	15.0	5.85	3.31	0.63
75-76	75.5	2.65	77.5	22.5	21.9	19.3	32.0	23.6	14.7	5.32	2.09	0.41
79-80	79.5	2.84	81.3	18.7	24.5	21.7	33.2	23.5	13.2	3.61	1.46	0.44
84-85	84.5	3.75	78.8	21.2	24.7	21.0	32.2	21.9	13.3	4.55	2.4	0.92
88-89	88.5	2.56	77.6	22.4	25.2	22.6	32.4	20.1	13.4	5.07	2.77	1.13
mean		5.55	80.2	19.8	31.3	25.7	30.7	18.2	10.7	4.59	3.43	1.09
std		3.48	7.40	7.40	11.5	8.12	3.07	4.78	4.09	2.70	2.35	1.04
min	_	2.20	66.3	1.64	19.3	17.1	23.9	8.54	1.64	0.0	0.0	0.0
max		14.8	98.4	33.7	58.1	45.2	35.8	24.4	15.4	9.58	10.2	4.28

Table S1b. Grain-size distribution of samples from core LTa19-3.

Core LTe19-4													
Comple	Mid-	clay %	silt %	sand % >	fine %	silt 2	2-63 µı	n %	s	and > (63 µm '	%	
Sample	(cm)	< 2 µm	2-63 µm	63 µm	≤10 µm	2- 10	10- 30	30- 63	63- 125	125- 250	250- 500	500- 1000	
0-1	0.5	1.53	70.9	27.5	9.30	7.80	37.3	25.9	19.7	5.06	2.05	0.65	
5-6	5.5	2.50	74.2	23.2	13.0	10.5	35.3	28.4	19.4	3.80	0.0	0.0	
10-11	10.5	2.98	74.3	22.8	16.7	13.7	36.4	24.2	16.7	3.64	1.71	0.57	
15-16	15.5	2.46	71.2	26.4	13.0	10.5	31.2	29.4	19.1	4.97	1.76	0.58	
20-21	20.5	2.59	75.2	22.2	14.0	11.4	34.4	29.4	17.0	3.63	1.19	0.41	
24-25	24.5	4.03	80.5	15.5	20.8	16.8	41.3	22.4	13.5	1.99	0.0	0.0	
35-36	35.5	3.54	79.7	16.7	17.9	14.4	39.9	25.4	14.4	2.38	0.0	0.0	
40-41	40.5	4.41	80.6	15.0	23.0	18.6	42.6	19.3	13.0	2.01	0.0	0.0	
45-46	45.5	5.30	81.0	13.7	27.6	22.3	41.3	17.4	11.6	2.06	0.0	0.0	
50-51	50.5	3.74	76.8	19.4	17.4	13.6	35.2	27.9	17.4	2.04	0.0	0.0	
55-56	55.5	4.14	80.3	15.5	20.8	16.7	37.5	26.1	14.1	1.40	0.0	0.0	
61-62	61.5	4.39	81.6	14.0	22.6	18.2	38.5	24.9	12.5	1.50	0.0	0.0	
65-66	65.5	4.13	71.5	24.4	19.1	15.0	31.8	24.7	16.5	3.48	3.05	1.30	
70-71	70.5	2.74	60.1	37.1	13.7	11.0	28.4	20.7	14.9	1.90	1.00	4.12	
75-76	75.5	3.54	79.7	16.8	18.9	15.4	42.0	22.3	14.6	2.18	0.0	0.0	
80-81	80.5	3.32	75.0	21.7	18.1	14.8	36.2	24.0	13.8	2.95	3.72	1.16	
85-86	85.5	3.30	74.4	22.2	16.5	13.2	36.2	25.0	15.4	3.52	2.78	0.48	
90-91	90.5	3.44	68.3	27.9	17.7	14.2	32.0	22.3	15.1	7.27	4.74	0.84	
94-95	94.5	3.98	74.4	21.6	19.4	15.5	36.7	22.2	14.9	3.98	2.13	0.55	
100-101	100.5	1.33	54.1	44.6	8.14	6.80	24.6	22.7	20.7	11.5	8.82	3.50	
104-105	104.5	2.79	65.4	31.8	12.6	9.78	34.2	21.5	20.2	5.53	4.50	1.59	
109-110	109.5	4.96	72.8	22.2	21.7	16.7	34.0	21.1	15.5	4.23	1.91	0.62	
mean		3.42	73.8	22.8	17.4	13.9	35.8	24.0	15.9	3.68	1.79	0.74	
std		1.00	6.98	7.68	4.65	3.69	4.44	3.16	2.60	2.28	2.20	1.10	
min		1.33	54.1	13.7	8.14	6.80	24.6	17.4	11.6	1.40	0.0	0.0	
max		5.29	81.6	44.6	27.6	22.3	42.7	29.4	20.8	11.5	8.82	4.12	

Table S1c. Grain-size distribution of samples from core LTe19-4.

				Co	ore LL	.Es19-	2				
Depth (cm)	Andesite	Kaolinite	Diopside	Hornblende	Forsterite	Quartz	Cristobalite	Calcite	Aragonite	Dolomite	Talc
3-4	39	36	6.9		2.7	2.0	1.2	6.8	4.7	0	0.3
7.5-8	39	38	9.6		2.5	1.1	3.0	3.1	4.4	0	0
14-15	59	22	12		5.6	1.6	0.5	0	0	0	1.0
18-19	27	43	3.9			1.6	3.7	15	5.4	0	0
23-24	26	45	4.4	1.0		1.1	4.1	12	5.4	2.1	0
35-36	54	27	7.4			1.0	0.6	5.1	5.1	0	0
35-40	55	30	7.1			1.2	0.6	3.1	0.0	0	0
40-41	55	21	5.5	1.9		3.3	2.1	5.4	6.0	0	0
45-46	35	27	7.3			1.6	9.9	9.0	8.9	0	0
50-51	39	36	5.9			1.6	3.5	5.9	6.6	1.8	0
mean	43	33	7.0	1.4	3.6	1.6	2.9	6.6	4.6	0.4	0.1
std	12	8.3	2.3	0.6	1.8	0.7	2.8	4.5	2.8	0.8	0.3
min	26	21	3.9	1.0	2.5	1.0	0.5	0	0	0	0
max	59	45	12	1.9	5.6	3.3	9.9	15	8.9	2.1	1.0

Table S2a. Mineralogical data for core LLEs19-2 derived from X-ray diffraction (XRD) on bulk sediment powder. In the table, each mineral is represented by its relative ponderal abundance (in %) using Eva ® Bruker software.

Table S2b. Mineralogical data for core LTa19-3 derived from X-ray diffraction (XRD) on bulk sediment powder. In the table, each mineral is represented by its relative ponderal abundance (in %) using Eva ® Bruker software. The reported results correspond to an average of 5 analyses made on a 1 cm-thick slice of sediments.

				С	ore L	Га19-3	3				
Depth (cm)	Andesite	Kaolinite	Diaspore	Diopside	Hornblende	Forsterite	Quartz	Cristobalite	Hematite	Magnetite	Talc
0-5 5-10 10-15 15-20 20-24 25-30 30-35 35-40 40-45 46-51 51-55 55-60 60-65 66-71 71-75 75-80 81-85 85-90 90-92	29 29 30 31 29 21 22 21 24 21 24 27 19 22 27 26 24 10 16	48 54 51 51 64 65 67 64 63 63 48 57 54 48 49 53 74 70	$\begin{array}{c} 1.6\\ 1.6\\ 1.8\\ 1.9\\ 1.5\\ 0.92\\ 1.5\\ 1.6\\ 1.5\\ 1.4\\ 1.3\\ 1.3\\ 4.9\\ 5.7\\ 4.2\\ 5.5\\ 4.2\\ 5.5\\ 4.2\\ 6.3\\ 3.3\end{array}$	0.58 0.56 0.57 0.62 0.54 0.35 0.28 0.37 0.43 0.30 0.43 0.30 0.43 0.30 0.13 0.30 0.42 0.34 0.34 0.31 0.30	0.91 0.46 0.39 0.64 1.7 0.81 2.03 1.5 2.70 0.45 0.00 1.5 1.6 1.4 2.3 2.3	1.60	1.9 1.5 1.6 1.4 1.7 1.2 1.7 1.2 1.7 1.2 1.7 1.4 2.0 2.4 2.5 1.8 2.1 1.4 1.2 0.36 0.88	13 9.8 11 13 8.1 6.7 6.0 6.6 6.9 6.5 16 12 13 13 13 13 14 5.2 6 2	2.9 2.5 3.1 2.9 3.1 2.2 1.7 2.0 1.8 1.9 1.6 2.6 3.7 2.8 2.7 2.5 2.5 1.0 1.4	1.9 1.3 1.4 2.1 1.9 2.1 1.2 1.6 0.92 0.62 0.42	0.7
90-92	16	70	<u>3.3</u>	0.15	2.3		0.88	0.2	1.4	4 4	
mean	24 5	OQ V O	∠./ 1 Q	0.30	1.3		1.0	10	2.4 0.62	1.4	
Siu	5 10	0.4 10		0.17	0.79	1 60	0.26	ა.ა ნე	1.00	0.57	0.66
max	10 31	40 74	0.92	0.03	27	1.60	25	ວ.∠ 16	1.0	0.4Z 2 1	0.00

				С	ore L	Ге19-4	ŀ				
Depth (cm)	Andesite	Kaolinite	Diopside	Hornblende	Forsterite	Quartz	Cristobalite	Hematite	Calcite	Dolomite	Pyrite
$\begin{array}{c} 0-1\\ 10-11\\ 15-16\\ 20-21\\ 24-25\\ 30-31\\ 35-36\\ 40-41\\ 45-46\\ 50-51\\ 54-55\\ 61-62\\ 65-66\\ 70-71\\ 75-76\\ 80-81\\ 85-86\\ 90-91\\ 94-95\\ 100-101\\ 104-105\\ 109-110\\ \end{array}$	39 35 43 40 40 37 39 37 40 43 36 35 35 35 36 35 37 36 28 42 46	$51 \\ 48 \\ 41 \\ 46 \\ 51 \\ 52 \\ 53 \\ 54 \\ 50 \\ 41 \\ 52 \\ 59 \\ 57 \\ 59 \\ 55 \\ 58 \\ 65 \\ 48 \\ 46 \\ 52 \\ 58 \\ 55 \\ 55 \\$	6.8 7.4	0.3	6.3	2.4 3.3 3.0 3.5 2.3 3.4 2.7 3.1 3.4 3.7 3.9 2.6 3.0 2.5 1.9 1.7 1.9 3.0 2.1 1.1 3.0 2.1	1.3 2.1	1.6 1.6 1.0 1.7 1.4 1.5 1.6 1.7 1.8 0.9 1.1 0.9 1.1 0.9 1.2 1.7	4.5 6.1 7.2 9.4 5.5 4.2 4.0 2.5 3.1 2.4 5.4 2.4 3.0 3.0 2.8 2.4 2.2 2.3 2.3 2.3 2.0 1.8	2.6 2.5 2.6 2.4 2.3 2.4 2.2 2.2 2.5 2.3 2.3 2.4 2.4 2.6 2.4	1.3 0.6
mean std	38 3.7	52 5.9	7.1 0.5		6.0 0.4	2.7 0.7	1.7 0.5	1.4 0.3	3.7 2.0	2.4 0.2	
min	28	41	6.8	0.3	5.7	1.1	1.3	0.90	1.8	2.2	
max	46	65	7.4	0.3	6.3	3.9	2.1	1.8	9.4	2.6	

Table S2c. Mineralogical data for core LTe19-4 derived from X-ray diffraction (XRD) on bulk sediment powder. In the table, each mineral is represented by its relative ponderal abundance (in %) using Eva ® Bruker software.

Text S1. Cif files obtained for kaolinite (a) and hydrohalloysite (b) after Rietveld refinement on a surface soil sample of the crater lake Teremendo, STe22-3 (19°48'22.8"N, 101°27'4.9"W).

(a) Kaolinite

```
data
chemical name mineral ?Kaolinite (BISH)?
_cell_length a 5.177345
cell length b 8.898218
cell length c 7.543632
cell angle alpha 92.80272
cell angle beta 103.8179
_cell_angle_gamma 89.55465
cell volume 337.0647
 symmetry space group name H-M C1
loop
symmetry equiv pos as xyz
      'x, y, z'
      'x+1/2, y+1/2, z'
loop
atom site label
atom site type symbol
atom site symmetry multiplicity
atom site fract x
atom site fract y
_atom_site fract z
atom site occupancy
atom site B iso or equiv
s1 SI+4 2 0.9942 0.3393 0.0909 1 0.44
s2 SI+4 2 0.5064 0.1665 0.0913 1 0.44
s3 AL+3 2 0.2971 0.4957 0.4721 1 0.83
s4 AL+3 2 0.7926 0.33 0.4699 1 0.83
s5 O-2 2 0.0501 0.3539 0.317 1 0.71
s6 O-2 2 0.1214 0.6604 0.3175 1 0.71
s7 O-2 2 0 0.5 0 1 0.71
s8 O-2 2 0.2085 0.2305 0.0247 1 0.71
s9 O-2 2 0.2012 0.7657 0.0032 1 0.71
s10 O-2 2 0.051 0.9698 0.322 1 0.9
s11 O-2 2 0.9649 0.1665 0.6051 1 0.9
s12 O-2 2 0.0348 0.4769 0.608 1 0.9
s13 O-2 2 0.0334 0.857 0.6094 1 0.9
```

(b) Hydrohalloysite

```
data
chemical name mineral ?Hydrohalloysite-10A?
_cell_length_a 4.909162
_cell_length_b 8.898666
cell length c 9.922116
_cell_angle_alpha 90
cell angle beta 100.8614
_cell_angle_gamma 90
_cell_volume 425.6827
 symmetry space group name H-M C1m1
loop
_symmetry_equiv_pos_as_xyz
       'x, -y, z'
       'x, y, z'
       'x+1/2, -y+1/2, z'
       'x+1/2, y+1/2, z'
loop
atom site label
atom site type symbol
_atom_site_symmetry_multiplicity
_atom_site_fract_x
_atom_site_fract y
atom site fract z
_atom_site_occupancy
_atom_site B iso or equiv
Al al 4 0.25 0.16667 0 1 1
Si si 4 0.0083 0.16667 -0.4444 1 1
O-H1 o 4 -0.0458 0.83333 0.1181 1 1
O-H2 o 2 0.0458 0 -0.1181 1 1
O-H3 o 4 0.0083 0.16667 0.3972 1 1
O-H4 o 4 0 0.33333 -0.1181 1 1
O-H5 o 2 0.5 0 0.1181 1 1
O1 o 2 0.0333 0 0.625 1 1
O2 o 4 0.2833 0.25 0.625 1 1
```