
HAL Id: hal-04288059
https://hal.science/hal-04288059v1

Submitted on 15 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Estimating the Carbon Footprint of BLOOM, a 176B
Parameter Language Model

Alexandra Sasha Luccioni, Sylvain Viguier, Anne-Laure Ligozat

To cite this version:
Alexandra Sasha Luccioni, Sylvain Viguier, Anne-Laure Ligozat. Estimating the Carbon Footprint of
BLOOM, a 176B Parameter Language Model. Journal of Machine Learning Research, 2023, 24 (253),
pp.1-15. �hal-04288059�

https://hal.science/hal-04288059v1
https://hal.archives-ouvertes.fr


Journal of Machine Learning Research 24 (2023) 1-15 Submitted 1/23; Revised 5/23; Published 6/23

Estimating the Carbon Footprint of BLOOM,
a 176B Parameter Language Model

Alexandra Sasha Luccioni SASHA.LUCCIONI@HUGGINGFACE.CO
Hugging Face
Montréal, Canada

Sylvain Viguier SYLVAINV@GRAPHCORE.AI
Graphcore
London, UK

Anne-Laure Ligozat ANNE-LAURE.LIGOZAT@LISN.UPSACLAY.FR

LISN & ENSIIE
Paris, France

Editor: Shakir Mohamed

Abstract

Progress in machine learning (ML) comes with a cost to the environment, given that training ML
models requires computational resources, energy and materials. In the present article, we aim to
quantify the carbon footprint of BLOOM, a 176-billion parameter language model, across its life
cycle. We estimate that BLOOM’s final training emitted approximately 24.7 tonnes of CO2eq if
we consider only the dynamic power consumption, and 50.5 tonnes if we account for all processes
ranging from equipment manufacturing to energy-based operational consumption. We also carry out
an empirical study to measure the energy requirements and carbon emissions of its deployment for
inference via an API endpoint receiving user queries in real-time. We conclude with a discussion
regarding the difficulty of precisely estimating the carbon footprint of ML models and future research
directions that can contribute towards improving carbon emissions reporting.

Keywords: carbon footprint, language modeling, life cycle assessment, machine learning.

1. Introduction

Climate change is one of our generation’s biggest challenges, impacting ecosystems and livelihoods
across the world; estimating and reducing our carbon emissions is an important part of mitigating its
impacts (Masson-Delmotte et al., 2018). According to recent estimates, the global CO2 emissions
of the information and communications technology (ICT) sector account for around 2% of global
CO2 emissions, but this figure is hard to estimate precisely given the distributed nature of global
computing infrastructure (International Telecommunication Union, 2020; Malmodin and Lundén,
2018; Copenhagen Centre on Energy Efficiency, 2020). The infrastructure used for training and
deploying machine learning (ML) models contributes to this number, but the exact extent of this
contribution is also unclear. In order to get a better grasp of the carbon footprint of the field, it is
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therefore important to start systematically tracking the carbon footprint of ML models and algorithms
and the main sources of emissions.

Large language models (LLMs) are among the biggest ML models, spanning up to hundreds of
billions of parameters, requiring millions of GPU hours to train, and emitting carbon in the process.
As these models grow in size – which has been the trend in recent years – it is crucial to understand
to also track the scope and evolution of their carbon footprint. The current study describes the first
attempt to estimate the broader carbon footprint of an LLM, including the emissions produced by
manufacturing the computing equipment used for its training as well as the model deployment via
an API. The goal of our study is not to hone in on an exact number for the emissions produced,
but to provide estimates of the relative contribution of each step of the deployment process towards
the overall emissions of the model. We conclude with a discussion about the carbon emissions of
different LLMs as well as the BigScience workshop overall, and propose directions for future work
to both quantify and report these emissions.

2. Related Work

There are different aspects of the environmental impact of computing in general and machine learning
in particular that are relevant to our study; we briefly describe existing relevant work in the paragraphs
below.

Empirical Studies on ML CO2 Emissions Most of the existing work in this area has been done
on estimating the CO2 emissions incurred during model training. Starting with the seminal work
of Strubell et al., who looked at the carbon footprint of training a Transformer model (2019), more
recent studies have also looked at other model architectures and their ensuing emissions (Patterson
et al., 2021; Naidu et al., 2021). Other studies have pursued a broader analysis of trends in terms
of the energy requirements and CO2 emissions of ML models in general (Thompson et al., 2020;
Wu et al., 2021; Patterson et al., 2022). While some studies predict a growth in terms of carbon
emissions of ML models (Thompson et al., 2020), others have predicted that emissions will shrink in
coming years (Patterson et al., 2022); further work is therefore needed to get additional estimates
from a broader variety of models and use cases.

Tools for Estimating Carbon Impact Another relevant research direction has pursued the devel-
opment of tools for estimating the CO2 emissions of training ML models, resulting in several tools
created for this purpose. Some of these run in parallel to model training code and track its energy
consumption and CO2 emissions (e.g. Schmidt et al. (2021); Anthony et al. (2020)), while others
can be used post-training in order to produce a more high-level estimate of emissions (e.g. Lacoste
et al. (2019)). However, these tools remain seldom used for reporting the CO2 emissions in ML
publications, and a recent study has found that they vary significantly in terms of the estimates that
they produce (Bannour et al., 2021).

Additional Factors Complementary work has also been done on other contributions to the overall
carbon footprint of ML, ranging from the carbon footprint of in-person versus virtual conference at-
tendance (Skiles et al., 2021) to the manufacturing of computing hardware (Gupta et al., 2021) as well
as the life cycle analysis of the entire ML development and deployment cycle (Ligozat et al., 2021)
and the certification of ML systems according to their social and environmental impacts (Gupta et al.,
2020). Increasingly, scholars have adopted a broader perspective on considering the environmental
impacts of ML models, going above and beyond only the CO2 emissions of model training and
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considering aspects such as equipment manufacturing and deployment (Wu et al., 2021; Kaack et al.,
2022). However, there is still a need for a common approach in terms of estimating and comparing
the carbon emissions of ML models which spans these different parts of the model life cycle.

3. Background and Methodology

3.1 The BLOOM Model

The BigScience Large Open-science Open-access Multilingual Language Model (BLOOM) is a 176
billion parameter language model. It was trained on 1.6 terabytes of data in 46 natural languages
and 13 programming languages as part of the BigScience workshop, a year-long initiative that lasted
from May 2021 to May 2022 and brought together over a thousand researchers from around the
world. The BigScience workshop was granted access to the computing resources of the Institut du
développement et des ressources en informatique scientifique (IDRIS) of the Centre national de la
recherche scientifique (CNRS) in France, which meant that model training was carried out on the
Jean Zay computer cluster of IDRIS. We present some key numbers about BLOOM model training
in Table 1 below, and refer readers to Le Scao et al. (2022) for additional information about model
architecture and training.

Total training time 118 days, 5 hours, 41 min
Total number of
GPU hours 1,082,990 hours

Total energy used 433,196 kWh
GPU models used Nvidia A100 80GB
Carbon intensity
of the energy grid 57 gCO2eq/kWh

Table 1: Key statistics about BLOOM model training – for more details about our methodology, see
Section 4.2.

While training the model was the culmination of the BigScience project, many other efforts were
needed to achieve this goal. This includes initiatives such as: data sourcing, collection and processing,
tokenization, architecture engineering and evaluation. Additionally, in the months preceding the final
BLOOM training, several smaller-scale experiments were launched in order to evaluate different
model sizes and architectures, which helped converge on the final BLOOM architecture. In the results
that presented in Section 4, we report the carbon emissions produced by the final 176B parameter
BLOOM model, whereas the emissions of intermediate model training and evaluation carried out
within the scope of the BigScience project are presented in Section 5.2.

3.2 Methodology

While there is no universally-accepted approach for assessing the environmental impacts of ML
models, we strive towards adopting the widely-used Life Cycle Assessment (LCA) methodology,
which aims to cover all stages of the life cycle of a product or process (Klöpffer, 1997). While we do
not have all of the necessary information to carry out a "cradle-to-grave" assessment of BLOOM
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(which would consider the environmental impacts of all processes from raw material extraction to
disposal), we focus on the steps for which we do have sufficient information, which range from
manufacturing the equipment used for training the model to model deployment (see Fig 1). In fact,
recent work has proposed a more specific framework for categorizing ML’s effects on greenhouse
gas (GHG) emissions, consisting of 3 categories: (A) computing-related impacts, (B) immediate
impacts of deploying ML and (C) system-level impacts on other domains (Kaack et al., 2022). While
this framework has not yet been widely adopted in our field, we believe it is particularly useful given
the specificity of the ML life cycle. In the current study, we focus on category (A) and briefly discuss
deployment and system-level impacts in Section 5.3.

Figure 1: While the LCA approach encompasses all the stages of the product life cycle, we focus on
those stages indicated in green, which range from equipment manufacturing to model deployment.

Given that the LCA approach aims to account for all possible sources of GHG emissions (e.g.
methane, carbon dioxide, nitrous oxide, etc.), it is necessary to convert these different gasses to a
single unit of measure in order to meaningfully sum them up. The standardized measure that is often
used for this is carbon dioxide equivalents (CO2eq), which are calculated based on comparing the
global-warming potential (GWP) of different greenhouse gasses to that of carbon dioxide (CO2). For
instance, methane has a 100-year GWP 25 times that of CO2– this means that one tonne of methane
is equal to 25 tonnes of CO2eq. In the sections below, we be using this unit of measure to estimate
BLOOM’s emissions throughout its life cycle.

4. Results: Carbon Emissions of the BLOOM Model

Our study aims to bring together the different elements contributing to the overall carbon footprint
of training BLOOM and to compare the relative contribution of each one towards BLOOM’s total
emissions. While we will predominantly focus on model training, we will also take into account
the emissions produced by manufacturing the computing equipment used for running the training,
the energy-based operational emissions, as well as the carbon footprint of model deployment and
inference. All of the code and data used for our analyses are available in our Github repository.

4.1 Embodied Emissions

The embodied emissions are those emissions associated with the materials and processes involved in
producing a given product, such as the computing equipment needed to train and deploy ML models.
While the production of these emissions is exclusively limited to the manufacturing process, this total
amount is usually spread over the time during which equipment is used by dividing the total embodied
emissions by the time of use. The BLOOM model was trained on HPE Apollo 6500 Gen10 Plus
servers containing Nvidia A100 GPUs. The closest comparable computing equipment that provides
LCA information is HPE’s ProLiant DL345 Gen10 Plus server, which is similar to the Apollo 6500
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and has a production footprint of approximately 2500 kg of CO2eq (HPE, 2021). This does not
include the embodied emissions of the GPUs which are used in the server, whose embodied emissions
must be calculated separately. While Nvidia does not currently disclose the carbon footprint of its
GPUs, recent estimates put the lower bound of this amount at approximately 150 kg of CO2eq (Davy,
2021), which is the number we will use for our embodied emissions estimates.

Assuming a replacement rate of 6 years and 85% average usage (which are the figures provided
to us by IDRIS), the figures above translate to an embodied carbon footprint of approximately 0.056
kg of CO2eq for each hour of server time and 0.003 kg of CO2eq for each hour of GPU time. Given
that BLOOM training lasted a total of 1.08 million hours using, on average, 384 GPUs across 48
computing nodes, we can estimate that the embodied emissions associated to BLOOM training
represent approximately 7.57 tonnes for the servers and 3.64 tonnes for the GPUs, adding a total of
11.2 tonnes of CO2eq to its carbon footprint. This does not include the embodied emissions of the
rest of the computing infrastructure (e.g. the network switches, cooling equipment and other devices
that power the network), which are difficult to quantify given that we do not have the necessary
information regarding their distribution and usage.

4.2 Dynamic Power Consumption

As described in Section 2, most of the existing research on the carbon footprint estimation of ML
models has focused on estimating the CO2 emissions produced by generating the electricity necessary
for powering model training – this is typically referred to as dynamic consumption. This is typically
calculated by multiplying the number of GPU hours used by the thermal design power (TDP) of
those GPUs and the carbon intensity of the energy grid used to power the hardware. TDP remains
an upper bound of GPU power consumption, but it is often used as a proxy given when access to
real-time GPU power consumption is impossible. A grid’s carbon intensity depends on the electricity
source that powers it – for instance, coal-powered grids result in more carbon emissions per kWh of
electricity compared to grids powered by hydroelectricity or solar power. Also, while many compute
providers carry out post hoc carbon offsetting or heat recycling, we do not take this into account in
our estimation, given that we are focusing on the direct carbon emissions linked to dynamic power
consumption 1.

As reported in Table 1, training the BLOOM model required a total of 1.08 million GPU hours on
a hardware partition constituted of Nvidia A100 SXM4 GPUs with 80GB of memory, which have a
TDP of 400W (NVIDIA, 2022). While we were not able to track real-time power consumption for the
entire experiment, empirical observations noted that GPU utilization was typically very high, nearing
100%. Also, we do not consider the power usage of CPUs, which consume approximately 40 times
less energy than GPUs and which are typically not as solicited during the model training process.
This represents an electrical consumption of 433,196 kWh of electricity during training; multiplied
by the carbon intensity of the energy grid used, which is approximately 57 gCO2eq/kWh (Aurora
Energy Research, 2020), this results in a total of 24.69 tonnes of CO2eq emitted due to dynamic
energy consumption.

1. In fact, a percentage of the heat produced by the Jean Zay computing cluster is recuperated to supply the heat and cold
exchange network of the Paris-Saclay urban campus.
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4.3 Idle Power Consumption

So far, the emphasis in the ML community has been on estimating the energy consumption and
ensuing carbon emissions of the energy used to power specialized hardware such as GPUs. However,
it is important to keep in mind that the broader infrastructure that maintains and connects this
hardware also requires large amounts of energy to power it – this is referred to as idle consumption.
The quantity of energy needed for this depends on the efficiency of the computing cluster that is
being used and the configuration of the devices on the cluster. Taking into account the idle power
consumption during the model training time is important to estimate the overhead costs that are
added on top of the energy consumed by the hardware itself. This can be reflected in part by factoring
in the PUE (Power Usage Effectiveness) of the data centers used for training these models, which is
the approach adopted by Patterson et al. for estimating the carbon emissions of ML models such as
T5 and GPT-3 (2021). However, the way in which PUE is calculated (dividing the total amount of
energy used by a computer data center facility by the energy delivered to computing equipment) does
not account for the totality of energy consumed by the data center infrastructure, leaving out certain
key aspects of idle consumption that a more fine-grained analysis encompasses (Brady et al., 2013;
Kurpicz et al., 2018), which is why we adopt a different method, based on empirical measurement.

Computing Mode Power consumption Percentage of total
Infrastructure consumption 27 kW 13.5%

Idle consumption 64 kW 32%
Dynamic consumption 109 kW 54.5%

Total consumption 200 kW 100%

Table 2: Breakdown of power consumption of the A100 partition of the Jean Zay cluster. Infras-
tructure mode measures the power consumed by networking systems, datacenter maintenance and
cooling systems (i.e., servers are turned off). Idle measures the additional power consumed by servers
turned on but unused. Dynamic measures the additional power consumed by servers actively training
BLOOM.

In order to estimate the idle consumption of the computing infrastructure that we used for training
BLOOM, we ran a series of experiments to compare the total energy consumption of idle devices
on the Jean Zay computing cluster (e.g. network, GPUs, storage, cooling/heating and computation
nodes) to the total consumption of the same devices while running the model training code. As we
show in Table 2, we found that for the A100 partition of the cluster used for training the model,
in Infrastructure mode (with the computing nodes turned off but the network, storage and cooling
turned on), the power consumption was 27 kW; in Idle mode (with network, storage and compute
nodes on, but no processes running), the additional power consumption was 64 kW. During BLOOM
training, the dynamic power consumption averaged at over 109 kW, for total of 200kW for the whole
system. This indicates that only around 54% of the power consumption can be attributed to running
the code (i.e. the dynamic power consumption described in Section 4.2), whereas the remaining
46% is used for keeping the computing nodes on. Extrapolating this to the total model training time,
this adds a further 256,646 kWh of idle power consumption on top of the dynamic power used for
training BLOOM, and 14.6 tonnes of CO2eq to the overall carbon footprint of model training.
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Process CO2emissions
(CO2eq)

Percentage of
total emissions

Embodied emissions 11.2 tonnes 22.2 %
Dynamic consumption 24.69 tonnes 48.9 %
Idle consumption 14.6 tonnes 28.9 %
Total 50.5 tonnes 100.00%

Table 3: Breakdown of CO2 emissions from different sources of the BLOOM model life cycle

While it may seem excessive to add such a large overhead to BLOOM’s carbon footprint, taking
embodied and idle emissions into account is a much better reflection of the true emissions of model
training than solely considering the dynamic consumption of GPUs, as it also considers the network
overhead and larger computing infrastructure without which training cannot take place. The figures
from Table 3 are similar to those provided in product carbon footprint estimations for computing
equipment (such as the one for the HPE servers used in Section 4.1), which estimate that the embodied
emissions account for approximately 20-30% of life cycle emissions, whereas use (i.e. the emissions
of both dynamic and idle consumption) are 70-80% of the total footprint. However, our estimations
thus far have only been limited to BLOOM training – in the following section, we aim to go further
by doing an case study analysis of the energy consumption and ensuing carbon emissions of model
deployment.

4.4 Deployment and Inference

In order to attempt to estimate the carbon emissions incurred by deploying BLOOM, we ran the
CodeCarbon package (Schmidt et al., 2021) on a Google Cloud Platform (GCP) instance with 16
Nvidia A100 40GB GPUs, where BLOOM was deployed via an inference API, and tracked the
energy usage of the instance over a period of approximately 18 days. The model received an average
of 558 requests per hour, which were handled in real time (i.e. without any batching), for 230,768
requests in total. While this is not necessarily representative of all deployment use cases, it is an
example of real-time deployment of LLMs in applications such as chatbots, where they are expected
to respond to a constant, varying flux of user queries. It also provides a useful data point for starting
to measure the carbon emissions of ML model inference, which has not been the focus of much
research to date.

As it can be seen in Figure 2, during the 18 day period for which we carried out our analysis,
the power consumed by the compute instance running the BLOOM model fluctuated between 1252
W to 2735 W – divided by the 16 GPUs that were used, this amounts to 78-171W per GPU, which
is significantly less than the TDP of this type of GPUs (400W). This indicates that the GPUs are
not being used at maximum capacity, which is coherent with the nature of API deployment – since
inference requests are unpredictable, optimization of GPU memory using techniques such as batching
and padding, which are the norm during training, is not possible, and the GPUs remain idle in
between user requests.

In total, the instance used for the BLOOM model API consumed 914 kWh of electricity – of this
amount, 22.7% was consumed by the RAM (207.2 kWh), 2% by the CPU (18.5 kWh) and 75.3% by
the GPU (688.38 kWh). It is hard to disaggregate this number into idle versus dynamic consumption
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Figure 2: The fluctuation of mean power used to power the 16 Nvidia A100 GPUs running the
BLOOM model API, with the mean power consumption in red (1664W) in dotted red.

because we do not have access to the GCP platform as we did for Jean Zay, but we can nonetheless
compare the energy consumed by the instance versus the number of requests that it received. We do
so in Figure 3, where we plot the number of incoming requests to the BLOOM inference API and the
energy consumption of the GCP instance where it is running. It can be seen in the Figure that even
when there are almost no incoming requests during a 10 minute interval, there is still ∼0.28kWh
of energy that is consumed during this interval, which represents the energy consumption of the
model when it is not responding to any user requests. While more experimentation is needed in order
to further disaggregate these numbers, we believe it is worth noting the high proportion of energy
dedicated to maintaining a LLM like BLOOM in memory (approximately 75% of the total energy
consumed by the instance), without it being used. Going further, given that the GCP instance used for
deploying the BLOOM model is running in the us-central1 region, which has a carbon intensity
of 394 gCO2eq/kWh (Google, 2022), this results in approximately 19 kgs of CO2eq emitted per day
of API deployment, or 340 kg over the total period during which we were tracking emissions.

Given the many different combinations of configurations that can be used for deploying ML
models, ranging from the hardware used for deployment to the batch size of inferences and the region
where the model is running, the use case that we describe above is one among many. However, it is
a useful starting point to estimate the carbon emissions involved in deploying ML models, which
are lacking in the field. While a 2019 article estimated that 80–90% of Nvidia’s ML workload is
inference processing (Leopold, 2019) – a figure that was cited in a recent article by Patterson et
al (2021), a recent publication by Meta reported that inference accounted for approximately one-third
of their end-to-end ML carbon footprint while the remainder is produced by data management,
storage, and training (Wu et al., 2021). We hope that the rough estimates we provide above shed
some light on this question and plan on pursuing this avenue of research further in our future research
endeavors, which we discuss in more detail in Section 5.3.
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Figure 3: The quantity of energy used by the GCP instance (on the y axis) versus the number of
requests received by the instance in a 10 minute interval (on the x axis). It can be seen that even when
zero requests are received by the instance in this time span (bottom left of the graph), the energy
consumption remains at approximately 0.28 kWh.

5. Discussion and Future Work

The main contribution of the present article is to define and connect the different sources of carbon
emissions involved in training and deploying BLOOM, a 176B parameter language model. While we
try to be as precise as possible in our calculations, they remain an estimate based on the information
available to us. In the current, final section of our article, we will compare our estimate to that of
recent similar LLMs, attempt to estimate the dynamic consumption of all processes run within the
scope of the BigScience workshop and discuss next steps and improvements that can be made to our
approach to guide future work in the area.

5.1 Comparisons with other LLMs

A few recent LLM papers reported the carbon footprint of model training, including notable models
such as OPT-175B (Zhang et al., 2022), GPT-3 (Patterson et al., 2021) and Gopher (Rae et al., 2021).
However, since the accounting methodologies for reporting carbon emissions are not standardized,
it is hard to precisely compare the carbon footprint of BLOOM to that of these models. In this
section, we will try to disentangle the different factors for each model: (1) the energy consumption of
model training, (2) the CO2eq emissions produced by dynamic consumption during training, and (3)
the CO2eq emissions produced via dynamic consumption while taking into account datacenter PUE
(i.e. overhead) as well. We present these numbers in Table 4, in which numbers in italics indicate
numbers that have been inferred based on the information provided in the papers accompanying
these models, without being stated explicitly in articles or accompanying documentation. All of the
information provided regarding the carbon intensity of the grids used for training was extracted from
the articles themselves.
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Model
name

Number of
parameters

Datacenter
PUE

Carbon intensity
of grid used

Energy
consumption

CO2eq
emissions

CO2eq
emissions × PUE

GPT-3 175B 1.1 429 gCO2eq/kWh 1,287 MWh 502 tonnes 552 tonnes
Gopher 280B 1.08 330 gCO2eq/kWh 1,066 MWh 352 tonnes 380 tonnes

OPT 175B 1.09 2 231gCO2eq/kWh 324 MWh 70 tonnes 76.3 tonnes 3

BLOOM 176B 1.2 57 gCO2eq/kWh 433 MWh 25 tonnes 30 tonnes

Table 4: Comparison of carbon emissions between BLOOM and similar LLMs. Numbers in italics
have been inferred based on data provided in the papers describing the models.

We can see that BLOOM training resulted in less than half of the emissions of the closest
comparable model, OPT (which emitted 70 tonnes compared to BLOOM’s 25 tonnes), and 20 times
less than GPT-3 (502 tonnes). This can be explained in large part by the carbon intensity of the
energy source used for training, given that the carbon intensity of the electric grid powering Jean
Zay is 57 gCO2eq/kWh, compared to 231 gCO2eq/kWh for OPT, 429 gCO2eq/kWh for GPT-3 and
330 gCO2eq/kWh for Gopher. Comparing the raw energy consumption of the models is interesting
as well because we can see that BLOOM actually consumed slightly more energy than OPT: 433
MWh compared to OPT’s 324 MWh, despite their proximity in size and training set up. Of course,
there are also other factors that should be considered when comparing the energy consumption of
models, such as the type of hardware used, the number of tokens seen, the model architecture, etc.,
so an exact comparison is difficult, and it is useful to consider all of the characteristics described
above when comparing models.

Finally, as we mentioned in Section 4.3, the carbon footprint accounting approach proposed by
Patterson et al. (2021) includes datacenter PUE, which is not always taken into account by other
models. In order to allow a fair comparison, we attempt to disaggregate model carbon emissions with
and without taking PUE into account in Table 4. Since the PUEs of datacenters used for training
ML models are relatively efficient and very similar (ranging from 1.08 to 1.2), their contribution to
the overall carbon footprint of model training is relatively small. However, as we have shown in
Section 4, these numbers represent a small part of the actual carbon emissions and environmental
impacts of training ML models, given that they reflect neither the embodied emissions nor the
emissions due to model inference and deployment. In the next section, we attempt to go one step
further by estimating the carbon footprint of intermediate experimentation and evaluation processes
run within the scope of the BigScience workshop and how they compare to that of training the final
BLOOM model.

5.2 Carbon Footprint of the BigScience Workshop

The training of the 176B parameter BLOOM model represents only part of the experiments that
were run on the Jean Jay computing cluster as part of the BigScience workshop. In fact, if we
consider the totality of experiments run by members of the BigScience project, they add up to a total
of 3.46 million GPU hours (2.2 million hours of which used V100 GPUs and 1.24 million hours

2. Source: Meta (2021)
3. By contacting the authors of the OPT paper, we were able to establish that they did not consider datacenter PUE in

their carbon footprint estimation; however, we do not have the necessary information to accurately do so ourselves.
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used A100 GPUs), which represents an electrical consumption of 1,163,032 kWh of electricity and
approximately 66.29 tonnes of CO2eq emitted via dynamic power consumption. We break down this
total into its different components, including the final BLOOM training, in Table 5, below.

Process Energy consumed
(kWh)

CO2emissions
(tonnes of CO2eq)

Percentage of
total emissions

176B BLOOM Model 433,196 24.69 37.24%
104B Model 266,522 15.19 22.92%
1B Model 158,972 9.06 13.68%
13B Model 87,210 4.97 7.49%
Other Models 64,257 3.66 5.53%
Miscellaneous Processes 57,961 3.30 4.98%
6B Model 51,686 2.95 4.45%
Model Evaluation 43,172 2.46 3.71%
Total 1,163,088 66.29 100.00%

Table 5: Breakdown of dynamic energy consumption and CO2 emissions of different parts of the
BigScience project

It is interesting to note that experimenting with intermediate models (such as the 104B, 13B
and 1B models) add up to a total of 35.8 tonnes of CO2eq, which is more than the training of the
final model. This is slightly higher than the estimate made by the authors of the OPT paper, who
stated that the total carbon footprint of their model is roughly 2 times higher due to experimentation,
baselines and ablations (Zhang et al., 2022). However, training these models allowed us to converge
on the architecture and hyperparameters of the final BLOOM model, and many of these intermediate
models were also shared with the community (e.g. BLOOM 1B and BLOOM 3B). Other processes
that contributed to the overall carbon emissions of the workshop included model evaluation, which
accounted for 2.46 tonnes of CO2eq, as well as miscellaneous processes such as benchmarking, data
processing and tokenization (3.3 tonnes of CO2eq). While these processes are not part of the training
of the model itself, we believe that it is important to estimate and report them as part of the research
and development process – we touch upon this point further in Section 5.3

If we take into account the embodied emissions of these processes, given that we used a total
of 3.46 million GPU hours, this amounts to a total 35.9 tonnes of CO2eq. Adding the embod-
ied emissions and the idle consumption of equipment (according to the percentage described in
Section 4.3, this accounts for 73.32 further tonnes of CO2eq, bringing up the total tally up to
123.82 tonnes of CO2eq. Furthermore, given that these additional experiments also produced several
LLMs that were shared with the community and deployed, they also continue to generate carbon
emissions during their deployment and usage, which we are unable to account for but keep in mind
as a further addition to our estimation.

5.3 Future Work

We hope that the present article shed some light on the different sources of carbon that contribute
towards an ML model’s total carbon footprint and how they compare. There are, however, many
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unanswered questions that we are lacking the data to pursue, some of which we will enumerate in the
current section.

Gathering more precise figures regarding embodied emissions. We used the closest available
figures to compute the embodied emissions of manufacturing the GPUs used for training BLOOM.
However, we were unable to get the figures for the exact hardware we are using, which makes
the numbers we report an estimate. More transparency is needed regarding the environmental
impacts of manufacturing computing equipment given the large quantities of chemicals and minerals
required (Stephens and Didden, 2013; Crawford, 2021), the significant quantities of ultra-pure water
and energy needed to manufacture it (United Nations Environment Programme, 2013), as well as the
complex and carbon-intensive supply chains and transportation involved in shipping them around the
world (Berkhout and Hertin, 2004).

Running additional studies on model inference and deployment. The results we report in Sec-
tion 4.4 barely scratch the surface of the complexity involved in deploying, scaling and maintaining
ML models in practice and in real-time. We recognize this complexity and are pursuing more
empirical studies to test different hardware setups and configurations and how they impact energy
consumption and carbon emissions: for instance, comparing optimal conditions of model inference
(i.e. when enough queries are received to fill every batch) and how that impacts the carbon cost
per-query, as well as investigating different LLM prompting and usage strategies and approaches that
can be used to evaluate them.

Advocating for increased transparency and granularity in carbon reporting. While some
papers introducing ML models have begun reporting CO2 emissions, which we applaud, we also
believe that disaggregating this single figure into aspects such as energy consumption, carbon intensity,
and PUE is needed to allow for more meaningful comparisons between models. Furthermore, tallying
and reporting the carbon emissions attributable to research and development, as well as evaluation
and benchmarking, is useful to contextualize the relative contribution of the final model training
towards that number.

Considering the broader impacts of ML. In the existing research, the environmental impacts of
information and communications technologies are classified into 3 categories: computing-related
impacts due to the manufacturing of hardware and devices as well as electricity consumption; indirect
impacts of deploying the models, and system-level impacts on other domains (Kaack et al., 2022).
In the current article, and all those we discussed in Section 2, the focus is put solely on the direct
impacts of ML models. However, it can be useful to also consider their indirect impacts on industries
such as transportation, agriculture or urban planning, given increased reliance on ML technologies in
these sectors. We also do not discuss ML’s impact on changing consumer behaviors, for instance
more usage of devices such as smart speakers or connected devices to carry out tasks which were
previously done by hand. While these impacts are harder to quantify precisely, we believe that they
are nonetheless worth including in the broader environmental impacts of ML.
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