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Introduction

Standard Mass-Flux Parameterization Formulation

A full set of equations describing a system of mass-flux convection parameterization may be given by: Here, w and u are the vertical and the radial components of the velocity with the two directions defined by the coordinates, z and r, respectively. An axisymmetry of the system is assumed. The other variables are: ρ = ρ(z) the references density, σ the fractional area occupied by convection, M = σρw c , The convective mass flux, b the buoyancy, p the pressuyre. The subscripts, c and e, are added whenever necessary to distinguish between the convective and the environmental components. Entrainment, E, and detrainment, D, may furthermore be defined in terms of the fractional rates, ε and δ, as:

E = εM, D = δM (2.2) 1
Eqs. (2.1a, c) are derived from Eq. (6.11) from Eq. (6.11) of [START_REF] Yano | Formulation structure of the mass-flux convection parameterization[END_REF] by setting the forcing F = ρb -∂p/∂z and F = 0, Eq. (2.1b) corresponds to Eq. (6.13) of [START_REF] Yano | Formulation structure of the mass-flux convection parameterization[END_REF].

Eq. (2.1a) can more directly be compared with Eq. (2.2) of [START_REF] Yano | Convective kinetic energy equation under the mass-flux subgrid-scale parameterization[END_REF]. Eq. (2.1d) is a standard form of a momentum equation, neglecting possible contributions of turbulent eddies.

The entraining-plume system considered in a companion paper is recovered by setting:

ρ = 1, σ = R 2 , M = R 2 w c , E = R 2 w d , D = 0, b e = w e = 0.
An equation to be solved for the pressure can be derived by constraining the momentum equation by the mass continuity. For this purpose as the latter, it is more convenient to adopt the form:

1 ρ ∂ ∂r ru + 1 ρ ∂ρw c ∂z = 0. (2.3)
Furthermore, we re-write the vertical momentum equation (2.1a) into an davective form:

∂w c ∂t + w c ∂w c ∂z = b c - 1 ρ ∂p ∂z + E ρσ (w e -w c ) (2.4)
with the help of the mass continuity (2.1b).

A (2.6a)

where ∂u ∂r = - 1 2 1 ρ ∂ρw c ∂z (2.6b)
is a constant of r. This fact turns out to be useful for further deduction of Eq. (2.5) in the following.

Pressure problem (1): Without r-Dependence

The pressure equation (2.5) may be further re-written as:

1 r ∂ ∂r r ∂ ∂r + ∂ 2 ∂z 2 p = S, (3.1) 
whre the source term, S, in the right-hand side is given by

S = ρ r ∂ ∂r rF r + ∂ ∂z zF z (3.2a) with F r = -(u ∂u ∂r + w ∂u ∂z ) (3.2b) F z = b c -w c ∂w c ∂z + E ρσ (w e -w c ) (3.2c)
In solving Eq. (3.1), first note that the source, S, is independent of r. It can be shown followingly: with the help of Eq. (2.6a, b), we find:

F r = -r ∂u ∂r 2 + rw c ∂ ∂z ∂u ∂r (3.2d)
is linear in r, thus rF r is proportional to r 2 , and (ρ/r)∂rF r /∂r is independent of r; F z does not depend on r with all the dependent variables under SCA. Since S does not depend on r, we may also drop z-dependence from the left-hand side of Eq. (3.1), thus:

d 2 dz 2 p = S.
We may separate the pressure into two components, corresponding to the two components of the source (3.2b, c). Thus, p = p (r) + p (z) , and

d 2 dz 2 p (r) = ρ r ∂ ∂r rF r ≡ S r (3.3a) d 2 dz 2 p (z) = ∂ ∂z zF z (3.3b)
By substituting (3.2) into its definition, we find

S r = -2ρ ∂u ∂r 2 + w c ∂ ∂z ∂u ∂r (3.3c)
Note that Eq. (3.3b) can be integrated immediately, and we find

d dz p (z) = ρF z (3.4)
which can be considered a generalized hydrostatic balance. More specifically, as a result, buoyancy, b c , is perfectly in balance with the pressure gradient force, thus it never accelerates the vertical velocity. This would be a very unrealistic situation. Especially, when the mass-flux parameterization is formulated prognostically as presented here, convection would be never initiated even under a presence of buoyancy anomaly.

However, when a diagnostic formulation is adopted, as the case with majority of current operational parameterizations (cf., Plant and Yano 2015), the above constraint (3.4) may not be that serious, because the dynamic pressure, p (r) , plays a similar role as the buoyancy in this case.

The point can be seen in the following manner. Let us consider a convective circulation schematically given in Fig. 1(a): convergence and divergence at the lower and the upper levels, respectively, which induces an updraft at the center by continuity. Since F r is a rate that the radial velocity, u, is accelerated by advection, thus F r < 0 at the lower level. This tendency is enhanced towards the center, thus ∂F r /∂r < 0, and presumably also S r < 0 by its definition (3.3a). A similar considering at the upper level suggests S r > 0, as summarized in Fig. 1(b). Finally, by solving Eq. (3.3a), we expect the tendency of p (r) ∼ -S r for the dynamic pressure, as schematically shown in Fig. 1(c), thus the resulting pressure gradient drives the updraft at the center, as expected for the buoyancy.

The tendency inferred above must still be demonstrated quantitatively that this configuration leads to a reasonable result.

The last point is more formally shown by directly substituting the hydrostatic balance (3.4) into Eq. (2.1a), also assuming the steadiness:

1 ρ ∂ ∂z M w c = - σ ρ ∂p (r) ∂z .
Let us assume, for the sake of the purpose of making an immediate analytical progress, that σ is constant with height. In that case, the above equation reduces to:

∂ ∂z [ρw 2 c + p (r) ] = 0.
It can be immediately integrated vertically, and:

ρw 2 c = -p (r) + [ρw 2 c + p (r) ] z=0 . (3.5)
Thus, we find that in association of a decrease of the dynamic pressure with height, as suggested in Fig. 1(c), the vertical velocity increases with height.

However, the main remaining problem is whether we can actually arrive at such a steady solution after a certain iteration proceduire. Such a procedure becomes necessary under a traditional diagnostic formulation, because Eq. (3.3a) cannot be solved without knowing the source term, S r . To know the source term, S r , in turn, the vertical momentum equation (2.1a) must already be solved. For this purpose, in turn, the pressure must already be known.

To feel a degree of this difficulty, as an initial Ansatz, let us set:

w c = w 0 sin πz D (3.6)
with D a constant height. Its substitution into Eq. (3.3c) leads to

S = ρ 4 πw 0 D 2 [cos 2πz D -3] (3.7)
By further substituting this result (3.7) into Eq. (3.3a), and solving it for p (r) , we find:

p (r) = 2ρw 2 0 [sin 2 πz D - 1 2 ] - 3 8 ρ πw 0 D 2 z 2 (3.8)
using the condition dp/dz = 0 at z = 0 and also setting an arbitrary constant to be zero.

The result with the first iteration is, thus, obtained by substituting the solution (3.8) into

Eq. (3.5). It is clearly qualitatively different from the initial Ansazt (3.6), and it is hardly obvious how we get to a converging solution by repeating this procedure.

4. Pressure problem (2): with r-Dependence

Contribution of a Homogeneous Solution to the Pressure Problem

The analysis of the last section is, however, still incomplete, because a possible contribution of a homogeneous solution is neglected, which may still contains a radial dependence. This fact further suggests that the whole problem

1 r ∂ ∂r r ∂ ∂r + ∂ 2 ∂z 2 p = S (3.1)
may be solved by retaining the radial dependence explicitly. Rather unintuitively, this approach leads to a different result as seen in the following.

Eq. (3.1) can be solved by setting

p = ∞ i=1 pi (z, t)J 0 (ξ i r) (4.1a)
where J 0 (x) is the Bessel function of the 0-th order, ξ i (i = 1, . . . , ∞) are roots for J 0 (ξ i R) = 0 given in increasing order, and R is a radius of the convective updraft, which is assumed to be constant with height for now. Note that a general solution (4.1a) is set to satisfy the boundary condition of p| r=R = 0.

The expansion coefficient, pi , can be defined by

pi = 1 λ i R 0 pJ 0 (ξ i r)rdr, (4.1b) 
where

λ i = R 2 2 dJ 0 (ξ i R) d(ξ i R) 2 = R 2 J 2 0 (ξ i R) 2 . (4.1c)
As partially used above, the following formulas for the Bessel functions become useful:

dJ 0 (x) dx = -J 1 (x), d dx xJ 1 (x) = xJ 0 (x).
Note that the series of Bessel functions adopted here for representing the pressure constitutes an orthogonal complete set. That means that any function defined for the range of (0, R), that also includes a constant function. Note more specifically that

∞ i=1 2 ξ i RJ 1 (ξ i R) J 0 (ξ i r) = 1.
Using this relation, the source term is represented as

S = ∞ i=1 Ŝi J 0 (ξ i r) (4.2a) with Ŝi = 2S ξ i RJ 1 (ξ i R) . (4.2b)
The problem is normalized by setting Ŝi = S Si and pi = pi Si . Since Si does not depend on z, the problem of solving for pi reduces to that of pi , and the latter is obtained by solving: 

( d 2 dz 2 -ξ 2 i )p i = S ( 

=

  4.3) 4.2. Pressure due to a Localized Buoyancy As a simple example of a solution obtained under the formulation presented in the last subsection, let us consider a pressure due to a localized buoyancy given by b = b c -D/2 ≤ z ≤ D/2, r ≤ R 0 otherwise (4.4) with b c a constant. The resulting pressure source term is: r ≤ R, and otherwise S = 0, where δ designates the Diracs delta. By integrating Eq. (4.3) vertically, thus, we obtain ρb c , (4.5b)Since apart from two levels at z = ±D/2, there is no source term in the right hand side of Eq. (4.3). The resulting solution to this homogeneous solution for the three segments are:ξ i z + b i e -ξ i z |z| ≤ D/2 p i+ e -ξ i z z ≥ D/2 p i-e ξ i z z ≤ -D/2 (4.6)assuming pi → 0 as z → ±∞. Here, the constants, a i , b i , and p i± are determined from the boundary conditions (4.5a, b), and we finally find:pi = ρb c 2 [e ξ i (z-D/2) -e -ξ i (z+D/2) ] (4.7)for |z| ≤ D/2, and the pressure averaged over the convective updraft segment (i.e., r ≤ R) [e ξ i (z-D/2) -e -ξ i (z+D/2) ],And an average pressure gradient over the buoyancy anomaly (-D/2 ≤ z ≤ D/2) is: ξ 2 i R 2 = 1/4.Fig. 2 (convection/pressure/plot factor. . f) plots the factor, D < d p dz > /ρb c as a function of D/R: The factor approaches to zero and unity towards D/R → 0 and → ∞, respectively, as expected.