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In this article, we consider an inverse problem for the non-local system ∂tρ + λ(W (t))∂xρ = 0, in which

)dx is the total mass of the system. We propose an algorithm and derive a formula to reconstruct the velocity function λ(•), assumed to be strictly positive, in an interval [W-, W+] which contains the initial total mass W (0), by suitably choosing the influx condition u(t) = λ(W (t))ρ(0, t) and measuring the outflux y(t) = λ(W (t))ρ(1, t). Some numerical experiments are provided to illustrate the performance of our method.

Introduction 1.Main results

Our work is motivated by problems arising in the control of semiconductor manufacturing systems which are characterized by their highly re-entrant character, see [START_REF] Armbruster | A continuum model for a re-entrant factory[END_REF]. Such model is described by the following partial differential equation, corresponding to a 1-d non-local transport equation:

                  
∂ t ρ + λ(W (t))∂ x ρ = 0, (x, t) ∈ (0, 1) × (0, T ), W (t) = 1 0 ρ(x, t)dx, t ∈ (0, T ), u(t) = λ(W (t))ρ(0, t), t ∈ (0, T ), y(t) = λ(W (t))ρ(1, t), t ∈ (0, T ), ρ(x, 0) = ρ 0 (x), x ∈ (0, 1), (

Here, T > 0, λ : R → (0, ∞) is a C 1 continuous function, ρ 0 is the initial data which belongs to L p (0, 1)(for some p > 1) and ρ(•, •) is the corresponding weak solution of (1.1) which is defined in Section 2. In the manufacturing system the natural control input is the influx u(•), and the output is the outflux y(•).

The well-posedness of the open-loop system (1.1) with known influx u is considered in [START_REF] Coron | Analysis of a conservation law modeling a highly re-entrant manufacturing system[END_REF], see also [START_REF] Shang | Analysis and control of a scalar conservation law modeling a highly re-entrant manufacturing system[END_REF] for a generalization to the case of a velocity depending on x and W (t) of the form λ(x, W (t)), and [START_REF] Sylvain Ervedoza | Semi-global stabilization of a nonlinear transport equation with non-local velocity[END_REF] for global well-posedness for closed loop versions (that is with u given in terms of y) of (1.1).

In our work, we assume that λ is not known (but still satisfies the a priori condition λ : R → (0, ∞) and λ ∈ C 1 (R)), and our goal is to reconstruct it. In order to do that, we assume the following: Assumption 1.1. The initial mass W (0) = W 0 is known. Assumption 1.2. There exists p > 1 such that ρ 0 ∈ L p (0, 1) and there exists a positive constant m such that ρ 0 satisfies ρ 0 (x) m, a.e x ∈ (0, 1).

(1.2) Assumption 1.3. We can measure the output y, and design the input u in terms of y, so that u at time t depends only on y(t).

The main result of this paper is the following:

Theorem 1.1. Assume that λ : R → (0, ∞) is a C 1 (R) continuous function and that Assumptions 1.1-1.2-1.3 hold. Let W 1 > W 0 and α : [0, ∞) → [1, ∞) be a continuous non-decreasing function which is larger than 1 when t > 0.

Let us consider the following algorithm:

Step 1. While t > 0 is such that t 0 y(s) ds < W 0 , we impose u(t) = y(t) (1.3) in the equation (1.1).

We call T 0 the first time t > 0 in which t 0 y(s) ds = W 0 .

Step 2. For t > T 0 , we impose u(t) = α(t -T 0 )y(t), (1.4) in the equation (1.1), that we solve up to the time T 1 defined by T1 T0 (α(s -T 0 ) -1)y(s)ds = W 1 -W 0 .

(1.5)

This algorithm enjoys the following properties:

1. The times T 0 and T 1 are finite.

2. The function t → W (t) is known on the whole time interval [0, T 1 ] and is given by

W (t) = W 0 + t 0 (u(s) -y(s))ds, t ∈ [0, T 1 ]. (1.6) 
Besides, for all t ∈ [0, T 1 ], W (t) ∈ [W 0 , W 1 ] and W is surjective on [W 0 , W 1 ]. The function W is constant on [0, T 0 ] and increasing on [T 0 , T 1 ].

3. For every t ∈ [T 0 , T 1 ], there exists a unique

f (t) ∈ [0, t) such that t f (t) y(s)ds = W (f (t)). (1.7)
This function f is C 1 and increasing on [T 0 , T 1 ].

The function

t → λ(W (t)) on [T 0 , T 1 ] satisfies    λ(W 0 ) = 1 T 0 , λ(W (t)) = f (t)λ(W (f (t))), t ∈ [T 0 , T 1 ]. (1.8)
Accordingly, we can recover the velocity λ on the whole interval [W 0 , W 1 ] from the information given by the measurement y on the whole time interval [0, T 1 ].

Remark 1.1. In Assumption 1.2, the condition (1.2) with m > 0 can be replaced by ρ 0 (x) 0, a.e.x ∈ (0, 1), see Section 4.1 by allowing to choose u under the form u(t) = y(t) + v(t) for some time, where v ∈ C 0 [0, ∞) ∩ L 1 (0, ∞) is a decreasing positive function.

Remark 1.2. If one wants to reconstruct the velocity λ in an interval I of the form I = [W -, W + ] with 0 < W -< W 0 < W + , we can put ourselves in the situation of Theorem 1.1 by doing as follows. For k ∈ (0, 1), we impose u(t) = ky(t) for t ∈ (0, T * ) in (1.1), where T * is the first time such that 

W 0 + t 0 (u(s) -y(s)) ds = W -. It is easy to check that, if λ : R → (0, ∞) is a C 1 (R) function and Assumptions 1.1-1.2-1.3 hold, then T * is finite, W (T * ) = W -,

Related references

There is a wide range of literature on inverse problems for partial differential equations. We refer for instance to the textbooks [START_REF] Bellassoued | Carleman estimates and applications to inverse problems for hyperbolic systems[END_REF][START_REF] Isakov | Inverse problems for partial differential equations[END_REF][START_REF] Michael | Carleman estimates for coefficient inverse problems and numerical applications[END_REF] for an overview of the domain and presentation of some relevant results for inverse problems for hyperbolic equations, and in particular the wave equation.

In the context of the recovery of the velocity in a transport equation, we refer in particular to [START_REF] Connolly | On some inverse problems for a nonlinear transport equation[END_REF] and [START_REF] Connolly | Reconstruction of a nonlinear source term in a semi-linear wave equation[END_REF]. In [START_REF] Connolly | On some inverse problems for a nonlinear transport equation[END_REF], the authors consider the inverse problems of determining the velocity function c in the quasi-linear transport equation

u t + c(u)u x = 0. (1.9) 
Under some assumptions on the monotonicity of the initial and boundary data, and the knowledge of the output boundary conditions, the inverse problem is proved to have a unique solution, which is well-posed or ill-posed depending on which side the additional measurement is performed. We also point out the discussion on the determination of source terms in quasilinear transport equations in [START_REF] Connolly | On some inverse problems for a nonlinear transport equation[END_REF][START_REF] Connolly | Reconstruction of a nonlinear source term in a semi-linear wave equation[END_REF].

We are not aware of many results in the same spirit, and we believe that Theorem 1.1 is the first one to address the recovery of the velocity in a non-local transport equation of the form (1.1).

In fact, so far, equation (1.1) has been mainly discussed from the controllability and stabilization points of view. Regarding controllability properties, we refer in particular to [START_REF] Coron | Analysis of a conservation law modeling a highly re-entrant manufacturing system[END_REF][START_REF] Shang | Analysis and control of a scalar conservation law modeling a highly re-entrant manufacturing system[END_REF] and in the context of networks, to [START_REF] Gugat | Analysis of a system of nonlocal conservation laws for multi-commodity flow on networks[END_REF].

The output feedback stabilization (i.e. with a closed loop control) for the system (1.1) under a suitable feedback law is another natural and interesting control problem, which has been studied in [START_REF] Coron | Output feedback stabilization for a scalar conservation law with a nonlocal velocity[END_REF], where it has been proved that if ρ is the target constant states around which we want to stabilize, for k ∈ (-1, 1), the proportional controller

u(t) -ρλ(ρ) = k(y(t) -ρλ(ρ)), t ∈ (0, ∞), (1.10) 
stabilizes the closed-loop system (1.1) if and only if

d := ρλ (ρ) λ(ρ) satisfies d > -1. (1.11)
We also refer to [START_REF] Coron | Output feedback stabilization for a scalar conservation law with a nonlocal velocity[END_REF] for the spectral analysis of the linearized model, to [START_REF] Chen | Global feedback stabilization for a class of nonlocal transport equations: the continuous and discrete case[END_REF] for the global exponential stabilization result in L 2 (0, 1) for some classes of velocity functions, or to [START_REF] Sylvain Ervedoza | Semi-global stabilization of a nonlinear transport equation with non-local velocity[END_REF] for a time-varying feedback control to achieve a semi-global stabilization for (1.1) under the assumption that s → sλ(s) is injective (which, locally around ρ, only means d = -1).

Outline. The rest of the paper is organized as follows. In Section 2, we recall the well-posedness results for the problem (1.1). The proof of Theorem 1.1 is given in Section 3. Some extensions of Theorem 1.1 are discussed in Section 4. Finally in Section 5, we give some numerical experiments to illustrate the performances of the algorithm proposed in Theorem 1.1.

Preliminaries

Before considering the reconstructing problem, we need to recall the usual definition of a weak solution for (1.1) and give the corresponding well-posedness result for our closed-loop system. Definition 2.1. Let p > 1 and ρ 0 be a non-negative function in L p (0, 1). Let T > 0, α be a positive function in L ∞ (0, T ) and v be a non-negative function in L p (0, T ). A weak solution of the Cauchy problem (1.1) with boundary condition

u(t) = α(t)y(t) + v(t), t ∈ (0, T ) (2.1)
is a function ρ ∈ C 0 ([0, T ]; L p (0, 1)) such that for every s ∈ (0, T ] and every

ϕ ∈ C 1 ([0, 1] × [0, s]) satisfying ϕ(x, s) = 0, ∀x ∈ [0, 1],
one has:

s 0 1 0 ρ(x, t)(∂ t ϕ(x, t) + λ(W (t))∂ x ϕ(x, t)) dxdt + s 0 (α(t)y(t) + v(t))ϕ(0, t) dt - s 0 y(t)ϕ(1, t) dt + 1 0 ρ 0 (x)ϕ(x, 0) dx = 0. (2.2)
Applying a fixed point argument as in [8, Theorem 2.1], we can get the following well-posedness result:

Theorem 2.1. Assume that λ : R → R * + is a C 1 function. Let p > 1 and ρ 0 be a non-negative function in L p (0, 1). Let α be a positive function L ∞ loc (0, ∞) and v be a non-negative function in L p loc (0, ∞). There exists a unique time T * and a unique weak solution ρ ∈ C 0 ([0, T * ); L p (0, 1)) of system (1.1)-(2.1). Moreover, we have

W ∈ W 1,p loc ([0, T * )), y ∈ L p loc (0, T * ). (2.3) 
In this case, T * is finite if and only if lim T →T * ρ(•, t) L p (0,1) = ∞.

Remark 2.1. In our setting, the initial data ρ 0 and the boundary data v are non-negative. Consequently, the solution ρ is non-negative in (0, L) × (0, T * ) and u, y are non-negative in (0, T * ).

Remark 2.2. In the following, we will check that the maps t → ρ(•, t) L p (0,1) and t → W (t) do not blow up in the reconstruction process of Theorem 1.1, which, according to Theorem 2.1, entails that the solution of (1.1) complemented with (1.3) on (0, T 0 ) and (1.4) on (T 0 , T 1 ) exist up to T 1 .

Remark 2.3. For later use, let us also point out that, for solutions ρ of (1.1)-(2.1), integrating in x the equation (1.1) (1) , we easily get

dW (t) dt = u(t) -y(t), in D (0, T ). (2.4)
3 Proof of Theorem 1.1

In this section, we give the proof of Theorem 1.1.

The time interval [0, T 0 ). We first focus on the time interval [0, T 0 ). During that time interval, the equations (1.1) are completed with the boundary conditions (1.3), so that from (2.4),

∀t ∈ [0, T 0 ), W (t) = W 0 ,
and the velocity λ(W (t)) is constant equal to λ(W 0 ) for all t ∈ [0, T 0 ).

Note that we also have that the norm ρ(•, t) L p (0,1) is constant for t ∈ [0, T 0 ) since the boundary conditions (1.3) amounts to solve a transport equation at constant speed on a torus, so that the solution is well-defined up to the time T 0 according to Theorem 2.1. In fact, for this argument to be made rigorous, we should set T0 as the supremum of the times τ > 0 such that sup t∈[0,τ ] ρ(•, t) L p (0,1) < ∞ and τ 0 y(s) ds W 0 , and check that this supremum T0 necessarily satisfies T0 = ∞ or T0 < ∞ and T0 0 y(s) ds = W 0 . We will check next that T0 is necessarily finite, so that it coincides with the time T 0 given in Theorem 1.1.

Using the characteristic method and Assumption 1.2, we easily get that ρ is bounded from below by m for all (x, t) ∈ [0, 1] × [0, T0 ), and thus that

∀t ∈ [0, T0 ), y(t) = λ(W (t))ρ(1, t) = λ(W 0 )ρ(1, t) mλ(W 0 ) > 0.
Accordingly, the map t → t 0 y(s) ds is strictly increasing and is bounded from below by t → mλ(W 0 )t. This implies that T0 = T 0 is finite and T0 0 y(s) ds = W 0 .

(3.1)

The time interval [T 0 , T 1 ). We start by noticing that ρ(•, T 0 ) is still bounded from below by m and belongs to L p (0, 1) with the same p as in Assumption 1.2.

We then introduce T1 as the supremum of the times τ > T 0 such that sup t∈[T0,τ ] ρ(•, t) L p (0,1) < ∞ and τ T0 (α(s -T 0 ) -1)y(s) ds W 1 -W 0 , and check that this supremum T1 necessarily satisfies T1 = ∞ or T1 < ∞ and

T1 T0 (α(s -T 0 ) -1)y(s) ds = W 1 -W 0 .
First, it is easy to check that for t ∈ (T 0 , T1 ), ρ(•, t) stays bounded from below by m, y stays positive and, thus, according to (2.4), W is increasing. Together with (2.4), the choice (1.5) imposes that W is necessarily smaller than W 1 on the time interval [T 0 , T1 ). Therefore, for all t ∈ [T 0 , T1 ),

W (t) ∈ [W 0 , W 1 ].
Since the velocity λ is bounded from below by inf s∈[W0,W1] {λ(s)} and from above by sup s∈[W0,W1] {λ(s)} on the time interval [T 0 , T1 ), the map t → ρ(•, t) L p (0,1) is bounded in any time interval of the form [T 0 , τ ] for τ finite and smaller than T1 , thus guaranteeing that T1 = ∞ or T1 < ∞ and can be alternatively defined by (1.5).

But, since ρ(•, t) stays bounded from below by m and W stays in the interval

[W 0 , W 1 ], ∀t ∈ [T 0 , T1 ), y(t) m inf s∈[W0,W1] {λ(s)} > 0. (3.2) 
Accordingly, t → t T0 (α(s -T 0 ) -1)y(s) ds is strictly increasing for t ∈ [T 0 , T1 ] and, for all > 0, for all

t ∈ [T 0 + , T1 ), t T0 (α(s -T 0 ) -1)y(s) ds (α( ) -1)(t -(T 0 + ))m inf s∈[W0,W1]
{λ(s)}.

Since α( ) > 1, we conclude that necessarily T1 = T 1 is finite and can be alternatively defined by (1.5).

Properties of W . Note that, in the two above paragraphs, we also proved that W is non-decreasing, that it is surjective on [W 0 , W 1 ] and takes value in [W 0 , W 1 ] on [0, T 1 ]. The formula (1.6) directly comes from (2.4). The fact that then W is known at all times then comes from the fact that u is explicitly given in terms of y in the time interval [T 0 , T 1 ]. In particular, we have

W (t) =    W 0 , for t ∈ [0, T 0 ], W 0 + t T0 (α(s -T 0 ) -1)y(s) ds, for t ∈ [T 0 , T 1 ]. (3.3)
In fact, using (3.2), we also have that W is strictly increasing in [T 0 , T 1 ].

Existence and uniqueness of f (t) for t ∈ [T 0 , T 1 ] satisfying (1.7). We introduce the function

F (t, τ ) = t τ y(s) ds -W (τ ), (t, τ ) ∈ [0, T 1 ] 2 . (3.4)
Note that W is non-decreasing on [0, T 1 ], always larger than W 0 , and y is positive on [0, T 1 ]. Recalling the property (3.1), we easily get that for t ∈ [T 0 , T 1 ], F (t, 0) 0 > F (t, t). Also, since W ∈ W 1,p (0, T 1 ) (recall Theorem 2.1) and is non-decreasing on [0, T 1 ], and y is strictly positive on [0,

T 1 ], for t ∈ [0, T 1 ], τ → F (t, τ )
is continuous and strictly decreasing with respect to τ ∈ [0, t]. By continuity and strict monotonicity, we conclude that for any fixed t ∈ [T 0 , T 1 ], there exists a unique f (t) ∈ [0, t) such that F (t, f (t)) = 0, i.e., (1.7) holds.

Now we investigate the continuity and regularity of the function f on [T 0 , T 1 ]. In order to do that, we rewrite F as

F (t, τ ) = h(t) -g(τ ), with h(t) = t 0 y(s) ds and g(τ ) = τ 0 y(s) ds + W (τ ).
(3.5)

The above arguments show that g is continuous on [0, T 1 ], and strictly increasing. Consequently, g has a continuous strictly increasing inverse g -1 defined on [g(0), g(T

1 )]. Noting that h(t) ∈ [g(0), g(T 1 )], t ∈ [T 0 , T 1 ], f is simply given by f (t) = g -1 (h(t)), t ∈ [T 0 , T 1 ]. Since h ∈ W 1,p (0, T ), it is continuous, so that f is continuous on [T 0 , T 1 ]. Besides, since h is strictly increasing on [0, T 1 ] , f is also strictly increasing on [T 0 , T 1 ].
Differentiability of f . To get that f is in fact differentiable, it is convenient to characterize f as follows: for all t ∈ [T 0 , T 1 ], f (t) coincides with f (t) defined as the unique element of [0,

T 1 ] such that t f (t) λ(W (s)) ds = 1.
(3.6) Indeed, since s → λ(W (s)) is continuous and strictly positive, for all t ∈ [T 0 , T 1 ], there exists at most one element f (t) such that (3.6) holds. Now, by the characteristic method, for t

∈ [T 0 , T 1 ], setting t ∈ [0, T 1 ] such that t f (t) λ(W (s)) ds = 1, we have, if t > t, i.e. t f (t) λ(W (s)) ds < 1, W (f (t)) = t f (t) y(s) ds = t f (t) λ(W (s))ρ(1, s) ds = t f (t) λ(W (s))ρ 1 - s f (t) λ(W (θ))dθ, f (t) ds = 1 1-t f (t) λ(W (θ))dθ ρ(x, f (t)) dx,
and, with similar computations, if t < t, i.e.

t f (t) λ(W (s)) ds > 1, W (f (t)) = t f (t) y(s) ds = t f (t) λ(W (s))ρ(1, s)ds + t t λ(W (s))ρ(1, s) ds = 1 0 ρ(x, f (t)) dx + t t λ(W (s))ρ(1, s) ds. Since, for t ∈ [T 0 , T 1 ], W (f (t)) = 1 0 ρ(x, f (t)) dx,
by definition of W , and ρ and λ(W ) are strictly positive, we necessarily have that t = t, that is, from the definition of t,

t f (t) λ(W (s)) ds = 1.
Therefore, for all t ∈ [T 0 , T 1 ], we have f (t) = f (t), where f (t) is defined by (3.6).

It follows that, equivalently to (1.7), f can be defined by the implicit relation

k(t, f (t)) = 0, where k(t, τ ) = t τ λ(W (s)) ds -1, for t ∈ [T 0 , T 1 ] and τ ∈ [0, T 1 ]. (3.7) Since W is continuous on [0, T 1 ], k is C 1 on [T 0 , T 1 ] × [0, T 1 ]. Since we also have that ∂ τ k(t, τ ) = -λ(W (τ )) does not vanish for (t, τ ) ∈ [T 0 , T 1 ] × [0, T 1 ], f is thus C 1 on [T 0 , T 1 ]
by the implicit function theorem and satisfies the equation

λ(W (t)) -λ(W (f (t)))f (t) = 0, for t ∈ [T 0 , T 1 ].
This proves items 3 and 4 of Theorem 1.1, except for the relation λ(W 0 ) = 1/T 0 that we now prove. Indeed, we easily check that f (T 0 ) = 0, since W 0 satisfies (3.1). Accordingly, we have, from (3.7), that

T0 0 λ(W (s)) ds = 1.
But, for all s ∈ [0, T 0 ], W (s) = W 0 and λ(W (s)) = λ(W 0 ). Therefore, we obtain from the previous relation that T 0 λ(W 0 ) = 1, as announced. This concludes the proof of Theorem 1.1.

4 Extensions of Theorem 1.1

In this section, we give two extensions of Theorem 1.1. The first one provides a relaxation of the condition (1.2) in Assumption 1.2. The second one discusses the choice of the function α in the algorithm of Theorem 1.1.

Relaxation of Assumption 1.2

In Assumption 1.2, the condition ρ 0 (x) m > 0, a.e. x ∈ (0, 1) can be replaced by ρ 0 (x) 0, a.e. x ∈ (0, 1) according to the following proposition.

Proposition 4.1. Assume p > 1, λ : R → (0, ∞) is a C 1 (R) function and that the initial data ρ 0 ∈ L p (0, 1) is non-negative. Let u(t) = y(t) + v(t), t ∈ (0, ∞), (4.1) 
where v is a positive function in C 0 ([0, ∞)) ∩ L 1 (0, ∞). Then define T * by

T * = sup τ 0 such that τ 0 y(s)ds = W 0 (4.2)
where y is the outflux corresponding to the closed-loop system (1.1)-(4.1). Moreover, for any T > T * , there exists a positive constant m T depending on T such that ρ(x, T ) m T , a.e x ∈ (0, 1), and

W (T ) = W 0 + T 0 v(t) dt. Remark 4.1. A simple example of function v in C 0 ([0, ∞))∩L 1 (0, ∞) satisfying the assumption of Proposition 4.1 is given by v(t) = 1 1+t 2 for t ∈ [0, ∞).
Proof. Below, we will not discuss the fact that the solution of (1.1)-(4.1) is well-defined for all times. The proof of this result can be done easily, using Theorem 2.1 and proving that the L p norm of the solution cannot blow up in finite time, and its proof is left to the reader. The fact that the solution ρ stays non-negative everywhere is also important and is easy to check.

Firstly, we prove that T * given by (4.2) is finite. Integrating (2.4) and using (4.1) yield that

W (t) = W 0 + t 0 v(s)ds, t ∈ [0, ∞).
Thus, for all t 0, 0 For any T > T * , for almost every x ∈ (0, 1), the characteristic curve passing through the point (x, T ) and going backwards in time intersects the left boundary x = 0 at a positive time τ (x, T ) > 0 (characterized by

W (t) M W 0 + v L 1 (0,∞) , t ∈ [0, ∞). ( 4 
T τ (x,T ) λ(W (s))ds = x). Additionally, ρ(x, T ) = ρ(0, τ (x, T )).
By the choice of u in (4.1) and (4.3), and since ρ is non-negative everywhere, we deduce that

ρ(x, T ) = ρ(0, τ (x, T )) = u(τ (x, T ))) λ(W (τ (x, T )))) inf s∈[τ (1,T ),T ] {v(s)} sup s∈[0,M ] {λ(s)} > 0.
This also implies that for all t > T * , y(t) > 0, and thus, for all T > T * , T 0 y(s) ds > W 0 .

Accordingly, T * coincides with T * given by (4.2). This concludes the proof of Proposition 4.1.

Discussion on the choice of the function α in the reconstruction algorithm

The algorithm proposes in Theorem 1.1 provides a formula (1.8) to recover the velocity λ, which requires, to obtain the value of λ at W (t), to know the value of λ at an early time W (f (t)), where f (t) is computed by (1.7).

The discussion below aims at indicating how the choice of the function α in Theorem 1.

1 can guarantee that ∀t ∈ [T 0 , T 1 ], f (t) ∈ [0, T 0 ]. (4.6) 
Indeed, in such case, for all t ∈ [T 0 , T 1 ], W (f (t)) is simply given by W 0 and the computations of f (t) in (1.7) and of λ(W (t)) in (1.8) become easier; at least from the numerical point, they will generate less numerical errors (see Section 5 for some examples). Discussion 1. The case of a constant α. In this case, we get the following result: Accordingly, condition (4.6) is equivalent to the condition (4.7). Discussion 2. When α is not constant. We find the following sufficient condition to (4.6). Proposition 4.3. Under the assumptions of Theorem (1.1), with α : [0, ∞) → [1, ∞) being a continuous non-decreasing function which is strictly larger than 1 when t > 0.

If the function α is such that there exists τ > 0 such that

T0+τ T0 (α(s -T 0 ) -1)y(s)ds W 1 -W 0 , (4.9 
)

and τ y L ∞ (T0,T0+τ ) + 1 α(τ ) -1 (W 1 -W 0 ) W 0 , (4.10) 
then condition (4.6) holds.

Proof. First, since (α(s -T 0 ) -1)y(s) > 0 for all s > T 0 , it follows from (4.9) and (1.5), that

τ T 1 -T 0 .
Moreover, by the monotonicity of α and the definition of T 1 in (1.5), we have Since y is positive, we thus necessarily have f (T 1 ) T 0 , which entails (4.6) since f is non-decreasing. This concludes the proof of Proposition 4.3.

W 1 -W 0 = T1 T0 (α(s -T 0 ) -1)
In practice, it is easy to construct α satisfying the conditions of Proposition 4.3 if we additionally have rough estimates on ρ 0 L ∞ (0,1) and λ C 0 ([W0,W1]) of the form ρ 0 L ∞ (0,1) M 0 and λ C 0 ([W0,W1]) L. Indeed, we can choose τ > 0 sufficiently small such that

τ M 0 L W 0 2 and τ L 1. (4.11)
The second condition guarantees, that for t ∈ [T 0 , T 0 + τ ], the characteristic going backwards in time and starting from (1, t) reaches x = 0 for a time t T 0 , and then, since u(s) = y(s) for s ∈ [0, T 0 ], we easily get

ρ(1, t) M 0 , t ∈ [T 0 , T 0 + τ ].
In particular, we get

τ y L ∞ (T0,T0+τ ) W 0 2 .
Choose then the value of α(τ ) such that

2W 1 W 0 -1 α(τ ) W 1 -W 0 τ M 0 L + 1,
Then (4.10) and (4.9) are both satisfied. Note that such choice is always possible due to the first condition in (4.11).

Here is an example of a continuous non-decreasing function α strictly larger than 1:

α c,τ (t) = 1 + (c -1) t τ , for t > 0, with c ∈ 2W 1 W 0 -1, W 1 -W 0 τ M 0 L + 1 .
It is then easy to check that for

β 2L(W 1 -W 0 ) W 0 min{1, W 0 /(2M 0 )} ,
the function α β given by α β (t) = 1 + βt, for t > 0, (4.12)

coincides with α c,τ for c = 2W 1 /W 0 -1 and τ = 2(W 1 -W 0 )/(W 0 β) satisfying (4.11).
Of course, this suggests that, when we do not know any a priori guess on ρ 0 L ∞ (0,1) and λ C 0 ([W0,W1]) , we might simply consider choosing α = α β in (4.12) for sufficiently large β.

Numerics

Numerical implementations

The numerical scheme is implemented as follows.

For N ∈ N * , the space interval (0, 1) is divided into N parts, corresponding to a mesh size ∆x = 1/N . The corresponding time discretization parameter is ∆t = ∆x/λ M , where λ M max{λ(s), s ∈ R}, or at least λ M max{λ(s), s ∈ [W 0 , W 1 ]}, in which [W 0 , W 1 ] is the interval in which we want to reconstruct λ (note that this requires an a priori information on the L ∞ bound of λ on the interval of interest).

In the following, we assume that the initial condition ρ 0 satisfies the assumption 1.2 and is continuous, so that we can approximate it by a discrete function in a reasonable sense, and that

W 0 = ∆x N k=1 ρ 0 (k∆x),
and we set ρ 0 k = ρ 0 (k∆x) for all k ∈ {0, • • • , N }. The function ρ is then approximated by a sequence of vectors (

ρ n ) n∈N = (ρ n 0 , • • • , ρ n N )
n∈N , in the sense that ρ n m denotes the discrete approximation of the value of ρ at (t n , x m ) where t n = n∆t and x m = m∆x. Similarly, (W n ) n∈N is a sequence of real number approximating W at time t n and given by

W n = ∆x N k=1 ρ n k , (n ∈ N).
Corresponding to the algorithm presented in Theorem 1.1, we also introduce a continuous non-decreasing function α : (0, ∞) → (1, ∞).

We then use the following explicit solver, given for n ∈ N by

                         ρ n+1 m = ρ n m - ∆tλ(W n ) ∆x (ρ n m -ρ n m-1 ), m = 1, • • • , N, ρ n+1 0 = ρ n+1 N , if t n+1 T 0 , α(t n+1 -T 0 )ρ n+1 N if t n+1 > T 0 , ρ 0 m = ρ 0 (m∆x), for m = 0, • • • , N, with W n = ∆x N k=1 ρ n k , (5.1) 
where T 0 is given by

T 0 = t n0 + W 0 -∆t n0-1 n=0 y(t n ) y(t n0 ) ,
and where t n0 is such that

∆t n0-1 n=0 y(t n ) < W 0 ∆t n0 n=0 y(t n ).
Note that this amounts to approximate the observation y by the step function which is equal to λ(W

(t n ))ρ n N +1 on [t n , t n+1 ).
We stop the algorithm (5.1) when

W n > W 1 ,
which guarantees that t n > T 1 in some sense (recall that, in the continuous setting, W (T 1 ) = W 1 and that W is strictly increasing on [T 0 , T 1 ]). Note that, since ρ 0 satisfies Assumption 1.2 and is continuous, it is easy to check that (ρ n m ) n∈N,m∈{0,••• ,N } solving (5.1) stays positive. This is crucial to guarantee the fact that T 0 and T 1 are finite, and the existence and uniqueness of the various quantities defined below and obtained from the direct simulation of (5.1) (which can be proved in the same lines as the proof of Theorem 1.1).

From now on, we assume that we have computed the solution (5.1) and that only (y(t n )) n∈N and W 0 are now known, where y(t n ) = λ(W n )ρ n m . Note that W n can be computed immediately by the formula

W n =      W 0 if t n < T 0 , W 0 + ∆t n-1 k=n0 (α(t k -T 0 ) -1)y(t k ) if t n T 0 .
and is non-decreasing.

In the following, since the natural class for y is rather L p (0, T 1 ) and for W is rather W 1,p (0, T ), we do our computations by thinking that y is a piecewise constant function taking value y(t k ) on the interval [t k , t k+1 ), and W as a continuous piecewise linear function which coincides with

t → W k + (t -t k )(W k+1 -W k )/∆t on the interval [t k , t k+1 ].
For any mesh point t k ∈ [T 0 , T 1 ], we then define f (t k ) as follows. We introduce n k as the unique positive integer satisfying

W n k ∆t k n=n k y(t n ),
and ∆t

k n=n k +1 y(t n ) W n k +1 ,
where the uniqueness is deduced from the positivity of y and the monotonicity of W , and we then set f (t k ) as the unique solution of

W n k + (f (t k ) -t n k ) W n k +1 -W n k ∆t = ∆t k n=n k y(t n ) -(f (t k ) -t n k )y(t n k ).
This yields

f (t k ) = t n k + ∆t ∆t t k n=n k y(t n ) -W n k (∆t)y(t n k ) + W n k +1 -W n k . (5.2)
Finally, considering the approximation of λ(W ) by a linear piecewise continuous function, we approximate λ(W (f (t k ))) as follows

λ(W (f (t k ))) := λ(W n k ) + (f (t k ) -t n k ) λ(W n k +1 ) -λ(W n k ) ∆t . (5.3) 
Formula (1.8) is then approximated as follows: For any mesh point

t k ∈ [T 0 , T 1 ], λ(W k ) =              λ(W 0 ) if t k = T 0 , λ(W 0 ) f (t k ) -0 t k -T 0 if t k-1 T 0 < t k , λ(W (f (t k ))) f (t k ) -f (t k-1 ) ∆t if t k-1 > T 0 .
(5.4)

Numerical tests

In this part, we will use Matlab to test numerically the algorithm of Theorem 1.1 for several choices of λ.

We take the initial value ρ 0 given by ρ 0 (x) = sin(πx) + 1, whose corresponding total mass is W (0) = 2 π + 1 ≈ 1.6366. We choose W 1 = 2W 0 , which means our reconstructing interval is [W (0), 2W (0)], i.e about [1.6366, 3.2732]. We will consider the following choices of λ: (5.5)

λ 1 (s) = 3 + 2s,
Note that λ 1 , λ 2 belong to C 1 and satisfy the assumptions of Theorem 1.1, while λ 3 and λ 4 do not: indeed, λ 3 presents strong oscillations and λ 4 presents discontinuities.

Example 1:

Choosing a constant α in the algorithm of Theorem 1.1

In this part, we choose a constant α in the algorithm in Theorem 1.1: see Figure 1 in the case α = 3. For λ 1 , λ 2 and λ 4 , the red curve and the blue curve almost overlap except for a small error close to W 0 , probably due to some instability of the formula (5.4) close to T 0 .

For λ 3 , the algorithm does not manage to catch the strong oscillations near s = 2, which results in a significant error close to s = 2. It seems a bit surprising however, that the algorithm seems to be able to catch rather correctly the velocity after this singularity.

The case of λ 4 also performs well, even if λ 4 presents discontinuities which are in principle not compatible with the regularity properties needed for the formula (1.8) to make sense. This is probably due to the fact, that since λ 4 is piecewise smooth, the singularities on f (t) should be sparse, and the formula (1.8) makes sense almost everywhere.

We also consider the choice α = 2 in the algorithm of Theorem 1.1, see Figure 2 for the recovery of λ 2 . Note that α = 2 is the limiting case in the formula (4.7). Figure 2 exhibits a large error in the reconstruction of λ 2 near W 1 . A simple explanation could be that the computation of λ 2 at W 1 is done by considering the characteristic of the equation (1.1) started from (x, t) = (0, T 0 ), which is precisely a point in which the boundary conditions is multiplied by the factor α, and is thus discontinuous. Accordingly, the numerical scheme is very likely quite imprecise there, thus yielding this large error in the reconstruction process. In this section, we choose a linear function α α(t) = 1 + βt, t 0, (

where β is a positive constant. Figures 3 and4 show the numerical reconstructions corresponding to the choice α as in (5.6) for the choices β = 1 and β = 200 in the algorithm of Theorem 1.1, which yields rather similar results as the ones plotted in Figure 1. When α(t) = 1 + t, we see some kind of regular fluctuations in the plots (for instance on Top Right, in Figure 3). These are due to the error transported by the characteristic line starting from (x, t) = (0, T 0 ), similar to what we saw in the previous section in Figure 2.

As plotted in Figure 4, choosing β larger in (5.6), for instance β = 200, this shortcoming can be corrected. This is of course related to the discussion in Section 4.2.

Convergence rates

To conclude our study, we also provide a rough analysis on the convergence of the reconstructed velocities in the aforementioned cases. Firstly, we define the discrete L 2 error between the true velocity λ and the reconstructed one λ by the formula λ -λ 2 (W0,W1) = i2 i=i1 (λ(W i ) -λ(W i )| t=ti ) 2 (W (t i+1 ) -W (t i ))

(5.7)

where i 1 ∈ N and i 2 ∈ N are the indices such that {t i } i∈{i1,••• ,i2} are all the mesh points in [T 0 , T 1 ]. Taking λ 2 in (5.5) for example, we can compute the error for different N , which are given in Table 1. Figure 5 displays the plot of the convergence rates of the algorithm in logarithmic scales, underlining the fact that all choices of α have similar convergence rates, all of them being roughly of order 1. 
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. 3 )
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 1 Figure 1: Plots of the velocities reconstructed using the Algorithm presented in Theorem 1.1 discretized as explained in Section 5.1, with the choice α = 3, for the velocities λ in (5.5). Top left corresponds to λ 1 , top right to λ 2 , bottom left to λ 3 and bottom right to λ 4 . The reconstructed velocity is plotted in blue, and the true velocity in red.

Figure 2 :

 2 Figure 2: Plots of the velocities reconstructed using the Algorithm presented in Theorem 1.1 discretized as explained in Section 5.1, with the choice α = 2, for the velocity λ 2 in (5.5). The reconstructed velocity is plotted in blue, and the true velocity in red.
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 22 Example 2: Choosing a linear α in the algorithm of Theorem 1.1

Figure 3 :

 3 Figure 3: Plots of the velocities reconstructed using the Algorithm presented in Theorem 1.1 discretized as explained in Section 5.1, with the choice α(t) = 1 + t, for the velocities λ in (5.5). Top left corresponds to λ 1 , top right to λ 2 , bottom left to λ 3 and bottom right to λ 4 . The reconstructed velocity is plotted in blue, and the true velocity in red.

Figure 4 :

 4 Figure 4: Plots of the velocities reconstructed using the Algorithm presented in Theorem 1.1 discretized as explained in Section 5.1, with the choice α(t) = 1 + 200t, for the velocities λ in (5.5). Top left corresponds to λ 1 , top right to λ 2 , bottom left to λ 3 and bottom right to λ 4 . The reconstructed velocity is plotted in blue, and the true velocity in red.

  0.1835 0.0753 0.0383 0.0195 0.0081 0.0042 error of α = 1 + t 0.2201 0.1143 0.0482 0.0252 0.0133 0.0059 0.0032 error of α = 1 + 200t 1.2027 0.6824 0.2847 0.1435 0.0721 0.0288 0.0144 Table 1: Tables of the errors λ -λ 2 (W0,W1) with different N for the choices α(t) = 3, α(t) = 1 + t, and α(t) = 1 + 200t, in the case λ = λ 2 in (5.5).

Figure 5 :

 5 Figure 5: Plot of the errors λ -λ 2 (W0,W1) versus N in logarithmic scales for the choices α(t) = 3 (left, the linear regression has slope=-0.9663), α(t) = 1 + t (middle, the linear regression has slope=-0.9199), and α(t) = 1 + 200t (right, the linear regression has slope=-0.9695), in the case λ = λ 2 in (5.5).
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