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Sylvain Ervedoza† Zhiqiang Wang‡ Jiacheng Zhang§

March 17, 2023

Abstract

In this article, we consider an inverse problem for the non-local system ∂tρ+λ(W (t))∂xρ = 0, in which

W (t) =

∫ 1

0

ρ(x, t)dx is the total mass of the system. We propose an algorithm and derive a formula

to reconstruct the velocity function λ(·), assumed to be strictly positive, in an interval [W−,W+] which
contains the initial total mass W (0), by suitably choosing the influx condition u(t) = λ(W (t))ρ(0, t) and
measuring the outflux y(t) = λ(W (t))ρ(1, t). Some numerical experiments are provided to illustrate the
performance of our method.

Keywords Transport equation, inverse problem, non-local velocity.
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1 Introduction

1.1 Main results

Our work is motivated by problems arising in the control of semiconductor manufacturing systems which are
characterized by their highly re-entrant character, see [1]. Such model is described by the following partial
differential equation, corresponding to a 1-d non-local transport equation:

∂tρ+ λ(W (t))∂xρ = 0, (x, t) ∈ (0, 1)× (0, T ),

W (t) =

∫ 1

0

ρ(x, t)dx, t ∈ (0, T ),

u(t) = λ(W (t))ρ(0, t), t ∈ (0, T ),

y(t) = λ(W (t))ρ(1, t), t ∈ (0, T ),

ρ(x, 0) = ρ0(x), x ∈ (0, 1),

(1.1)

Here, T > 0, λ : R 7→ (0,∞) is a C1 continuous function, ρ0 is the initial data which belongs to Lp(0, 1)(for
some p > 1) and ρ(·, ·) is the corresponding weak solution of (1.1) which is defined in Section 2. In the
manufacturing system the natural control input is the influx u(·), and the output is the outflux y(·).

The well-posedness of the open-loop system (1.1) with known influx u is considered in [6], see also [12] for
a generalization to the case of a velocity depending on x and W (t) of the form λ(x,W (t)), and [8] for global
well-posedness for closed loop versions (that is with u given in terms of y) of (1.1).

In our work, we assume that λ is not known (but still satisfies the a priori condition λ : R 7→ (0,∞) and
λ ∈ C1(R)), and our goal is to reconstruct it. In order to do that, we assume the following:
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sylvain.ervedoza@math.u-bordeaux.fr
‡School of Mathematical Sciences and Shanghai Key Laboratory for Contemporary Applied Mathematics, Fudan University,

Shanghai 200433, China. E-mail: wzq@fudan.edu.cn
§School of Mathematical Sciences, Fudan University, Shanghai 200433, China. Institut de Mathématiques de Bordeaux UMR
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Assumption 1.1. The initial mass W (0) = W0 is known.

Assumption 1.2. There exists p > 1 such that ρ0 ∈ Lp(0, 1) and there exists a positive constant m such that
ρ0 satisfies

ρ0(x) > m, a.e x ∈ (0, 1). (1.2)

Assumption 1.3. We can measure the output y, and design the input u in terms of y, so that u at time t
depends only on y(t).

The main result of this paper is the following:

Theorem 1.1. Assume that λ : R 7→ (0,∞) is a C1(R) continuous function and that Assumptions 1.1-1.2–1.3
hold. Let W1 > W0 and α : [0,∞) → [1,∞) be a continuous non-decreasing function which is larger than 1
when t > 0.

Let us consider the following algorithm:

Step 1. While t > 0 is such that ∫ t

0

y(s) ds < W0,

we impose
u(t) = y(t) (1.3)

in the equation (1.1).

We call T0 the first time t > 0 in which ∫ t

0

y(s) ds = W0.

Step 2. For t > T0, we impose
u(t) = α(t− T0)y(t), (1.4)

in the equation (1.1), that we solve up to the time T1 defined by∫ T1

T0

(α(s− T0)− 1)y(s)ds = W1 −W0. (1.5)

This algorithm enjoys the following properties:

1. The times T0 and T1 are finite.

2. The function t 7→W (t) is known on the whole time interval [0, T1] and is given by

W (t) = W0 +

∫ t

0

(u(s)− y(s))ds, t ∈ [0, T1]. (1.6)

Besides, for all t ∈ [0, T1], W (t) ∈ [W0,W1] and W is surjective on [W0,W1]. The function W is constant
on [0, T0] and increasing on [T0, T1].

3. For every t ∈ [T0, T1], there exists a unique f(t) ∈ [0, t) such that∫ t

f(t)

y(s)ds = W (f(t)). (1.7)

This function f is C1 and increasing on [T0, T1].

4. The function t 7→ λ(W (t)) on [T0, T1] satisfies λ(W0) =
1

T0
,

λ(W (t)) = f ′(t)λ(W (f(t))), t ∈ [T0, T1].
(1.8)
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Accordingly, we can recover the velocity λ on the whole interval [W0,W1] from the information given by the
measurement y on the whole time interval [0, T1].

Remark 1.1. In Assumption 1.2, the condition (1.2) with m > 0 can be replaced by ρ0(x) > 0, a.e.x ∈ (0, 1),
see Section 4.1 by allowing to choose u under the form u(t) = y(t) + v(t) for some time, where v ∈ C0[0,∞)∩
L1(0,∞) is a decreasing positive function.

Remark 1.2. If one wants to reconstruct the velocity λ in an interval I of the form I = [W−,W+] with
0 < W− < W0 < W+, we can put ourselves in the situation of Theorem 1.1 by doing as follows. For k ∈ (0, 1),
we impose u(t) = ky(t) for t ∈ (0, T∗) in (1.1), where T∗ is the first time such that

W0 +

∫ t

0

(u(s)− y(s)) ds = W−.

It is easy to check that, if λ : R 7→ (0,∞) is a C1(R) function and Assumptions 1.1-1.2–1.3 hold, then T∗ is
finite, W (T∗) = W−, and assumptions 1.1-1.2–1.3 still hold at time T∗. Therefore, shifting t = T∗ to t = 0,
we can apply Theorem 1.1 to reconstruct λ on [W−,W+].

1.2 Related references

There is a wide range of literature on inverse problems for partial differential equations. We refer for instance
to the textbooks [2, 10, 11] for an overview of the domain and presentation of some relevant results for inverse
problems for hyperbolic equations, and in particular the wave equation.

In the context of the recovery of the velocity in a transport equation, we refer in particular to [4] and
[5]. In [4], the authors consider the inverse problems of determining the velocity function c in the quasi-linear
transport equation

ut + c(u)ux = 0. (1.9)

Under some assumptions on the monotonicity of the initial and boundary data, and the knowledge of the
output boundary conditions, the inverse problem is proved to have a unique solution, which is well-posed or
ill-posed depending on which side the additional measurement is performed. We also point out the discussion
on the determination of source terms in quasilinear transport equations in [4, 5].

We are not aware of many results in the same spirit, and we believe that Theorem 1.1 is the first one to
address the recovery of the velocity in a non-local transport equation of the form (1.1).

In fact, so far, equation (1.1) has been mainly discussed from the controllability and stabilization points of
view. Regarding controllability properties, we refer in particular to [6, 12] and in the context of networks, to
[9].

The output feedback stabilization (i.e. with a closed loop control) for the system (1.1) under a suitable
feedback law is another natural and interesting control problem, which has been studied in [7], where it has
been proved that if ρ is the target constant states around which we want to stabilize, for k ∈ (−1, 1), the
proportional controller

u(t)− ρ̄λ(ρ̄) = k(y(t)− ρ̄λ(ρ̄)), t ∈ (0,∞), (1.10)

stabilizes the closed-loop system (1.1) if and only if

d :=
ρλ′(ρ)

λ(ρ)
satisfies d > −1. (1.11)

We also refer to [7] for the spectral analysis of the linearized model, to [3] for the global exponential stabilization
result in L2(0, 1) for some classes of velocity functions, or to [8] for a time-varying feedback control to achieve
a semi-global stabilization for (1.1) under the assumption that s 7→ sλ(s) is injective (which, locally around ρ,
only means d 6= −1).

Outline. The rest of the paper is organized as follows. In Section 2, we recall the well-posedness results
for the problem (1.1). The proof of Theorem 1.1 is given in Section 3. Some extensions of Theorem 1.1 are
discussed in Section 4. Finally in Section 5, we give some numerical experiments to illustrate the performances
of the algorithm proposed in Theorem 1.1.
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2 Preliminaries

Before considering the reconstructing problem, we need to recall the usual definition of a weak solution for
(1.1) and give the corresponding well-posedness result for our closed-loop system.

Definition 2.1. Let p > 1 and ρ0 be a non-negative function in Lp(0, 1). Let T > 0, α be a positive function
in L∞(0, T ) and v be a non-negative function in Lp(0, T ). A weak solution of the Cauchy problem (1.1) with
boundary condition

u(t) = α(t)y(t) + v(t), t ∈ (0, T ) (2.1)

is a function ρ ∈ C0([0, T ];Lp(0, 1)) such that for every s ∈ (0, T ] and every ϕ ∈ C1([0, 1]× [0, s]) satisfying

ϕ(x, s) = 0, ∀x ∈ [0, 1],

one has:∫ s

0

∫ 1

0

ρ(x, t)(∂tϕ(x, t) + λ(W (t))∂xϕ(x, t)) dxdt

+

∫ s

0

(α(t)y(t) + v(t))ϕ(0, t) dt−
∫ s

0

y(t)ϕ(1, t) dt+

∫ 1

0

ρ0(x)ϕ(x, 0) dx = 0. (2.2)

Applying a fixed point argument as in [8, Theorem 2.1], we can get the following well-posedness result:

Theorem 2.1. Assume that λ : R 7→ R∗+ is a C1 function. Let p > 1 and ρ0 be a non-negative function in
Lp(0, 1). Let α be a positive function L∞loc(0,∞) and v be a non-negative function in Lploc(0,∞). There exists
a unique time T ∗ and a unique weak solution ρ ∈ C0([0, T ∗);Lp(0, 1)) of system (1.1)–(2.1). Moreover, we
have

W ∈W 1,p
loc ([0, T ∗)), y ∈ Lploc(0, T

∗). (2.3)

In this case, T ∗ is finite if and only if limT→T∗ ‖ρ(·, t)‖Lp(0,1) =∞.

Remark 2.1. In our setting, the initial data ρ0 and the boundary data v are non-negative. Consequently, the
solution ρ is non-negative in (0, L)× (0, T ∗) and u, y are non-negative in (0, T ∗).

Remark 2.2. In the following, we will check that the maps t 7→ ‖ρ(·, t)‖Lp(0,1) and t 7→ W (t) do not blow
up in the reconstruction process of Theorem 1.1, which, according to Theorem 2.1, entails that the solution of
(1.1) complemented with (1.3) on (0, T0) and (1.4) on (T0, T1) exist up to T1.

Remark 2.3. For later use, let us also point out that, for solutions ρ of (1.1)–(2.1), integrating in x the
equation (1.1)(1), we easily get

dW (t)

dt
= u(t)− y(t), in D′(0, T ). (2.4)

3 Proof of Theorem 1.1

In this section, we give the proof of Theorem 1.1.

The time interval [0, T0). We first focus on the time interval [0, T0). During that time interval, the equations
(1.1) are completed with the boundary conditions (1.3), so that from (2.4),

∀t ∈ [0, T0), W (t) = W0,

and the velocity λ(W (t)) is constant equal to λ(W0) for all t ∈ [0, T0).
Note that we also have that the norm ‖ρ(·, t)‖Lp(0,1) is constant for t ∈ [0, T0) since the boundary conditions

(1.3) amounts to solve a transport equation at constant speed on a torus, so that the solution is well-defined
up to the time T0 according to Theorem 2.1. In fact, for this argument to be made rigorous, we should set T̃0

as the supremum of the times τ > 0 such that supt∈[0,τ ] ‖ρ(·, t)‖Lp(0,1) <∞ and

∫ τ

0

y(s) ds 6 W0, and check

that this supremum T̃0 necessarily satisfies T̃0 = ∞ or T̃0 < ∞ and

∫ T̃0

0

y(s) ds = W0. We will check next

that T̃0 is necessarily finite, so that it coincides with the time T0 given in Theorem 1.1.
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Using the characteristic method and Assumption 1.2, we easily get that ρ is bounded from below by m for
all (x, t) ∈ [0, 1]× [0, T̃0), and thus that

∀t ∈ [0, T̃0), y(t) = λ(W (t))ρ(1, t) = λ(W0)ρ(1, t) > mλ(W0) > 0.

Accordingly, the map t 7→
∫ t

0

y(s) ds is strictly increasing and is bounded from below by t 7→ mλ(W0)t. This

implies that T̃0 = T0 is finite and ∫ T0

0

y(s) ds = W0. (3.1)

The time interval [T0, T1). We start by noticing that ρ(·, T0) is still bounded from below by m and belongs
to Lp(0, 1) with the same p as in Assumption 1.2.

We then introduce T̃1 as the supremum of the times τ > T0 such that supt∈[T0,τ ] ‖ρ(·, t)‖Lp(0,1) < ∞ and∫ τ

T0

(α(s−T0)−1)y(s) ds 6W1−W0, and check that this supremum T̃1 necessarily satisfies T̃1 =∞ or T̃1 <∞

and

∫ T̃1

T0

(α(s− T0)− 1)y(s) ds = W1 −W0.

First, it is easy to check that for t ∈ (T0, T̃1), ρ(·, t) stays bounded from below by m, y stays positive and,
thus, according to (2.4), W is increasing. Together with (2.4), the choice (1.5) imposes that W is necessarily
smaller than W1 on the time interval [T0, T̃1). Therefore, for all t ∈ [T0, T̃1), W (t) ∈ [W0,W1].

Since the velocity λ is bounded from below by infs∈[W0,W1]{λ(s)} and from above by sups∈[W0,W1]{λ(s)}
on the time interval [T0, T̃1), the map t 7→ ‖ρ(·, t)‖Lp(0,1) is bounded in any time interval of the form [T0, τ ]

for τ finite and smaller than T̃1, thus guaranteeing that T̃1 = ∞ or T̃1 < ∞ and can be alternatively defined
by (1.5).

But, since ρ(·, t) stays bounded from below by m and W stays in the interval [W0,W1],

∀t ∈ [T0, T̃1), y(t) > m inf
s∈[W0,W1]

{λ(s)} > 0. (3.2)

Accordingly, t 7→
∫ t

T0

(α(s − T0) − 1)y(s) ds is strictly increasing for t ∈ [T0, T̃1] and, for all ε > 0, for all

t ∈ [T0 + ε, T̃1), ∫ t

T0

(α(s− T0)− 1)y(s) ds > (α(ε)− 1)(t− (T0 + ε))m inf
s∈[W0,W1]

{λ(s)}.

Since α(ε) > 1, we conclude that necessarily T̃1 = T1 is finite and can be alternatively defined by (1.5).

Properties of W . Note that, in the two above paragraphs, we also proved that W is non-decreasing, that
it is surjective on [W0,W1] and takes value in [W0,W1] on [0, T1]. The formula (1.6) directly comes from (2.4).
The fact that then W is known at all times then comes from the fact that u is explicitly given in terms of y
in the time interval [T0, T1]. In particular, we have

W (t) =


W0, for t ∈ [0, T0],

W0 +

∫ t

T0

(α(s− T0)− 1)y(s) ds, for t ∈ [T0, T1].
(3.3)

In fact, using (3.2), we also have that W is strictly increasing in [T0, T1].

Existence and uniqueness of f(t) for t ∈ [T0, T1] satisfying (1.7). We introduce the function

F (t, τ) =

∫ t

τ

y(s) ds−W (τ), (t, τ) ∈ [0, T1]2. (3.4)

Note that W is non-decreasing on [0, T1], always larger than W0, and y is positive on [0, T1]. Recalling the
property (3.1), we easily get that for t ∈ [T0, T1], F (t, 0) > 0 > F (t, t). Also, since W ∈ W 1,p(0, T1) (recall
Theorem 2.1) and is non-decreasing on [0, T1], and y is strictly positive on [0, T1], for t ∈ [0, T1], τ 7→ F (t, τ)
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is continuous and strictly decreasing with respect to τ ∈ [0, t]. By continuity and strict monotonicity, we
conclude that for any fixed t ∈ [T0, T1], there exists a unique f(t) ∈ [0, t) such that F (t, f(t)) = 0, i.e., (1.7)
holds.

Now we investigate the continuity and regularity of the function f on [T0, T1]. In order to do that, we
rewrite F as

F (t, τ) = h(t)− g(τ), with h(t) =

∫ t

0

y(s) ds and g(τ) =

∫ τ

0

y(s) ds+W (τ). (3.5)

The above arguments show that g is continuous on [0, T1], and strictly increasing. Consequently, g has a
continuous strictly increasing inverse g−1 defined on [g(0), g(T1)]. Noting that h(t) ∈ [g(0), g(T1)], t ∈ [T0, T1],
f is simply given by

f(t) = g−1(h(t)), t ∈ [T0, T1].

Since h ∈W 1,p(0, T ), it is continuous, so that f is continuous on [T0, T1]. Besides, since h is strictly increasing
on [0, T1] , f is also strictly increasing on [T0, T1].

Differentiability of f . To get that f is in fact differentiable, it is convenient to characterize f as follows:
for all t ∈ [T0, T1], f(t) coincides with f̃(t) defined as the unique element of [0, T1] such that∫ t

f̃(t)

λ(W (s)) ds = 1. (3.6)

Indeed, since s 7→ λ(W (s)) is continuous and strictly positive, for all t ∈ [T0, T1], there exists at most one
element f̃(t) such that (3.6) holds. Now, by the characteristic method, for t ∈ [T0, T1], setting t̃ ∈ [0, T1] such
that ∫ t̃

f(t)

λ(W (s)) ds = 1,

we have, if t̃ > t, i.e.

∫ t

f(t)

λ(W (s)) ds < 1,

W (f(t)) =

∫ t

f(t)

y(s) ds =

∫ t

f(t)

λ(W (s))ρ(1, s) ds

=

∫ t

f(t)

λ(W (s))ρ

(
1−

∫ s

f(t)

λ(W (θ))dθ, f(t)

)
ds

=

∫ 1

1−
∫ t
f(t)

λ(W (θ))dθ

ρ(x, f(t)) dx,

and, with similar computations, if t̃ < t, i.e.

∫ t

f(t)

λ(W (s)) ds > 1,

W (f(t)) =

∫ t

f(t)

y(s) ds =

∫ t̃

f(t)

λ(W (s))ρ(1, s)ds+

∫ t

t̃

λ(W (s))ρ(1, s) ds

=

∫ 1

0

ρ(x, f(t)) dx+

∫ t

t̃

λ(W (s))ρ(1, s) ds.

Since, for t ∈ [T0, T1],

W (f(t)) =

∫ 1

0

ρ(x, f(t)) dx,

by definition of W , and ρ and λ(W ) are strictly positive, we necessarily have that t̃ = t, that is, from the
definition of t̃, ∫ t

f(t)

λ(W (s)) ds = 1.

Therefore, for all t ∈ [T0, T1], we have f(t) = f̃(t), where f̃(t) is defined by (3.6).
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It follows that, equivalently to (1.7), f can be defined by the implicit relation

k(t, f(t)) = 0, where k(t, τ) =

∫ t

τ

λ(W (s)) ds− 1, for t ∈ [T0, T1] and τ ∈ [0, T1]. (3.7)

Since W is continuous on [0, T1], k is C1 on [T0, T1] × [0, T1]. Since we also have that ∂τk(t, τ) = −λ(W (τ))
does not vanish for (t, τ) ∈ [T0, T1] × [0, T1], f is thus C1 on [T0, T1] by the implicit function theorem and
satisfies the equation

λ(W (t))− λ(W (f(t)))f ′(t) = 0, for t ∈ [T0, T1].

This proves items 3 and 4 of Theorem 1.1, except for the relation λ(W0) = 1/T0 that we now prove.
Indeed, we easily check that f(T0) = 0, since W0 satisfies (3.1). Accordingly, we have, from (3.7), that∫ T0

0

λ(W (s)) ds = 1.

But, for all s ∈ [0, T0], W (s) = W0 and λ(W (s)) = λ(W0). Therefore, we obtain from the previous relation
that T0λ(W0) = 1, as announced. This concludes the proof of Theorem 1.1.

4 Extensions of Theorem 1.1

In this section, we give two extensions of Theorem 1.1. The first one provides a relaxation of the condition
(1.2) in Assumption 1.2. The second one discusses the choice of the function α in the algorithm of Theorem
1.1.

4.1 Relaxation of Assumption 1.2

In Assumption 1.2, the condition ρ0(x) > m > 0, a.e. x ∈ (0, 1) can be replaced by ρ0(x) > 0, a.e. x ∈ (0, 1)
according to the following proposition.

Proposition 4.1. Assume p > 1, λ : R 7→ (0,∞) is a C1(R) function and that the initial data ρ0 ∈ Lp(0, 1)
is non-negative. Let

u(t) = y(t) + v(t), t ∈ (0,∞), (4.1)

where v is a positive function in C0([0,∞)) ∩ L1(0,∞). Then define T ∗ by

T ∗ = sup

{
τ > 0 such that

∫ τ

0

y(s)ds = W0

}
(4.2)

where y is the outflux corresponding to the closed-loop system (1.1)-(4.1). Moreover, for any T > T ∗, there
exists a positive constant mT depending on T such that

ρ(x, T ) > mT , a.e x ∈ (0, 1), and W (T ) = W0 +

∫ T

0

v(t) dt.

Remark 4.1. A simple example of function v in C0([0,∞))∩L1(0,∞) satisfying the assumption of Proposition
4.1 is given by v(t) = 1

1+t2 for t ∈ [0,∞).

Proof. Below, we will not discuss the fact that the solution of (1.1)–(4.1) is well-defined for all times. The
proof of this result can be done easily, using Theorem 2.1 and proving that the Lp norm of the solution cannot
blow up in finite time, and its proof is left to the reader. The fact that the solution ρ stays non-negative
everywhere is also important and is easy to check.

Firstly, we prove that T ∗ given by (4.2) is finite. Integrating (2.4) and using (4.1) yield that

W (t) = W0 +

∫ t

0

v(s)ds, t ∈ [0,∞).

Thus, for all t > 0,
0 6W (t) 6M ,W0 + ‖v‖L1(0,∞), t ∈ [0,∞). (4.3)

7



Then λ(W (t)) is bounded below by inf
s∈[0,M ]

{λ(s)} > 0. Therefore the characteristic curve starting from the

point (0, 0) reaches the right boundary x = 1 in finite time T∗, i.e.,∫ T∗

0

λ(W (s))ds = 1. (4.4)

Using the characteristic formula, we immediately get∫ T∗

0

y(s)ds =

∫ T∗

0

λ(W (s))ρ(1, s)ds =

∫ 1

0

ρ0(x)dx = W0. (4.5)

For any T > T∗, for almost every x ∈ (0, 1), the characteristic curve passing through the point (x, T ) and
going backwards in time intersects the left boundary x = 0 at a positive time τ(x, T ) > 0 (characterized by∫ T
τ(x,T )

λ(W (s))ds = x). Additionally,

ρ(x, T ) = ρ(0, τ(x, T )).

By the choice of u in (4.1) and (4.3), and since ρ is non-negative everywhere, we deduce that

ρ(x, T ) = ρ(0, τ(x, T )) =
u(τ(x, T )))

λ(W (τ(x, T ))))
>

inf
s∈[τ(1,T ),T ]

{v(s)}

sup
s∈[0,M ]

{λ(s)}
> 0.

This also implies that for all t > T∗, y(t) > 0, and thus, for all T > T∗,∫ T

0

y(s) ds > W0.

Accordingly, T∗ coincides with T ∗ given by (4.2). This concludes the proof of Proposition 4.1.

4.2 Discussion on the choice of the function α in the reconstruction algorithm

The algorithm proposes in Theorem 1.1 provides a formula (1.8) to recover the velocity λ, which requires, to
obtain the value of λ at W (t), to know the value of λ at an early time W (f(t)), where f(t) is computed by
(1.7).

The discussion below aims at indicating how the choice of the function α in Theorem 1.1 can guarantee
that

∀t ∈ [T0, T1], f(t) ∈ [0, T0]. (4.6)

Indeed, in such case, for all t ∈ [T0, T1], W (f(t)) is simply given by W0 and the computations of f(t) in
(1.7) and of λ(W (t)) in (1.8) become easier; at least from the numerical point, they will generate less numerical
errors (see Section 5 for some examples).

Discussion 1. The case of a constant α. In this case, we get the following result:

Proposition 4.2. Under the assumptions of Theorem 1.1.
If α is a constant function, condition (4.6) holds if and only if

α >
W1

W0
. (4.7)

Proof. Recall from Theorem 1.1 that f is increasing on [T0, T1]. Therefore, condition (4.6) holds if and only if

f(T1) 6 T0. (4.8)

Recalling the definition (1.5) of T1, we get∫ T1

T0

y(s)ds =
W1 −W0

α− 1

8



On the other hand, since W is constant equal to W0 on [0, T0] and strictly increasing on [T0, T1], y is strictly
positive, and ∫ T1

f(T1)

y(s)ds = W (f(T1)),

the condition (4.8) holds if and only if ∫ T1

T0

y(s)ds 6W0.

Accordingly, condition (4.6) is equivalent to the condition (4.7).

Discussion 2. When α is not constant. We find the following sufficient condition to (4.6).

Proposition 4.3. Under the assumptions of Theorem (1.1), with α : [0,∞) → [1,∞) being a continuous
non-decreasing function which is strictly larger than 1 when t > 0.

If the function α is such that there exists τ > 0 such that∫ T0+τ

T0

(α(s− T0)− 1)y(s)ds 6W1 −W0, (4.9)

and

τ‖y‖L∞(T0,T0+τ) +
1

α(τ)− 1
(W1 −W0) 6W0, (4.10)

then condition (4.6) holds.

Proof. First, since (α(s− T0)− 1)y(s) > 0 for all s > T0, it follows from (4.9) and (1.5), that

τ 6 T1 − T0.

Moreover, by the monotonicity of α and the definition of T1 in (1.5), we have

W1 −W0 =

∫ T1

T0

(α(s− T0)− 1)y(s)ds

> (α(τ)− 1)

∫ T1

T0+τ

y(s)ds

> (α(τ)− 1)
(∫ T1

T0

y(s)ds− τ‖y‖L∞(T0,T0+τ)

)
.

Therefore, if (4.10) holds, we have ∫ T1

T0

y(s)ds 6W0,

Since for all t ∈ [0, T1], W (t) ∈ [W0,W1] by Theorem 1.1, we necessarily have∫ T1

f(T1)

y(s)ds = W (f(T1)) >W0 >
∫ T1

T0

y(s)ds.

Since y is positive, we thus necessarily have f(T1) 6 T0, which entails (4.6) since f is non-decreasing. This
concludes the proof of Proposition 4.3.

In practice, it is easy to construct α satisfying the conditions of Proposition 4.3 if we additionally have
rough estimates on ‖ρ0‖L∞(0,1) and ‖λ‖C0([W0,W1]) of the form ‖ρ0‖L∞(0,1) 6 M0 and ‖λ‖C0([W0,W1]) 6 L.
Indeed, we can choose τ > 0 sufficiently small such that

τM0L 6
W0

2
and τL 6 1. (4.11)

The second condition guarantees, that for t ∈ [T0, T0 + τ ], the characteristic going backwards in time and
starting from (1, t) reaches x = 0 for a time t 6 T0, and then, since u(s) = y(s) for s ∈ [0, T0], we easily get

ρ(1, t) 6M0, t ∈ [T0, T0 + τ ].

9



In particular, we get

τ‖y‖L∞(T0,T0+τ) 6
W0

2
.

Choose then the value of α(τ) such that

2W1

W0
− 1 6 α(τ) 6

W1 −W0

τM0L
+ 1,

Then (4.10) and (4.9) are both satisfied. Note that such choice is always possible due to the first condition in
(4.11).

Here is an example of a continuous non-decreasing function α strictly larger than 1:

αc,τ (t) = 1 + (c− 1)
t

τ
, for t > 0, with c ∈

[
2W1

W0
− 1,

W1 −W0

τM0L
+ 1

]
.

It is then easy to check that for

β >
2L(W1 −W0)

W0 min{1,W0/(2M0)}
,

the function αβ given by
αβ(t) = 1 + βt, for t > 0, (4.12)

coincides with αc,τ for c = 2W1/W0 − 1 and τ = 2(W1 −W0)/(W0β) satisfying (4.11).
Of course, this suggests that, when we do not know any a priori guess on ‖ρ0‖L∞(0,1) and ‖λ‖C0([W0,W1]),

we might simply consider choosing α = αβ in (4.12) for sufficiently large β.

5 Numerics

5.1 Numerical implementations

The numerical scheme is implemented as follows.
For N ∈ N∗, the space interval (0, 1) is divided into N parts, corresponding to a mesh size ∆x = 1/N .

The corresponding time discretization parameter is ∆t = ∆x/λM , where λM > max{λ(s), s ∈ R}, or at least
λM > max{λ(s), s ∈ [W0,W1]}, in which [W0,W1] is the interval in which we want to reconstruct λ (note that
this requires an a priori information on the L∞ bound of λ on the interval of interest).

In the following, we assume that the initial condition ρ0 satisfies the assumption 1.2 and is continuous, so
that we can approximate it by a discrete function in a reasonable sense, and that

W0 = ∆x

N∑
k=1

ρ0(k∆x),

and we set ρ0k = ρ0(k∆x) for all k ∈ {0, · · · , N}.
The function ρ is then approximated by a sequence of vectors (~ρ n)n∈N = (ρn0 , · · · , ρnN )n∈N, in the sense

that ρnm denotes the discrete approximation of the value of ρ at (tn, xm) where tn = n∆t and xm = m∆x.
Similarly, (Wn)n∈N is a sequence of real number approximating W at time tn and given by

Wn = ∆x

N∑
k=1

ρnk , (n ∈ N).

Corresponding to the algorithm presented in Theorem 1.1, we also introduce a continuous non-decreasing
function α : (0,∞) 7→ (1,∞).

We then use the following explicit solver, given for n ∈ N by

ρn+1
m = ρnm −

∆tλ(Wn)

∆x
(ρnm − ρnm−1), m = 1, · · · , N,

ρn+1
0 =

{
ρn+1
N , if tn+1 6 T0,
α(tn+1 − T0)ρn+1

N if tn+1 > T0,

ρ0m = ρ0(m∆x), for m = 0, · · · , N,

with Wn = ∆x

N∑
k=1

ρnk ,

(5.1)
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where T0 is given by

T0 = tn0
+
W0 −∆t

∑n0−1
n=0 y(tn)

y(tn0
)

,

and where tn0
is such that

∆t

n0−1∑
n=0

y(tn) < W0 6 ∆t

n0∑
n=0

y(tn).

Note that this amounts to approximate the observation y by the step function which is equal to λ(W (tn))ρnN+1

on [tn, tn+1).
We stop the algorithm (5.1) when

Wn > W1,

which guarantees that tn > T1 in some sense (recall that, in the continuous setting, W (T1) = W1 and that W
is strictly increasing on [T0, T1]).

Note that, since ρ0 satisfies Assumption 1.2 and is continuous, it is easy to check that (ρnm)n∈N,m∈{0,··· ,N}
solving (5.1) stays positive. This is crucial to guarantee the fact that T0 and T1 are finite, and the existence
and uniqueness of the various quantities defined below and obtained from the direct simulation of (5.1) (which
can be proved in the same lines as the proof of Theorem 1.1).

From now on, we assume that we have computed the solution (5.1) and that only (y(tn))n∈N and W 0 are
now known, where y(tn) = λ(Wn)ρnm.

Note that Wn can be computed immediately by the formula

Wn =


W 0 if tn < T0,

W 0 + ∆t

n−1∑
k=n0

(α(tk − T0)− 1)y(tk) if tn > T0.

and is non-decreasing.
In the following, since the natural class for y is rather Lp(0, T1) and for W is rather W 1,p(0, T ), we do our

computations by thinking that y is a piecewise constant function taking value y(tk) on the interval [tk, tk+1),
and W as a continuous piecewise linear function which coincides with t 7→W k + (t− tk)(W k+1 −W k)/∆t on
the interval [tk, tk+1].

For any mesh point tk ∈ [T0, T1], we then define f(tk) as follows. We introduce nk as the unique positive
integer satisfying

Wnk 6 ∆t

k∑
n=nk

y(tn), and ∆t

k∑
n=nk+1

y(tn) 6Wnk+1,

where the uniqueness is deduced from the positivity of y and the monotonicity of W , and we then set f(tk) as
the unique solution of

Wnk + (f(tk)− tnk
)

(
Wnk+1 −Wnk

∆t

)
= ∆t

k∑
n=nk

y(tn)− (f(tk)− tnk
)y(tnk

).

This yields

f(tk) = tnk
+ ∆t

(
∆t
∑tk
n=nk

y(tn)−Wnk

(∆t)y(tnk
) +Wnk+1 −Wnk

)
. (5.2)

Finally, considering the approximation of λ(W ) by a linear piecewise continuous function, we approximate
λ(W (f(tk))) as follows

λ(W (f(tk))) := λ(Wnk) + (f(tk)− tnk
)

(
λ(Wnk+1)− λ(Wnk)

∆t

)
. (5.3)

Formula (1.8) is then approximated as follows: For any mesh point tk ∈ [T0, T1],

λ(W k) =



λ(W0) if tk = T0,

λ(W0)
f(tk)− 0

tk − T0
if tk−1 6 T0 < tk,

λ(W (f(tk)))

(
f(tk)− f(tk−1)

∆t

)
if tk−1 > T0.

(5.4)
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5.2 Numerical tests

In this part, we will use Matlab to test numerically the algorithm of Theorem 1.1 for several choices of λ.
We take the initial value ρ0 given by ρ0(x) = sin(πx) + 1, whose corresponding total mass is W (0) =

2
π + 1 ≈ 1.6366. We choose W1 = 2W0, which means our reconstructing interval is [W (0), 2W (0)], i.e about
[1.6366, 3.2732].

We will consider the following choices of λ:

λ1(s) = 3 + 2s,

λ2(s) = 2 + sin(10s),

λ3(s) = 2 + sin
( 10

2− s

)
(2− s),

λ4(s) = ([s] mod 2) + 2.

(5.5)

Note that λ1, λ2 belong to C1 and satisfy the assumptions of Theorem 1.1, while λ3 and λ4 do not: indeed,
λ3 presents strong oscillations and λ4 presents discontinuities.

5.2.1 Example 1: Choosing a constant α in the algorithm of Theorem 1.1

In this part, we choose a constant α in the algorithm in Theorem 1.1: see Figure 1 in the case α = 3.
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Figure 1: Plots of the velocities reconstructed using the Algorithm presented in Theorem 1.1 discretized as
explained in Section 5.1, with the choice α = 3, for the velocities λ in (5.5). Top left corresponds to λ1, top
right to λ2, bottom left to λ3 and bottom right to λ4. The reconstructed velocity is plotted in blue, and the

true velocity in red.

For λ1, λ2 and λ4, the red curve and the blue curve almost overlap except for a small error close to W0,
probably due to some instability of the formula (5.4) close to T0.

For λ3, the algorithm does not manage to catch the strong oscillations near s = 2, which results in a
significant error close to s = 2. It seems a bit surprising however, that the algorithm seems to be able to catch
rather correctly the velocity after this singularity.

The case of λ4 also performs well, even if λ4 presents discontinuities which are in principle not compatible
with the regularity properties needed for the formula (1.8) to make sense. This is probably due to the fact,
that since λ4 is piecewise smooth, the singularities on f(t) should be sparse, and the formula (1.8) makes sense
almost everywhere.

We also consider the choice α = 2 in the algorithm of Theorem 1.1, see Figure 2 for the recovery of λ2.
Note that α = 2 is the limiting case in the formula (4.7).
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Figure 2: Plots of the velocities reconstructed using the Algorithm presented in Theorem 1.1 discretized as
explained in Section 5.1, with the choice α = 2, for the velocity λ2 in (5.5). The reconstructed velocity is

plotted in blue, and the true velocity in red.

Figure 2 exhibits a large error in the reconstruction of λ2 near W1. A simple explanation could be that
the computation of λ2 at W1 is done by considering the characteristic of the equation (1.1) started from
(x, t) = (0, T0), which is precisely a point in which the boundary conditions is multiplied by the factor α, and
is thus discontinuous. Accordingly, the numerical scheme is very likely quite imprecise there, thus yielding this
large error in the reconstruction process.

5.2.2 Example 2: Choosing a linear α in the algorithm of Theorem 1.1

In this section, we choose a linear function α

α(t) = 1 + βt, t > 0, (5.6)

where β is a positive constant.
Figures 3 and 4 show the numerical reconstructions corresponding to the choice α as in (5.6) for the choices

β = 1 and β = 200 in the algorithm of Theorem 1.1, which yields rather similar results as the ones plotted in
Figure 1.
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Figure 3: Plots of the velocities reconstructed using the Algorithm presented in Theorem 1.1 discretized as
explained in Section 5.1, with the choice α(t) = 1 + t, for the velocities λ in (5.5). Top left corresponds to λ1,
top right to λ2, bottom left to λ3 and bottom right to λ4. The reconstructed velocity is plotted in blue, and

the true velocity in red.
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Figure 4: Plots of the velocities reconstructed using the Algorithm presented in Theorem 1.1 discretized as
explained in Section 5.1, with the choice α(t) = 1 + 200t, for the velocities λ in (5.5). Top left corresponds to
λ1, top right to λ2, bottom left to λ3 and bottom right to λ4. The reconstructed velocity is plotted in blue,

and the true velocity in red.

When α(t) = 1 + t, we see some kind of regular fluctuations in the plots (for instance on Top Right, in
Figure 3). These are due to the error transported by the characteristic line starting from (x, t) = (0, T0),
similar to what we saw in the previous section in Figure 2.

As plotted in Figure 4, choosing β larger in (5.6), for instance β = 200, this shortcoming can be corrected.
This is of course related to the discussion in Section 4.2.
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5.2.3 Convergence rates

To conclude our study, we also provide a rough analysis on the convergence of the reconstructed velocities
in the aforementioned cases. Firstly, we define the discrete L2 error between the true velocity λ and the
reconstructed one λ̂ by the formula

‖λ− λ̂‖`2(W0,W1) =

√√√√ i2∑
i=i1

(λ(W i)− λ̂(W i)|t=ti)2(W (ti+1)−W (ti)) (5.7)

where i1 ∈ N and i2 ∈ N are the indices such that {ti}i∈{i1,··· ,i2} are all the mesh points in [T0, T1]. Taking λ2
in (5.5) for example, we can compute the error for different N , which are given in Table 1.

N 100 200 500 1000 2000 5000 10000
error of α = 3 0.3558 0.1835 0.0753 0.0383 0.0195 0.0081 0.0042

error of α = 1 + t 0.2201 0.1143 0.0482 0.0252 0.0133 0.0059 0.0032
error of α = 1 + 200t 1.2027 0.6824 0.2847 0.1435 0.0721 0.0288 0.0144

Table 1: Tables of the errors ‖λ− λ̂‖`2(W0,W1) with different N for the choices α(t) = 3, α(t) = 1 + t, and
α(t) = 1 + 200t, in the case λ = λ2 in (5.5).

Figure 5 displays the plot of the convergence rates of the algorithm in logarithmic scales, underlining the
fact that all choices of α have similar convergence rates, all of them being roughly of order 1.
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Figure 5: Plot of the errors ‖λ− λ̂‖`2(W0,W1) versus N in logarithmic scales for the choices α(t) = 3 (left, the
linear regression has slope=-0.9663), α(t) = 1 + t (middle, the linear regression has slope=-0.9199), and

α(t) = 1 + 200t (right, the linear regression has slope=-0.9695), in the case λ = λ2 in (5.5).
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