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Semi-global stabilization of a nonlinear transport equation with

nonlocal velocity∗

Sylvain Ervedoza† Zhiqiang Wang‡ Jiacheng Zhang§

March 9, 2023

Abstract

In this paper, we establish the semi-global feedback stabilization for a class of nonlinear transport
equations with nonlocal velocity, which models a highly re-entrant system encountered in semi-conductor
manufacturing. We design two new time-varying feedback laws: one yields a semi-global exponential
stability of the corresponding closed-loop system, the other one a local exponential stability result for
the corresponding closed-loop system. The crucial assumption on the velocity function λ(·) and the target
equilibrium ρ is strongly reduced compared to the previous results. Numerical simulations are also provided
as illustration of the theoretical results.

1 Introduction

In this paper, we study the stabilization of a nonlinear transport equation with nonlocal velocity

∂tρ+ λ(W (t))∂xρ = 0, (x, t) ∈ (0, 1)× (0,∞), (1.1)

in which W denotes the total mass of ρ:

W (t) =

∫ 1

0

ρ(x, t) dx, t ∈ (0,∞), (1.2)

and λ : R 7→ R∗+ is a smooth positive function.
For problem (??)–(??) to be well-posed, since the velocity λ is positive, we further need to impose some

boundary conditions at x = 0. Here we choose to impose the boundary condition through the influx:

λ(W (t))ρ(0, t) = u(t), t ∈ (0,∞), (1.3)

and u : R→ R will be a control function. Furthermore, our goal is to design the control u from measurement
made on the outflux

y(t) = λ(W (t))ρ(1, t), t ∈ (0,∞). (1.4)

To be more precise, given ρ ∈ R, our goal is to design a feedback control u in terms of y, of the form

u(t) = F [y(·)], t ∈ (0,∞), (1.5)

where F is a suitable function of the measurement y, such that the closed-loop system (??)-(??)-(??)-(??)-(??)
is exponentially stable towards the state ρ.

The nonlinear transport equation model we study arose from the semiconductor manufacturing systems and
was firstly introduced by Armbruster et al. in [?]. The performance of the wafer fabrication stage of integrated
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circuit (IC) production is closely related to the profits. These manufacture systems are characterized by their
highly re-entrant feature with very high volume (number of parts manufactured per unit time) and very large
number of consecutive production steps as well. The continuum model introduced in [?] has the advantage
that it is more accurate with more parts, machines, and re-entrant such as Discrete Event Simulation method
[?] and Queueing Networks method [?].

Control problems for conservation laws and general hyperbolic systems have been widely studied, see [?, ?]
and the references therein. Regarding the controllability of nonlinear hyperbolic equations (or systems), one
can refer to [?, ?, ?] for the context of classical solutions, and to [?, ?] for the context of entropy solutions.
Asymptotic stability and stabilization of hyperbolic systems have also been studied in the literature, and three
main strategies have been used. The first one relies on the analysis of the solution along the characteristic
curves; see in particular [?, ?]. The second one is the Lyapunov function approach; see, in particular, [?, ?, ?, ?].
The third one consists in designing boundary feedback controls through the Backstepping method, which has
been used for instance to stabilize exponentially the inhomogeneous quasilinear hyperbolic system in H2 norm
(see [?, ?]). One can also refer to [?] for many successful examples about feedback stabilization with this
approach.

Concerning the manufacturing model (??) itself, the well-posedness of the open-loop system for (??)-(??)
was firstly established in [?]. An optimal control problem motivated by [?, ?] and related to the Demand
Tracking Problem is also considered in [?]. The objective of that optimal control problem is to minimize, by
choosing the influx u, the Lp-norm (p > 1) of the difference between the actual outflux y and a given demand
forecast yd over a fixed time period. Another related work [?] gave a necessary condition for the possible optimal
controls. Based on the W 1,p-regularity results of solutions of the adjoint system, the article [?] exhibits the
optimality conditions for a special type of cost functional, which is motivated by the L2 tracking type cost
functional from [?, ?, ?]. Let us also point out that these results have been generalized: the well-posedness of a
coupled system of nonlocal conservation laws, modeling the highly re-entrant multi-commodity manufacturing
network, for Lp-, BV - and W 1,p-data and the existence of minimizers that solve the corresponding optimal
control problem are proved in [?]. It is also worth mentioning that the exact controllability of the solution and
the outflux for (??)-(??) were obtained in [?].

The output feedback stabilization (i.e. with a closed loop control) for the system (??) under a suitable
feedback law is a natural and interesting problem. More precisely, the problem of asymptotical stabilization
can be described as follows: For any given equilibrium ρ ∈ R and any initial data ρ0, can we find a feedback law
(??) giving the control u in terms of y such that ρ is asymptotically stable for the corresponding closed-loop
control system (??)-(??)-(??)-(??)-(??), namely, the weak solution ρ to the system (??)-(??)-(??)-(??)-(??)
converges to ρ asymptotically when time t goes to +∞?

In order to achieve this goal, a natural way would be to propose a feedback law of the proportional form

u(t)− ρλ(ρ) = k(y(t)− ρλ(ρ)), t ∈ (0,∞), (1.6)

for some k ∈ (−1, 1). With this feedback law (??), the authors in [?] give a sufficient and necessary condition
on the exponential stabilization for the corresponding linearized control system by spectral analysis. Then by a
Lyapunov function approach and perturbation techniques, local exponential stabilization were also proved for
the original closed-loop system in general nonlinear cases. In particular, the feedback law (??) with k ∈ (−1, 1)
provides local exponential stability if and only if

d :=
ρλ′(ρ)

λ(ρ)
satisfies d > −1. (1.7)

Note that this condition depends on the equilibrium ρ and the velocity function λ. It is also important to
emphasize that if ρ > 0, the stabilization result (see [?], Theorem 4.2) for the nonlinear system is local in the
sense that the initial data, and consequently the solution, belong to a small neighborhood of the equilibrium
ρ > 0 . When ρ = 0, a global stabilization result in L2(0, 1) has been proved [?, Theorem 4.1] where there is
no smallness limitation for the initial data and the solution.

Later on in [?], the stabilization results of [?] have been generalized upon using a Lyapunov function
approach. Firstly if ρ = 0, the global stabilization result in L2(0, 1) for the closed-loop system (??)-(??)-
(??)-(??)-(??) with a general velocity function λ(·) ∈ C1([0,+∞); (0,+∞)) is generalized to Lp(0, 1) (p > 1)
data. Secondly if ρ > 0, the global exponential stabilization result in L2(0, 1) for the closed-loop system
(??)-(??)-(??)-(??)-(??) with a typical class of velocity functions

λ(s) =
A

B + s
, s ∈ [0,∞) A > 0, B > 0 (1.8)
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is obtained. That is, the smallness restriction on the initial data in [?, Theorem 4.2] is removed by using the
special feature of the velocity function (??). Additionally, stabilization results for the discrete counterpart of
system (??)-(??) are obtained by the eigenvalue decomposition method and by a Lyapunov function method,
and numerical examples are provided to show that if the velocity function λ(·) is not of the form (??), the
solution of the closed-loop system might converge to a different equilibrium or even diverge as the time t goes
to ∞. Let us also remark that when ρ 6= 0, the global stabilization result in Lp(0, 1) (p > 1, p 6= 2) remains
an open problem even for systems satisfying (??). The situation for general systems with different velocity
functions other than (??) is widely open.

We also refer to [?] for a result on designing PI control to stabilize the linearized system of the nonlinear
model (??) by spectral analysis as in [?], or to the more recent work [?] for the design of event-triggered
boundary controls to stabilize this model. We also refer to [?] for a nonlocal model which has both local and
nonlocal nature, and to [?] for a nonlocal traffic flow model, which also shares the non-local feature of the
system (??) under consideration.

In this article, to design a suitable feedback law for (??)-(??)-(??)-(??), our key observations are the
following:
• If we know the value of W for all time t > 0, the natural feedback law

u(t)− ρλ(W (t)) = k(y(t)− ρλ(W (t))), t ∈ (0,∞), (1.9)

with k ∈ (−1, 1) will work, since it is equivalent to

ρ(0, t)− ρ = k(ρ(1, t)− ρ), k ∈ (−1, 1), (1.10)

which obviously stabilizes the system, as we will recall in Section ??.
• If we do not know the function W but only an approximation Ŵ on (0,∞), the feedback control

u(t)− ρλ(Ŵ (t)) = k(y(t)− ρλ(Ŵ (t))), t ∈ (0,∞), (1.11)

for k ∈ (−1, 1) should work as well, at least if Ŵ converges to W as t→∞.
• The dynamics of the non-local term W is completely determined by the outflux and the influx, since

dW

dt
= u− y in D ′(0,∞). (1.12)

• If one wants to estimate W precisely, it is convenient to set u = y, so that the equation (??)-(??)-(??)-
(??) can be seen as an equation on the torus with constant speed, which thus satisfies several nice properties,
such as time periodicity for instance.

Based on these ideas and elements, we show a stabilization result by alternating two types of phases:

• Acquisition steps, in which we simply choose u = y and try to improve the approximation Ŵ of W ;

• Stabilization steps, in which we choose the feedback law (??) for k ∈ (−1, 1), with Ŵ solving

dŴ

dt
= u− y (1.13)

during these steps.

We therefore propose two new closed-loop systems with time varying feedback laws for which we can establish
the local exponential stability of ρ under the weaker condition

g(s) := sλ(s) is a local C1 diffeomorphism around ρ, (1.14)

which is in fact guaranteed if and only if g′(ρ) 6= 0, i.e.

d =
ρλ′(ρ)

λ(ρ)
6= −1. (1.15)

But as our first result is in fact a semi-global one, we will rather state in its more general version:
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Theorem 1.1. Let ρ ∈ R, λ ∈ C1(R;R∗+), and k ∈ (−1, 1). Let R0 > r0 > 0 be such that the function g
defined by g(s) = sλ(s) is a C1 diffeomorphism of [ρ − R0, ρ + R0] on its image. Assume that ρ0 ∈ Lp(0, 1)
for some p ∈ (1,∞) satisfies

‖ρ0 − ρ‖Lp(0,1) 6 r0. (1.16)

Then there exists T1 = T1(r0, R0) and T2 = T2(r0, R0) such that, introducing the sequence of times

T0 = 0 < T1 < T2 < · · · < Ti < Ti+1 < · · · −→ +∞,
with T2i+1 − T2i = T1 and T2i+2 − T2i+1 = T2, (1.17)

the feedback given for all i ∈ N by
u(t) = y(t) for t ∈ (T2i, T2i+1), (1.18)

and by 
Ŵ ′ = (k − 1)y(t) + (1− k)ρλ(Ŵ (t)) for t ∈ (T2i+1, T2i+2),

Ŵ (T2i+1) = g−1

(
1

T2i+1 − T2i

∫ T2i+1

T2i

y(τ) dτ

)
,

u(t)− ρλ(Ŵ (t)) = k(y(t)− ρλ(Ŵ (t)), for t ∈ (T2i+1, T2i+2),

(1.19)

is an exponentially stable feedback law around ρ for (??)–(??)–(??)–(??). More precisely, for p ∈ (1,∞), there
exist Cp = Cp(r0, R0) > 0 and α = α(r0, R0) > 0 such that, for any ρ0 ∈ Lp(0, 1) satisfying (??), the solution
ρ of (??)–(??)–(??)–(??) with initial datum ρ0, with the feedback law given by (??) for t ∈ (T2i, T2i+1) and
by (??) for t ∈ (T2i+1, T2i+2) satisfies:

‖ρ(t)− ρ‖Lp(0,1) 6 Cp exp(−αt) ‖ρ0 − ρ‖Lp(0,1) , ∀t ∈ [0,∞). (1.20)

Remark 1.1. Strictly speaking, the feedback law proposed in Theorem ?? is not of the form (??), although
the control u can be computed only from the knowledge of y.

First, we alternate between acquisition steps, corresponding to the time intervals (T2i, T2i+1), i ∈ N, and
stabilization steps, corresponding to the intervals (T2i+1, T2i+2), i ∈ N. Thus, our feedback law is time-
dependent, alternating between two different laws.

Second, it is important to notice that, for i ∈ N, Ŵ (T2i+1) depends on y on (T2i, T2i+1). Therefore, to
compute the control function u at time t = T+

2i+1, one needs to know y at time t = T+
2i+1 and y|(T2i,T2i+1).

Third, let us remark that on time intervals of the form (T2i+1, T2i+2), i ∈ N, the state of the system becomes

augmented with the extra unknown Ŵ , which is introduced to track W on the time interval.

Remark 1.2. The stabilization result in Theorem ?? is semiglobal, since R0 and r0 are not supposed to be
small.

For instance, the proof of Theorem ?? gives that, if λ(s) = A/(B+s) for some A and B positive constants,
then for every ρ > 0, for every non-negative initial state ρ0, the feedback law proposed in ?? applies and the
corresponding solution ρ converges exponentially, as t→∞, to ρ.

In fact, in addition to the proof of Theorem ??, one should only check that the function s 7→ g(s) := sλ(s)
is a global C1 diffeomorphism of (0,+∞) on (0, A).

Remark 1.3. It is interesting to notice that, if the condition (??) holds, then Theorem ?? holds for R0 and
r0 small enough. Accordingly, in this case, it provides a local stabilization result in the neighborhood of ρ.

Thus, the feedback law proposed here allows to consider situations in which the condition d > −1 (recall
the definition of d in (??)) is not satisfied, which is the necessary and sufficient condition for the feedback law
of the proportional form (??) to work see [?].

Also note that Theorem ?? generalizes the stabilization result of [?] in space L2(0, 1) to Lp(0, 1) spaces
(p ∈ (1,∞)).

One of the drawback of the stabilization law proposed in Theorem ?? is that T1 and T2 should be large
enough and are not very explicit (see Remark ??). This might seem not very effective when considering the
acquisition steps (the time intervals of the form [T2i, T2i+1)), in which there is no stability process involved.
Therefore, we propose below another approach for the acquisition step, in which the time for the acquisition
step is reduced, but which is effective only locally.
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Theorem 1.2. Let ρ ∈ R, λ ∈ C1(R;R∗+), p ∈ (1,∞) and k ∈ (−1, 1).
Set

d =
ρλ′(ρ)

λ(ρ)
, (1.21)

and assume that d 6= −1.
Then there exists T2 > 0 such that, introducing the sequence of times

T0 = 0 < T1 < T2 < · · · < Ti < Ti+1 < · · · −→ +∞, with T2i+2 − T2i+1 = T2, (1.22)

the feedback given for all i ∈ N by
u(t) = y(t) for t ∈ (T2i, T2i+1), (1.23)

with

T2i+1 = T2i +
1

λ(Ŵ (T2i))
, (1.24)

and by 
Ŵ ′ = (k − 1)y(t) + (1− k)ρλ(Ŵ (t)) for t ∈ (T2i+1, T2i+2),

Ŵ (T2i+1) = Ŵ (T2i)−
1

1 + d

(
Ŵ (T2i)−

∫ T2i+1

T2i

y(s)ds

)
,

u(t)− ρλ(Ŵ (t)) = k(y(t)− ρλ(Ŵ (t)), for t ∈ (T2i+1, T2i+2),

(1.25)

is a locally exponentially stable feedback law around ρ for (??)–(??)–(??)–(??). More precisely, for any T2
such that T2 > 1/λ(ρ), there exist r0 > 0, Cp > 0 and α > 0 such that for all ρ0 ∈ Lp(0, 1) and Ŵ0 satisfying

‖ρ0 − ρ‖Lp(0,1) + |Ŵ0 −W0| 6 r0, (1.26)

the solution (ρ, Ŵ ) of (??)–(??)–(??)–(??) with initial datum (ρ0, Ŵ0), with the feedback law given by (??)
for t ∈ (T2i, T2i+1) and by (??) for t ∈ (T2i+1, T2i+2) satisfies1

‖ρ(t)− ρ‖Lp(0,1) + |Ŵ (t)−W (t)| 6 Cp exp(−αt)
(
‖ρ0 − ρ‖Lp(0,1) + |Ŵ0 −W0|

)
, ∀t ∈ [0,∞). (1.27)

Of course, in practice, one can alternate the acquisition steps proposed in Theorem ?? and Theorem ??,
keeping in mind that the one proposed in Theorem ?? is in principle effective only locally around the stationary
state ρ.

The organization of this paper is as follows: In Section ??, we prove the well-posedness of the closed-loop
system. In Section ??, we prove a stability result under the additional condition that the total mass W0 is
known. Then in Section ??, we give the proof of Theorem ??. In Section ??, we focus on the proof of Theorem
??. Finally, some numerical simulations are shown in Section ??.

2 Wellposedness of the closed-loop system

In this section, we prove the well-posedness of the closed-loop system presented in Theorem ??.
The boundary condition y = u is classical and we refer to [?, Lemma 2.1] for the following well-posedness

result:

Proposition 2.1. Let T > 0, ρ ∈ R. Then for all ρ0 ∈ L1(0, 1), there exists a unique solution ρ ∈
C0([0, T ];L1(0, 1)) of  ∂tρ+ λ(W (t))∂xρ = 0, (x, t) ∈ (0, 1)× (0, T ),

u(t) = y(t), t ∈ (0, T ),
ρ(x, 0) = ρ0(x), x ∈ (0, 1),

(2.1)

1Properly speaking, Ŵ is defined only on the time intervals [T2i+1, T2i+2], and for convenience of notation, we simply set

Ŵ (t) = Ŵ (T2i) for t ∈ (T2i, T2i+1).
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where 
W (t) =

∫ 1

0

ρ(x, t)dx, t ∈ (0, T ),

u(t) = λ(W (t))ρ(0, t), t ∈ (0, T ),
y(t) = λ(W (t))ρ(1, t), t ∈ (0, T ),

(2.2)

in the following sense: ρ ∈ C0([0, T ];L1(0, 1)), (W,u, y) ∈ W 1,1(0, T ) × L1(0, T ) × L1(0, T ), and for every
s ∈ (0, T ], and every ϕ ∈ C1([0, 1]× [0, s]) satisfying ϕ(x, s) = 0, for all x ∈ [0, 1], one has∫ s

0

∫ 1

0

ρ(x, t)(∂tϕ(x, t) + λ(W (t))∂xϕ(x, t))dxdt

−
∫ s

0

y(t)ϕ(1, t)dt+

∫ s

0

u(t)ϕ(0, t)dt+

∫ 1

0

ρ0(x)ϕ(x, 0)dx = 0. (2.3)

Furthermore, if ρ0 ∈ Lp(0, 1) for some p ∈ [1,∞), then the solution ρ of (??) belongs to C0([0, T ];Lp(0, 1)),
and (W,u, y) ∈W 1,p(0, T )× Lp(0, T )× Lp(0, T ).

We then focus on the feedback law (??) for the system (??)–(??)–(??)–(??), and check that this corresponds
to a well-posed system. We first introduce the corresponding definition of weak solution.

Definition 2.1. Let T > 0, ρ ∈ R, k ∈ R, ρ0 ∈ L1(0, 1) and w0 ∈ R. A pair of functions (ρ, w) ∈
C0([0, T ];L1(0, 1))×W 1,1(0, T ) is a weak solution of the Cauchy problem

∂tρ+ λ(W (t))∂xρ = 0, (x, t) ∈ (0, 1)× (0, T ),
u(t) = ky(t) + (1− k)ρλ(w(t)), t ∈ (0, T ),
w′(t) = u(t)− y(t), t ∈ (0, T ),
ρ(x, 0) = ρ0(x), x ∈ (0, 1),
w(0) = w0,

(2.4)

where (W,u, y) are as in (??), if the following properties hold: (ρ, w) ∈ C0([0, T ];L1(0, 1)) × W 1,1(0, T ),
(W,u, y) ∈W 1,1(0, T )×L1(0, T )×L1(0, T ), and for every s ∈ (0, T ], and every ϕ ∈ C1([0, 1]× [0, s]) satisfying

∀x ∈ [0, 1], ϕ(x, s) = 0,

one has∫ s

0

∫ 1

0

ρ(x, t)(∂tϕ(x, t) + λ(W (t))∂xϕ(x, t))dxdt

−
∫ s

0

y(t)ϕ(1, t)dt+

∫ s

0

u(t)ϕ(0, t)dt+

∫ 1

0

ρ0(x)ϕ(x, 0)dx = 0 (2.5)

and
w′ = u− y in D ′(0, T ). (2.6)

Remark 2.1. In the previous work [?, Eq. (3.26)], it has been observed that, when ρ satisfies the transport
equation (??)(1) the total mass W (t) of ρ, defined by (??)(1), satisfies

W ′ = u− y, in D ′(0, T ).

where (W,u, y) ∈ W 1,1(0, T ) × L1(0, T ) × L1(0, T ) are defined in system (??). Accordingly, a solution (ρ, w)
of (??) should satisfy that w −W is a constant function. This motivates the choice done on (??)(1).

Remark 2.2. Note that the problem (??) is of course completely equivalent to the Cauchy problem
∂tρ+ λ(W (t))∂xρ = 0, (x, t) ∈ (0, 1)× (0, T ),
u(t) = ky(t) + (1− k)ρλ(w(t)), t ∈ (0, T ),
w′(t) = (k − 1)y(t) + (1− k)ρλ(w(t)), t ∈ (0, T ),
ρ(x, 0) = ρ0(x), x ∈ (0, 1),
w(0) = w0,

(2.7)

where (W,u, y) are as in (??), which is of course completely similar to the feedback law given in (??) for the
system (??)–(??)–(??)–(??).
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We now give a well-posedness result for the system (??).

Theorem 2.1. Let ρ ∈ R and k ∈ [−1, 1] be given. For any initial data (ρ0, w0) ∈ L1(0, 1) × R, there exists
a time T ∗ > 0 such that the Cauchy problem (??) has a unique weak solution (ρ, w) ∈ C0([0, T ∗);L1(0, 1))×
W 1,1
loc ([0, T ∗)) with (W,u, y) ∈W 1,1

loc ([0, T ∗))× L1
loc([0, T

∗))× L1
loc([0, T

∗)).
Moreover, for p ∈ (1,∞), and ρ0 ∈ Lp(0, 1), the solution (ρ, w) of the Cauchy problem (??) belongs to the set

C0([0, T ∗);Lp(0, 1))×W 1,p
loc ([0, T ∗)) with (W,u, y) ∈W 1,p

loc ([0, T ∗))×Lploc([0, T ∗))×L
p
loc([0, T

∗)). Besides, if we
denote by T ∗ the maximal time of existence in this class, T ∗ is finite if and only if limT→T∗ ‖ρ(t)‖Lp(0,1) =∞.

Proof of Theorem ??. We first prove the local result of Theorem ??, and show that there exists δ > 0 depending
on (ρ0, w0), such that the Cauchy problem (??) has a unique weak solution (ρ, w) ∈ C0([0, δ];L1(0, 1)) ×
W 1,1(0, δ) with (W,u, y) ∈ W 1,1(0, δ) × L1(0, δ) × L1(0, δ). The proof of this local well-posedness result is
based on fixed point arguments, similarly as in [?] for a similar open-loop system and [?] for a similar closed-loop
system.

Clearly, since we are looking for W ∈W 1,1(0, δ) and since λ takes values in (0,∞), the system (??) can be
rewritten as 

∂tρ+ λ(W (t))∂xρ = 0, (x, t) ∈ (0, 1)× (0, δ),

ρ(0, t) = kρ(1, t) + (1− k)ρ
λ(w(t))

λ(W (t))
, t ∈ (0, δ),

w′(t) = u(t)− y(t), t ∈ (0, δ),
ρ(x, 0) = ρ0(x), x ∈ (0, 1).

(2.8)

with

W (t) =

∫ 1

0

ρ(x, t)dx, t ∈ (0, δ). (2.9)

As mentioned in Remark ??, this implies that

∀t ∈ (0, δ), w(t) = W (t)−W0 + w0, with W0 =

∫ 1

0

ρ0(x)dx. (2.10)

Therefore, for parameters δ > 0, and M > 0, that will be chosen later on, we define the following subspace
of L1(0, δ):

Σδ,M = {W ∈ L∞(0, δ) with ‖W‖L∞(0,δ) 6M}. (2.11)

We then introduce the mapping Fδ : W ∈ Σδ,M 7→ W̃ where W̃ is obtained by solving the linear system
∂tρ̃+ λ(W (t))∂xρ̃ = 0, (x, t) ∈ (0, 1)× (0, δ),

ρ̃(0, t) = kρ̃(1, t) + (1− k)ρ
λ(W (t)−W0 + w0)

λ(W (t))
, t ∈ (0, δ),

ρ̃(x, 0) = ρ0(x), x ∈ (0, 1),

(2.12)

and setting

W̃ (t) =

∫ 1

0

ρ̃(x, t)dx, t ∈ (0, δ). (2.13)

Note that the equation (??) is a classical Cauchy problem for a transport equation, and is thus easily seen to
be well-posed.

Let us first prove that there exists M > 0 and δ > 0 such that the mapping Fδ maps Σδ,M into itself. For
M > 0, we introduce S(M) = sup[−M,M ] λ and I(M) = inf [−M,M ] λ (which is positive by assumption). Now,
for δ > 0 and M > 0 such that δS(M) 6 1, which guarantees that no characteristic has the time to cross the
whole domain during the time interval (0, δ). It is then easy to check that:

• ρ̃(1, ·) ∈ L1(0, δ) and

‖ρ̃(1, ·)‖L1(0,δ) 6
1

I(M)
‖ρ0‖L1(1−S(M)δ,1).

• ρ̃(0, ·) thus belongs to L1(0, δ), and setting

gW (t) = (1− k)ρ
λ(W (t)−W0 + w0)

λ(W (t))
, t ∈ (0, δ),
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using |k| 6 1, we have

‖ρ̃(0, ·)‖L1(0,δ) 6
1

I(M)
‖ρ0‖L1(1−S(M)δ,1) + ‖gW ‖L1(0,δ).

• Accordingly ρ̃ ∈ C0([0, δ];L1(0, 1)), and

‖ρ̃‖L∞(0,δ;L1(0,1)) 6 ‖ρ0‖L1(0,1) + S(M)‖ρ̃(0, ·)‖L1(0,δ)

6

(
1 +

S(M)

I(M)

)
‖ρ0‖L1(0,1) + S(M)‖gW ‖L1(0,δ).

• Also W̃ satisfies, in D ′(0, δ), W̃ ′ = λ(W (t))(ρ(1, t)− ρ(0, t)), so that

‖W̃ ′‖L1(0,δ) 6
2

I(M)
‖ρ0‖L1(1−S(M)δ,1) + ‖gW ‖L1(0,δ).

Consequently,

‖W̃‖L∞(0,δ) 6 |W0|+
2

I(M)
‖ρ0‖L1(1−S(M)δ,1) + ‖gW ‖L1(0,δ).

Since |k| 6 1, for W ∈ Σδ,M ,

‖gW ‖L1(0,δ) 6 δ‖gW ‖L∞(0,δ) 6 2δ|ρ|
(
S(M + |W0|+ |w0|)

I(M)

)
,

we deduce that if
M > |W0|,

there exists δ = δ(M) > 0 such that for all δ ∈ (0, δ(M)], the mapping Fδ maps Σδ,M into itself.

We then prove that Fδ is a contraction in Σδ,M endowed with the topology of L1(0, δ) for δ small enough.

In order to do that, let us consider W1 and W2 in Σδ,M and call (ρ̃1, W̃1), respectively (ρ̃2, W̃2), the
corresponding solution of (??)–(??). We then compute:

d

dt

(
W̃1 − W̃2

)
= λ(W1(t))(ρ̃1(0, t)− ρ̃1(1, t))− λ(W2(t))(ρ̃2(0, t)− ρ̃2(1, t))

= (k − 1)(λ(W1(t))ρ̃1(1, t)− λ(W2(t))ρ̃2(1, t))

+
λ(W1(t))− λ(W2(t))

2
(gW1

(t) + gW2
(t)) +

λ(W1(t)) + λ(W2(t))

2
(gW1

(t)− gW2
(t)) . (2.14)

Now, one one hand, there exists CM > 0 such that for all t ∈ (0, δ),∣∣∣∣λ(W1(t))− λ(W2(t))

2
(gW1

(t) + gW2
(t))

∣∣∣∣+

∣∣∣∣λ(W1(t)) + λ(W2(t))

2
(gW1

(t)− gW2
(t))

∣∣∣∣
6 CM |W1(t)−W2(t)|. (2.15)

On the other hand, using the characteristic formula, for i ∈ {1, 2}, for all τ ∈ (0, δ),∫ τ

0

λ(Wi(t))ρ̃i(1, t) dt =

∫ 1

1−ξi(τ)
ρ0(x) dx,

where ξi(τ) =

∫ τ

0

λ(Wi(t)) dt. Accordingly, for τ ∈ (0, δ),

∫ δ

0

∣∣∣∣∫ τ

0

λ(W1(t))ρ̃1(1, t) dt−
∫ τ

0

λ(W2(t))ρ̃2(1, t) dt

∣∣∣∣ dτ 6
∫ δ

0

∣∣∣∣∣
∫ 1−ξ2(τ)

1−ξ1(τ)
ρ0(x) dx

∣∣∣∣∣ dτ
6
∫ 1

1−S(M)δ

|ρ0(x)|
∫ δ

0

1 (x−ξ1(τ))(x−ξ2(τ))<0 dτ dx

6 CM

∫ δ

0

|W1(t)−W2(t)| dt
∫ 1

1−S(M)δ

|ρ0(x)| dx, (2.16)
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CM being a constant depending on M only and not on δ, where we have used that for i ∈ {1, 2}, τ 7→ ξi(τ) is
strictly increasing with derivative bounded from below by I(M), and that

sup
τ∈(0,δ)

|ξ1(τ)− ξ2(τ)| dτ 6

(
sup

[−M,M ]

|λ′|

)∫ δ

0

|W1(t)−W2(t)| dt.

Accordingly we obtain from (??)–(??)–(??) that∫ δ

0

|W̃1(t)− W̃2(t)| dt 6 CM

∫ δ

0

|W1(t)−W2(t)| dt
∫ 1

1−S(M)δ

|ρ0(x)| dx+ CMδ

∫ δ

0

|W1(t)−W2(t)| dt. (2.17)

It follows that for δ > 0 small enough, the mapping Fδ is a contraction on Σδ,M endowed with the topology of
L1(0, δ). Thus there exists a unique fixed point W of Fδ in Σδ,M . By construction, this fixed point corresponds
to a solution (ρ, w) of (??), and we easily check that (ρ, w) belongs to C0([0, δ);L1(0, 1)) ×W 1,1(0, δ) with
(W,u, y) ∈W 1,1(0, δ)× L1(0, δ)× L1(0, δ).

Also note, for later use, that if ρ0 ∈ Lp(0, 1) for some p > 1, M can be chosen as M = 2‖ρ0‖L1(0,1), and
the contractivity of Fδ is guaranteed by taking δ > 0 such that

CM‖ρ0‖Lp(0,1)(S(M)δ)1−1/p + CMδ =
1

2
.

Accordingly, the time of local existence is bounded from below uniformly for ρ0 in bounded balls of Lp(0, 1).
The fact that this solution is unique comes from the fact that M can be taken arbitrarily large in the above

process.

When ρ0 ∈ Lp(0, 1) for some p > 1, of course the proof above applies and yields the existence and
uniqueness of a solution (ρ, w) of (??) in C0([0, T ∗);L1(0, 1))×W 1,1

loc ([0, T ∗)) with (W,u, y) ∈W 1,1
loc ([0, T ∗))×

L1
loc([0, T

∗))× L1
loc([0, T

∗)) for some T ∗ > 0.

It is easy to check in the above proof that ρ0 ∈ Lp(0, 1) implies that, for W ∈ Σδ,M , the solution (ρ̃, W̃ ) of

(??)–(??) satisfies: ρ̃(1, ·) ∈ Lp(0, δ), ρ̃(0, ·) ∈ Lp(0, δ), ρ̃ ∈ C0([0, δ];Lp(0, 1)), and W̃ ∈ W 1,p(0, δ). Accord-
ingly, the solution (ρ,W ) of (??) constructed above as the fixed point of Fδ belongs to C0([0, δ];Lp(0, 1)) ×
W 1,p
loc (0, δ) with (W,u, y) ∈W 1,p(0, δ)× Lp(0, δ)× Lp(0, δ).

Finally, if we denote by T ∗ the maximal time of existence of the solution (ρ,W ) of (??), if T ∗ is finite,
then necessarily limT→T∗ ‖ρ(T )‖Lp(0,1) =∞. This is indeed a straightforward consequence of the fact, already
proved, that the time of local existence is bounded from below uniformly for ρ0 in bounded balls of Lp(0, 1).

Remark 2.3. Note that in Theorem ??, we have stated that T ∗ <∞ if and only if limT→T∗ ‖ρ(T )‖Lp(0,1) =∞
for some p ∈ (1,∞).

The case L1 is more delicate since the contractivity of the map Fδ in the above proof is not quantified in
terms of the L1 norm of ρ0, recall (??).

However, in the specific case k = 1, which corresponds to u = y in (??), the situation is very degenerate,
as W and w does not depend on time. In this case, it is easy to check that the problem (??) is globally well-
posed in L1: the solution (ρ, w) belongs to C0([0,∞);L1(0, 1))×W 1,1

loc ([0,∞)) with (W,u, y) ∈W 1,1
loc ([0,∞))×

L1
loc([0,∞))× L1

loc([0,∞)).

For later use, we also give the following well-posedness result, which can be proved in a similar - and in
fact, easier - way as the previous result, whose proof is thus left to the reader:

Theorem 2.2. Let k ∈ R. For ρ0 ∈ L1(0, 1) and h ∈ L∞(0,∞), there exists a time T ∗ and a unique weak
solution (ρ,W ) of  ∂tρ+ λ(W (t))∂xρ = 0, (x, t) ∈ (0, 1)× (0, T ),

u(t) = ky(t) + h(t)λ(W (t)), t ∈ (0, T ),
ρ(x, 0) = ρ0(x), x ∈ (0, 1),

(2.18)

where (W,u, y) are as in (??), with (ρ,W ) ∈ C0([0, T ∗);L1(0, 1))×W 1,1
loc ([0, T ∗)), and (u, y) ∈ L1

loc([0, T
∗))×

L1
loc([0, T

∗)).
Moreover, for p ∈ (1,∞), and ρ0 ∈ Lp(0, 1), the solution (ρ, w) of the Cauchy problem (??) belongs to the

set C0([0, T ∗);Lp(0, 1)) ×W 1,p
loc ([0, T ∗)) with (W,u, y) ∈ W 1,p

loc ([0, T ∗)) × Lploc([0, T ∗)) × L
p
loc([0, T

∗)). In this
case, T ∗ is finite if and only if limT→T∗ ‖ρ(t)‖Lp(0,1) =∞.
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3 An exponentially stable feedback law when the initial mass is
known

In this section, we assume that the initial total mass

∫ 1

0

ρ0(x)dx is known and we design a suitable feedback

law in this case.
This provides some inspiration about the design of the feedback law proposed in Theorems ?? and ??, which

alternates between a natural feedback law and some acquisition step to get knowledge, or rather improved
knowledge, on the total mass W .

Theorem 3.1. Let ρ ∈ R and k ∈ (−1, 1). If ρ0 ∈ L2(0, 1) and∫ 1

0

ρ0(x)dx is known, (3.1)

then the closed-loop system

∂tρ+ λ(W (t))∂xρ = 0, (x, t) ∈ (0, 1)× (0,∞),
u(t) = ky(t) + (1− k)ρλ(w(t)), t ∈ (0,∞),
w′(t) = (1− k) (ρλ(w(t))− y(t)) , t ∈ (0,∞),
ρ(x, 0) = ρ0(x), x ∈ (0, 1),

w(0) =

∫ 1

0

ρ0(x)dx,

where W (t) =

∫ 1

0

ρ(x, t)dx, t ∈ (0,∞),

u(t) = λ(W (t))ρ(0, t), t ∈ (0,∞),
y(t) = λ(W (t))ρ(1, t), t ∈ (0,∞),

(3.2)

admits a global solution (ρ, w), which converges exponentially to (ρ, ρ), i.e. there exist constants C > 0 and
α > 0 depending on k, ρ and ‖ρ0‖L2(0,1), such that

|w(t)− ρ|+ ‖ρ(·, t)− ρ‖L2(0,1) 6 Ce−αt‖ρ0(·)− ρ‖L2(0,1), t ∈ [0,∞). (3.3)

Furthermore, for all times t > 0, w(t) = W (t).

For sake of simplicity, we assumed in Theorem ?? that the initial datum ρ0 belongs to L2(0, 1), but it is easy
to check that the proof of Theorem ?? can be adapted to deal with initial data in Lp(0, 1) for p ∈ (1,∞), in
which case the exponential decay (??) of the L2 norm ‖ρ(·, t)− ρ‖L2(0,1) should be replaced by an exponential
decay of the Lp norm ‖ρ(·, t)− ρ‖Lp(0,1).

Proof of Theorem ??. Let us first denote by T ∗ the maximal time of existence of the solution (ρ, w) of (??).
Note that from Remark ??

W ′(t) = u(t)− y(t), t ∈ (0, T ∗). (3.4)

Using (??)(2,3), we get that w′ = W ′ in D ′(0, T ∗). Since we also have w(0) = W (0) by (??)(5), we get that for
all t > 0, w(t) = W (t). Consequently, the boundary condition (??)(2) simply reduces to

ρ(0, t)− ρ = k(ρ(1, t)− ρ), t ∈ (0, T ∗). (3.5)

We then show that the solution of (??) is global, that is T ∗ =∞. In order to do that, let us remark that
in D ′(0, T ∗),

d

dt

(∫ 1

0

|ρ(x, t)− ρ|2dx
)

= −λ(W (t))

∫ 1

0

d

dx

(
|ρ(x, t)− ρ|2

)
dx

= λ(W (t))(|k(ρ(1, t)− ρ)|2 − |ρ(1, t)− ρ|2) 6 0,

(3.6)

since |k| 6 1.
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Thus t 7→
∫ 1

0

|ρ(x, t)− ρ|2dx is a non-increasing function and

∀t ∈ (0, T ∗),

∫ 1

0

|ρ(x, t)− ρ|2dx 6
∫ 1

0

|ρ0(x)− ρ|2dx.

Consequently, we obtain, for all t ∈ (0, T ∗),

|W (t)| 6
∫ 1

0

|ρ(x, t)− ρ|dx+ ρ 6 ‖ρ0 − ρ‖L2(0,1) + ρ 6 ‖ρ0‖L2(0,1) + 2ρ. (3.7)

These uniform bounds on W and the L2 norm of ρ0 − ρ implies that T ∗ = ∞, i.e. that the solution of (??)
exists for all t ∈ [0,+∞).

For later use, let us also remark that

inf
t>0
{λ(W (t))} > inf

|s|6‖ρ0‖L2(0,1)+2ρ
{λ(s)} := α̃, (3.8)

where α̃ is a positive constant depending on ‖ρ0‖L2(0,1) and ρ.
We now introduce the Lyapunov functional

V (t) =

∫ 1

0

e−βx(ρ(x, t)− ρ)2dx, t > 0, (3.9)

where β > 0 is a constant to be determined. Clearly, the quantity V (t) is equivalent to ‖ρ(·, t) − ρ‖2L2(0,1),

uniformly with respect to t ∈ (0,∞). Moreover, in D ′(0,∞),

dV (t)

dt
= − λ(W (t))e−βx(ρ(x, t)− ρ)2

∣∣x=1

x=0
− βλ(W (t))

∫ 1

0

e−βx(ρ(x, t)− ρ)2dx

= λ(W (t))(k2 − e−β)(ρ(1, t)− ρ)2 − βλ(W (t))V (t).

(3.10)

Since k ∈ (−1, 1), we can take β > 0 such that

e−β > k2. (3.11)

With this choice, that we keep up from now on, the above estimate yields

dV (t)

dt
6 −βλ(W (t))V (t), in D ′(0,∞). (3.12)

Combined with (??), this yields

dV (t)

dt
6 −2αV (t), in D ′(0,∞), (3.13)

with α = βα̃/2. Consequently,
V (t) 6 e−2αtV (0), ∀t ∈ [0,+∞), (3.14)

Using then that for all t > 0,

e−2β‖ρ(·, t)− ρ‖2L2(0,1) 6 V (t) 6 ‖ρ(·, t)− ρ‖2L2(0,1)

we conclude that
‖ρ(·, t)− ρ‖L2(0,1) 6 eβ−αt‖ρ0(·)− ρ‖L2(0,1), ∀t ∈ [0,+∞). (3.15)

This finishes the proof of Theorem ??, since we immediately have by Cauchy-Schwarz inequality that, for all
t > 0,

|W (t)− ρ| =
∣∣∣∣∫ 1

0

(ρ(x, t)− ρ) dx

∣∣∣∣ 6 ‖ρ(·, t)− ρ‖L2(0,1),

and we have already seen that w(t) = W (t) for all t > 0.
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4 Proof of Theorem ??

The goal of this section is to prove Theorem ??.
As underlined in Section ??, the knowledge of W is critical to design a suitable exponentially stable

feedback law, and this is why the algorithm we propose alternate between two phases, one corresponding to an
acquisition step in which we try to estimate W at best, and another one corresponding to the natural feedback
law that one would use if W were known.

To make the proof of Theorem ?? easier to follow, we split this section in several parts: Section ?? studies
the acquisition step, Section ?? focuses on the stabilizing step, and Section ?? put together the results obtained
in each section to give the complete proof of Theorem ??.

4.1 The acquisition step in Theorem ??

Here we focus on the acquisition steps in which the feedback law is given by u = y, recall (??). For convenience,
we study this case in an infinite time horizon.
We therefore focus on the equation

∂tρ+ λ(W (t))∂xρ = 0, (x, t) ∈ (0, 1)× (0,+∞),
u(t) = y(t), t ∈ (0,+∞),
ρ(x, 0) = ρ0(x), x ∈ (0, 1),

where W (t) =

∫ 1

0

ρ(x, t)dx, t ∈ (0,+∞),

u(t) = λ(W (t))ρ(0, t), t ∈ (0,+∞),
y(t) = λ(W (t))ρ(1, t), t ∈ (0,+∞).

(4.1)

Note that the boundary condition (??)(2) also reads

ρ(0, t) = ρ(1, t), t ∈ (0,+∞). (4.2)

That way, we identify x = 0 and x = 1, and the equation (??) can now be thought as taking place in the torus
T. We then easily get the following lemma, whose proof is left to the reader:

Lemma 4.1. The solution ρ of (??) with initial datum ρ0 ∈ L1(0, 1) is global in time and satisfies:

• for all t > 0,

W (t) = W0 =

∫ 1

0

ρ0 dx and λ(W (t)) = λ(W0). (4.3)

• if ρ0 ∈ Lp(0, 1) for some p ∈ [1,∞), ρ belongs to C0(R+;Lp(0, 1)) and for all constant ρ ∈ R, for all
t > 0,

‖ρ(t)− ρ‖Lp(0,1) = ‖ρ0 − ρ‖Lp(0,1) . (4.4)

Once we have noticed that the velocity t 7→ λ(W (t)) does not depend of time according to (??), the solution
ρ of (??) with initial datum ρ0 ∈ L1(0, 1) is periodic in time of period 1/λ(W0), and y(t) = λ(W (t))ρ(1, t) has
the same period.
Our claim is that we can then recover λ(W0)W0 in the following way:

Proposition 4.1. Let ρ0 ∈ L1(0, 1), and ρ the corresponding solution of (??).
Then y is 1/λ(W0) periodic and we have the following identity:

λ(W0)

∫ 1/λ(W0)

0

y(τ) dτ = λ(W0)W0. (4.5)

Besides, setting, for all t > 0,

F (t) =
1

t

∫ t

0

y(τ) dτ, (4.6)

we get the following estimate:

∀t > 0, |F (t)− λ(W0)W0| 6
1

t

∫ 1

0

|ρ0(x)−W0| dx. (4.7)
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Before going into the proof of Proposition ??, let us point out that this simple result is in fact crucial to
our approach, as it states that F in (??) is an estimator of g(W0) (recall that g is defined by g(s) = sλ(s)).
In particular, if g is injective, one can recover W0 from F .

Proof. The proof of (??) follows from the fact that the velocity λ(W0) does not depend on time, so that
y(t) = λ(W0)ρ(t, 1) and, from the characteristic formula,

y(t) = λ(W0)ρ0(1− tλ(W0)) for all t ∈ [0, 1/λ(W0)].

We therefore have∫ 1/λ(W0)

0

y(τ) dτ = λ(W0)

∫ 1/λ(W0)

0

ρ0(1− tλ(W0)) dt =

∫ 1

0

ρ0(x) dx = W0,

which immediately implies (??).
Now, with F as in (??), using (??) we have

|F (t)− λ(W0)W0| =
1

t

∣∣∣∣∫ t

0

(y(τ)− λ(W0)W0) dτ

∣∣∣∣
6

1

t
sup

t̃∈[0,1/λ(W0)]

∣∣∣∣∣
∫ t̃

0

(y(τ)− λ(W0)W0) dτ

∣∣∣∣∣
6

1

t

∫ 1/λ(W0)

0

|y(τ)− λ(W0)W0| dτ

6
1

t

∫ 1

0

|ρ0(x)−W0| dx,

where the last identity comes from the formula y(t) = λ(W0)ρ0(1 − tλ(W0)) and the change of variable
t→ 1− tλ(W0). This completes the proof of (??).

Remark 4.1. During the acquisition step, we get an estimator of g(W0) (recall the definition of g in (??))
and thus g has to be at least injective to recover W0 from the knowledge of g(W0). This is in fact a necessary
and sufficient condition to identify W0 when considering the system equation (??)–(??). Indeed, if g is not
injective, we can find distinct W0,a, W0,b such that g(W0,a) = g(W0,b), and one easily checks that the constant
functions ρa, ρb defined by ρa(x, t) = W0,a and ρb(x, t) = W0,b for all x ∈ (0, 1) and t > 0 are solutions of
(??) for which the corresponding outputs ya(t) = λ(W0,a)ρa(1, t) = g(Wa) and yb(t) = λ(W0,b)ρb(1, t) = g(Wb)
are the same.

4.2 The stabilizing step

In this subsection, we focus on the equations (??)–(??) completed with boundary conditions of the form

ρ(0, t) = kρ(1, t) + h(t), t ∈ (0,+∞), (4.8)

for some k ∈ (−1, 1) and in which we assume

h ∈ L∞(0,+∞). (4.9)

Clearly, (??) is equivalent to
u(t) = ky(t) + h(t)λ(W (t)), t ∈ (0,+∞), (4.10)

which thus corresponds to the Cauchy problem (??).
Our goal is to prove the following result:

Proposition 4.2. Let k ∈ (−1, 1), h ∈ L∞(0,+∞) and ρ0 ∈ Lp(0, 1) for some p ∈ (1,∞).
Then the solution ρ of (??), with initial datum ρ0 belongs to C0([0,+∞);Lp(0, 1)). Besides, taking β > 0,
ε ∈ (0, 1) such that

e−β > |k|(1 + ε), (4.11)

13



and introducing, for all t > 0,

λmin(t) = inf
τ∈[0,t]

{λ(W (τ))}, λmax(t) = sup
τ∈[0,t]

{λ(W (τ))}, (4.12)

we get the following estimates:

‖ρ(t)‖Lp(0,1) 6 eβ(1−λmin(t)t) ‖ρ0‖Lp(0,1) + (Cp(ε))
1/peβ

(
1 +

1

β

)
‖h‖L∞(0,t) , (4.13)

where Cp(ε) > 0 is a constant depending on ε and p.

Proof. For p ∈ (1,∞), let T ∗ be the maximal time of existence of the solution of (??). We have, in D ′(0, T ∗),

d

dτ

(∫ 1

0

e−pβx|ρ(x, τ)|p dx
)

= p

∫ 1

0

e−pβx|ρ(x, τ)|p−2ρ(x, τ)∂τρ(τ, x) dx

= −
∫ 1

0

e−pβxλ(W (τ))∂x(|ρ(x, τ)|p) dx

= −e−pβλ(W (τ))1−p|y(τ)|p + λ(W (τ))1−p|u(τ)|p − pβλ(W (τ))

(∫ 1

0

e−pβx|ρ(τ, x)|p dx
)
.

In particular, using (??), for all t ∈ (0, T ∗) and τ ∈ (0, t), we obtain for some constant Cp(ε) > 0 that

d

dτ

(∫ 1

0

e−pβx|ρ(x, τ)|p dx
)

+ pβλ(W (τ))

(∫ 1

0

e−pβx|ρ(x, τ)|p dx
)

6 λ(W (τ))1−p
(
−e−pβ |y(τ)|p + (1 + ε)pkp|y(τ)|p + Cp(ε)λ(W (τ))p|h(τ)|p

)
.

Following, for all t ∈ (0, T ∗), we have, in D ′(0, t),

d

dτ

(∫ 1

0

e−pβx|ρ(x, τ)|p dx
)

+ pβλ(W (τ))

(∫ 1

0

e−pβx|ρ(x, τ)|p dx
)

6 λ(W (τ))Cp(ε) ‖h‖pL∞(0,t) .

This inequality yields, for all t ∈ (0, T ∗),∫ 1

0

e−pβx|ρ(x, t)|p dx 6 e−pβ
∫ t
0
λ(W (τ))dτ

∫ 1

0

e−pβx|ρ0(x)|p dx+
1

pβ
Cp(ε) ‖h‖pL∞(0,t)

6 e−pβλmin(t)

∫ 1

0

e−pβx|ρ0(x)|p dx+
1

pβ
Cp(ε) ‖h‖pL∞(0,t) ,

where we used ∫ t

0

exp

(
−pβ

∫ t

τ

λ(W (s)) ds

)
λ(W (τ)) dτ 6

1

pβ
.

This proves in particular that for all t ∈ (0, T ∗),

∥∥e−βxρ(t)
∥∥
Lp(0,1)

6 e−βλmin(t)t
∥∥e−βxρ0∥∥Lp(0,1)

+ (Cp(ε))
1/p

(
1 +

1

β

)
‖h‖L∞(0,t) , (4.14)

where we used that, as p ∈ (1,∞), (
1

pβ

)1/p

6

(
1

β

)1/p

6 1 +
1

β
.

According to Theorem ??, this implies T ∗ = +∞. Besides, immediate bounds on e−βx in (0, 1) immediately
yields (??). This concludes the proof Proposition ??.
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4.3 Proof of Theorem ??

We assume the setting of Theorem ??, with ρ0 ∈ Lp(0, 1) for some p ∈ (1,∞) and satisfying (??) for some r0.

For later use, we introduce the notations

λmin = inf
s∈[ρ−R0,ρ+R0]

{λ(s)}, (4.15)

λmax = sup
s∈[ρ−R0,ρ+R0]

{λ(s)}, (4.16)

γg = min{|g(ρ+R0)− g(ρ+ r0)|, |g(ρ−R0)− g(ρ− r0)|}, (4.17)

‖λ′‖∞ = ‖λ′‖L∞([ρ−R0,ρ+R0])
, (4.18)∥∥(g−1)′

∥∥
∞ =

∥∥(g−1)′
∥∥
L∞(g([ρ−R0,ρ+R0]))

. (4.19)

We then set for all i ∈ N,
δp(i) = ‖ρ(Ti)− ρ‖Lp(0,1) , (4.20)

and, for i ∈ N, we denote by e(2i+ 1) the error between W (T2i+1) and Ŵ (T2i+1) given by

e(2i+ 1) =

∣∣∣∣∣W (T2i+1)− g−1
(

1

T2i+1 − T2i

∫ T2i+1

T2i

y(τ) dτ

)∣∣∣∣∣ (
= |W (T2i+1 − Ŵ (T2i+1)|

)
. (4.21)

We will construct the iteration such that for all i ∈ N,

δp(2i) 6 r0. (4.22)

(Recall the assumption (??), which can be rewritten under the form δp(0) 6 r0.)
In order to show that our construction makes sense, we fix some i ∈ N such that our solution ρ has been

constructed on [0, T2i] and
δp(2i) 6 r0. (4.23)

which in particular implies that
|W (T2i)− ρ| 6 r0,

and we show that for a suitable choice of T1 = T2i+1 − T2i and T2 = T2i+2 − T2i+1, we get δp(2i+ 2) 6 r0.

4.3.1 Iteration: The acquisition step

According to Section ??, we have

‖ρ(t)− ρ‖Lp(0,1) = δp(2i) for all t ∈ [T2i, T2i+1], (4.24)

and in particular,
δp(2i+ 1) = δp(2i). (4.25)

Recall then that W (t) is constant on [T2i, T2i+1] from Lemma ??. We thus set

W2i = W (T2i) and λ2i = λ(W (T2i)).

Besides, if for t > T2i, we introduce

F2i(t) =
1

t− T2i

∫ t

T2i

y(τ) dτ,

Proposition ?? then implies that for t ∈ (T2i, T2i+1),

|F2i(t)− g(W2i)| 6
1

t− T2i

∫ 1

0

|ρ(x, T2i)−W2i| dx

6
1

t− T2i

(∫ 1

0

|ρ(x, T2i)− ρ| dx+ |ρ−W2i|
)

6
2

t− T2i
δp(2i).
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Taking

T2i+1 − T2i >
2r0
γg

, (4.26)

where γg is defined in (??), and noting (??), we get immediately that

2

T2i+1 − T2i
δp(2i) 6 γg,

and from the above that (??) that F (T2i+1) ∈ g([ρ−R0, ρ+R0]), and thus

Ŵ (T2i+1) = g−1

(
1

T2i+1 − T2i

∫ T2i+1

T2i

y(τ) dτ

)

is well defined and belongs to [ρ−R0, ρ+R0].
Moreover, using (??), we obtain

e(2i+ 1) 6
2

T2i+1 − T2i
∥∥(g−1)′

∥∥
∞ δp(2i), (4.27)

where
∥∥(g−1)′

∥∥
∞ is defined in (??).

In the following, we also assume that

2

T2i+1 − T2i
∥∥(g−1)′

∥∥
∞ 6

R0 − r0
4r0

, (4.28)

so that we have

|W (T2i+1)− ρ| 6 δp(2i) 6 r0

and |W (T2i+1)− Ŵ (T2i+1)| 6 R0 − r0
4

and |Ŵ (T2i+1)− ρ| 6 R0 + 3r0
4

. (4.29)

In the following, we always assume that T2i+1 − T2i = T1 is chosen so that conditions (??) and (??) are
satisfied, i.e.

T1 > max

{
2r0
γg

,
8r0‖(g−1)′‖∞
R0 − r0

}
. (4.30)

4.3.2 Iteration: The stabilization step

Setting

ρ̃(x, t) = ρ(x, t)− ρ, for all x ∈ (0, 1) and t ∈ (T2i+1, T2i+2),

λ̃(s) = λ(s+ ρ), for s ∈ R,

we easily check that ρ̃ solves

∂tρ̃+ λ̃(W̃ )∂xρ̃ = 0 for (x, t) ∈ (0, 1) × (T2i+1, T2i+2), (4.31)

in which W̃ denotes the total mass of ρ̃:

W̃ (t) =

∫ 1

0

ρ̃(x, t) dx for t ∈ (T2i+1, T2i+2), (4.32)

with boundary conditions

ρ̃(0, t) = kρ̃(1, t) + h(t) for t ∈ (T2i+1, T2i+2), (4.33)

where

h(t) = (1− k)ρ

(
λ(Ŵ (t))

λ(W (t))
− 1

)
. (4.34)
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and Ŵ (t) is given by (??).
We then remark that, at least while the solution is well-defined, integrating the equation (??), we also

have, for all t ∈ (T2i+1, T2i+2),

W ′(t) = u(t)− y(t) = (k − 1)y(t) + (1− k)ρλ(Ŵ (t)) = (Ŵ )′(t),

i.e.
(Ŵ (t)−W (t))′ = 0 for t ∈ (T2i+1, T2i+2).

Since |Ŵ (T2i+1)−W (T2i+1)| = e(2i+ 1), we therefore get

∀t ∈ (T2i+1, T2i+2), |Ŵ (t)−W (t)| = e(2i+ 1). (4.35)

•The solution is well-defined on (T2i+1, T2i+2) and W and Ŵ belong to [ρ−R0, ρ+R0] on [T2i+1, T2i+2].
Let us denote by T ∗2i+2 the largest time smaller than T2i+2 such that

|Ŵ (t)− ρ| 6 R0 and |W (t)− ρ| 6 R0 for t ∈ (T2i+1, T
∗
2i+2) and ‖ρ(t)‖Lp(0,1) <∞. (4.36)

Our goal is to show that for suitable choices of T1 and T2, T ∗2i+2 = T2i+2.
Then using (??) and (??), (??) and (??),

‖h‖L∞(T2i+1,T∗2i+2)
6

(1− k)ρ ‖λ′‖∞
λmin

e(2i+ 1) 6
(1− k)ρ ‖λ′‖∞

λmin

2
∥∥(g−1)′

∥∥
∞

T2i+1 − T2i
δp(2i), (4.37)

where we used the notations (??)–(??)–(??).
For β > 0 and ε > 0 small enough to satisfy e−β > |k|(1 + ε), applying Proposition ?? for (??)-(??)-(??)-

(??), we get for all t ∈ (T2i+1, T
∗
2i+2) that

‖ρ̃(t)‖Lp(0,1) 6 eβ(1−λmin(t−T2i+1))δp(2i) + (Cp(ε))
1/peβ

(
1 +

1

β

)
(1− k)ρ ‖λ′‖∞

λmin

2
∥∥(g−1)′

∥∥
∞

T2i+1 − T2i
δp(2i),

that is

‖ρ(t)− ρ‖Lp(0,1) 6 eβ(1−λmin(t−T2i+1))δp(2i)

+ (Cp(ε))
1/peβ

(
1 +

1

β

)
(1− k)ρ ‖λ′‖∞

λmin

2
∥∥(g−1)′

∥∥
∞

T2i+1 − T2i
δp(2i). (4.38)

Therefore for all t ∈ (T2i+1, T
∗
2i+2),

|W (t)− ρ| 6 ‖ρ(t)− ρ‖Lp(0,1) 6 eβδp(2i) +
Mε

T2i+1 − T2i
δp(2i), (4.39)

where

Mε := (Cp(ε))
1/peβ

(
1 +

1

β

)
(1− k)ρ ‖λ′‖∞

λmin
2
∥∥(g−1)′

∥∥
∞ . (4.40)

According to the estimates (??)-(??) and Theorem ??, the solution ρ̃ is well-defined on the whole interval

(T2i+1, T2i+2), and T ∗2i+2 necessarily equals to T2i+2 if we manage to show that W̃ and W cannot get outside
[ρ−R0, ρ+R0] on the time interval (T2i+1, T2i+2). This is the goal of the analysis below.

Now for fixed R0 > r0 > 0, we take β > 0 small enough such that

eβ < min

{
1 +

R0 − r0
3r0

,
1

|k|

}
, (4.41)

ε > 0 such that (??) holds, and, in accordance with (??), we choose T1 = T2i+1 − T2i such that

T1 > max

{
2r0
γg

,
8r0‖(g−1)′‖∞
R0 − r0

,
3Mεr0
R0 − r0

}
, (4.42)

where Mε is given by (??).
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Then it follows from (??) that for t ∈ (T2i+1, T
∗
2i+2),

|W (t)− ρ| 6 δp(2i)

(
1 +

2(R0 − r0)

3r0

)
6

2R0 + r0
3

< R0 for t ∈ [T2i+1, T
∗
2i+2].

On the other hand, we have from (??) that for all t ∈ (T2i+1, T
∗
2i+2),

|Ŵ (t)− ρ| 6 |Ŵ (t)−W (t)|+ |W (t)− ρ|

6 |Ŵ (T2i+1)−W (T2i+1)|+ 2R0 + r0
3

6
R0 − r0

4
+

2R0 + r0
3

< R0.

Accordingly, T ∗2i+2 = T2i when β is chosen as in (??) and T1 = T2i+1 − T2i is chosen as in (??).
• Decay of the Lp-norms.

By (??) and (??), we have, with Mε as in (??), that for all t ∈ [T2i+1, T2i+2],

‖ρ(t)− ρ‖Lp(0,1) = ‖ρ̃(t)‖Lp(0,1) 6 eβ(1−λmin(t−T2i+1))δp(2i) +
Mε

T2i+1 − T2i
δp(2i). (4.43)

In particular, for t = T2i+2 in (??), we obtain by (??) that

δp(2i+ 2) 6 eβ(1−λmin(T2i+2−T2i+1))δp(2i) +
Mε

T2i+1 − T2i
δp(2i).

Therefore, if T2 = T2i+2 − T2i+1 and T1 = T2i+1 − T2i satisfy, in addition to (??),

eβ(1−λminT2) 6
1

4
and

Mε

T1
6

1

4

i.e.,

T2 >
1

λmin

(
1 +

log 4

β

)
and T1 > 4Mε, (4.44)

we get

δp(2i+ 2) 6
1

4
δp(2i) +

1

4
δp(2i) 6

1

2
δp(2i). (4.45)

4.3.3 Complete Iteration: From T2i to T2i+2

For fixed R0 > r0 > 0 and k ∈ (−1, 1), we take β > 0 such that (??) holds, ε > 0 such that (??) holds, and,
with Mε given by (??), we set

T1 = max

{
2r0
γg

,
8r0‖(g−1)′‖∞
R0 − r0

,
3Mεr0
R0 − r0

, 4Mε

}
, (4.46)

T2 =
1

λmin

(
1 +

log 4

β

)
. (4.47)

By Section ?? and Section ??, we obtain that for all i ∈ N, the solution ρ of (??)–(??)–(??)–(??) with the
feedback law given by (??) for t ∈ (T2i, T2i+1) and by (??) for t ∈ (T2i+1, T2i+2) satisfies, if the initial condition
ρ0 is such that ‖ρ0 − ρ‖Lp(0,1) 6 r0, that for all i ∈ N,

δp(2i+ 1) = δp(2i) and δp(2i+ 2) 6
1

2
δp(2i).

In particular, we also get
∀i ∈ N, δp(2i) 6 2−iδp(0). (4.48)

Let us now explain how to obtain the estimate (??) from there. Recall that T0 = 0 and

T2i+1 = (i+ 1)T1 + iT2 and T2i+2 = (i+ 1)T1 + (i+ 1)T2 for all i ∈ N, (4.49)
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where T1, T2 be given by (??) and (??). Then for any t ∈ [0,∞), j = bt/(T1 + T2)c is the integer such that
T2j 6 t < T2j+2. If t ∈ [T2j , T2j+1], we get from (??) and (??) that

‖ρ(t)− ρ‖Lp(0,1) = δp(2j) 6 2−jδp(0) = 2−j ‖ρ0 − ρ‖Lp(0,1) 6 2e−
log 2
T1+T2

t ‖ρ0 − ρ‖Lp(0,1) .

If t ∈ [T2j+1, T2j+2], we get from (??), (??) and (??) that

‖ρ(t)− ρ‖Lp(0,1) 6 eβ
∥∥ρ̃(t)e−βx

∥∥
Lp(0,1)

6 eβδp(2j) +
1

4
δp(2j)

6

(
eβ +

1

4

)
2−jδp(0) 6 2

(
eβ +

1

4

)
e−

log 2
T1+T2

t ‖ρ0 − ρ‖Lp(0,1) .

These last two estimates conclude the proof of Theorem ??.

Remark 4.2. From the above proof, it is clear that Theorem ?? can be proven for any T2 > 1/λmin, by taking,
with the notations in the above proof,

T1 = max

{
2r0
γg

,
8r0‖(g−1)′‖∞
R0 − r0

,
3Mεr0
R0 − r0

,
1

2(1− eβ(1−λminT2))
Mε

}
.

5 Proof of Theorem ??

Similarly as in Section ??, we will distinguish the study of the acquisition steps from the stabilizing steps.
Since only the acquisition step differs from the one in Theorem ??, we will focus on it before proving

Theorem ??.

5.1 The acquisition step in Theorem ??

In this section, we still consider the Cauchy problem (??).

Let us recall that the problem is that we only have an approximation Ŵ0 of W0, and our goal is to get a
better approximation of W0 based on the outflux y.

In particular, our goal is to explain why the value

W̃1 = Ŵ0 −
1

1 + ρλ′(Ŵ0)/λ(Ŵ0)

(
Ŵ0 −

∫ T̂0

0

y(s) ds

)
, (5.1)

or

Ŵ1 = Ŵ0 −
1

1 + ρλ′(ρ)/λ(ρ)

(
Ŵ0 −

∫ T̂0

0

y(s) ds

)
, (5.2)

with

T̂0 =
1

λ(Ŵ0)
, (5.3)

is a better approximation of W0 than Ŵ0, at least if the initial data are close to ρ.

Theorem 5.1. Assume that ρλ′(ρ) + λ(ρ) 6= 0 (equivalently ρλ′(ρ)/λ(ρ) 6= −1). Let ε0 > 0 be such that for
all s ∈ [ρ− ε0, ρ+ ε0], ρλ′(s) + λ(s) 6= 0.

Then, for p ∈ (1,∞) there exists C > 0 such that if (ρ0, Ŵ0) ∈ Lp(0, 1)× R satisfies

|Ŵ0 − ρ|+ |W0 − ρ| 6 ε0, (5.4)

setting (W̃1, Ŵ1, T̂0) as in (??)–(??), we have

|W̃1 −W0| 6 C
(
|W0 − Ŵ0|2 + ‖ρ0 − ρ‖Lp(0,1)|W0 − Ŵ0|1−1/p

)
, (5.5)

and
|Ŵ1 −W0| 6 C

(
|W0 − Ŵ0|2 + |Ŵ0 − ρ|2 + ‖ρ0 − ρ‖Lp(0,1)|W0 − Ŵ0|1−1/p

)
. (5.6)
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Before going into the proof of Theorem ??, let us mention that although the estimate (??) is valid under

the only condition of |Ŵ0 −W0| being small enough, it expresses that W̃1 is closer to W0 than Ŵ0 only when

‖ρ0 − ρ‖Lp(0,1) is at most of the order |Ŵ0 −W0|1/p.
This means that the estimate (??) on W̃1 can be used mainly when ρ0 is close to ρ, in which case we can

also use Ŵ1 instead of W̃1, thus yielding to the estimate (??).

Proof of Theorem ??. In order to prove Theorem ??, it is convenient to rewrite the system (??) on R with a
initial datum ρ0 extended by 1-periodicity to R. Indeed, since u = y in (??), W is independent of time (recall
Lemma ??), and the velocity λ(W (t)) is thus constant equal to λ(W0), denoted by λ0 up to the end. It is then
clear that, given ρ0 ∈ L1(0, 1), the solution ρ of ∂tρ+ λ0∂xρ = 0, (x, t) ∈ (0, 1)× (0,+∞),

ρ(0, t) = ρ(1, t), t ∈ (0,+∞),
ρ(x, 0) = ρ0(x), x ∈ (0, 1),

coincides, on (0, 1)× (0,∞), with the solution ρ of{
∂tρ+ λ0∂xρ = 0, (x, t) ∈ R× (0,+∞),
ρ(x, 0) = ρ0(x), x ∈ R, (5.7)

where, with a slight abuse of notation, we denote the same for ρ0 and its 1-periodic extension on R.
We then work on the solutions ρ of (??). It is obvious that

ρ(x, t) = ρ0(x− tλ0), (x, t) ∈ R× (0,∞).

Accordingly, ∫ T̂0

0

y(s) ds =

∫ T̂0

0

λ0ρ0(1− tλ0) ds =

∫ 1

1−λ0T̂0

ρ0(x) dx

=

∫ 1

0

ρ0(x) dx−
∫ 1−λ0T̂0

0

ρ0(x) dx

= W0 − ρ(1− λ0T̂0)−
∫ 1−λ0T̂0

0

(ρ0 − ρ) dx

= W0 − ρ

(
1− λ(W0)

λ(Ŵ0)

)
−
∫ 1−λ(W0)/λ(Ŵ0)

0

(ρ0 − ρ) dx. (5.8)

We then estimate the two last terms. On one hand, we get∣∣∣∣∣
(

1− λ(W0)

λ(Ŵ0)

)
+
λ′(Ŵ0)

λ(Ŵ0)
(W0 − Ŵ0)

∣∣∣∣∣ 6 sup[ρ−ε0,ρ+ε0] λ
′′

inf [ρ−ε0,ρ+ε0] λ
|W0 − Ŵ0|2.

On the other hand, we have∣∣∣∣∣
∫ 1−λ(W0)/λ(Ŵ0)

0

(ρ0 − ρ) dx

∣∣∣∣∣ 6 ‖ρ0 − ρ‖Lp(0,1)

∣∣∣∣∣
(

1− λ(W0)

λ(Ŵ0)

)∣∣∣∣∣
1−1/p

6 ‖ρ0 − ρ‖Lp(0,1)|W0 − Ŵ0|1−1/p
(

sup[ρ−ε0,ρ+ε0] λ
′

inf [ρ−ε0,ρ+ε0] λ

)1−1/p

.

By plugging these two estimates into the identity (??), we get∣∣∣∣∣
∫ T̂0

0

y(s) ds+
ρλ′(Ŵ0)

λ(Ŵ0)
Ŵ0 −W0

(
1 +

ρλ′(Ŵ0)

λ(Ŵ0)

)∣∣∣∣∣
6 C

(
|W0 − Ŵ0|2 + ‖ρ0 − ρ‖Lp(0,1)|W0 − Ŵ0|1−1/p

)
. (5.9)
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We then immediately deduce the estimate (??).
To prove the estimate (??), we proceed similarly, the only difference being in the estimate of the second

term in (??), which is now as follows:∣∣∣∣∣
(

1− λ(W0)

λ(Ŵ0)

)
+
λ′(ρ)

λ(ρ)
(W0 − Ŵ0)

∣∣∣∣∣
6 sup

[ρ−ε0,ρ+ε0]

{(
λ′

λ

)′}
|Ŵ0 − ρ||Ŵ0 −W0|+

sup[ρ−ε0,ρ+ε0] λ
′′

inf [ρ−ε0,ρ+ε0] λ
|W0 − Ŵ0|2.

The end of the proof of estimate (??) then follows line to line the one of (??).

Remark 5.1. Considering the above proof, the estimate (??) could be generalized for arbitrary Ŵ0 as follows:

for all ε > 0, there exists a positive constant C = C(ε) such that for all Ŵ0 satisfying

|Ŵ0 −W0|+ |Ŵ0 − ρ| 6 ε,

we have
|Ŵ1 −W0| 6 C(ε)

(
|Ŵ0 −W0|2 + |Ŵ0 − ρ|2 + ‖ρ0 − ρ‖Lp(0,1)|W0 − Ŵ0|1−1/p

)
. (5.10)

However, since in the following, we will have to restrict ourselves to local stabilization results to get the
exponential decay of the solutions of the system under consideration in Theorem ??, the restriction (??) is
irrelevant in the proof of Theorem ??.

For later use, let us also remark that due to the estimate

∀a, b > 0, ab 6
(p+ 1)

2p
a2p/(p+1) +

(p− 1)

2p
b2p/(p−1),

and |W0−ρ| 6 ‖ρ0−ρ‖Lp(0,1), under the setting of Theorem ??, we get the existence of a constant C depending
on p such that

|Ŵ1 −W0| 6 C
(
|Ŵ0 −W0|2 + ‖ρ0 − ρ‖2p/(p+1)

Lp(0,1)

)
. (5.11)

5.2 Proof of Theorem ??

We assume the setting of Theorem ??. We choose ε0 as in Theorem ??, and we introduce

λmin = inf
s∈[ρ−ε0,ρ+ε0]

{λ(s)}, (5.12)

‖λ′‖∞ = sup
s∈[ρ−ε0,ρ+ε0]

{λ′(s)}. (5.13)

We assume that ρ0 ∈ Lp(0, 1) and Ŵ0 ∈ R are such that

‖ρ(0)− ρ‖Lp(0,1) + |Ŵ0 −W0| 6 r0,

for a bound r0 > 0 to be determined, and we let (ρ, Ŵ ) be the solution of (??)–(??)–(??)–(??) with the
feedback law given by (??) for t ∈ (T2i, T2i+1) and by (??) for t ∈ (T2i+1, T2i+2).

We then set for all i ∈ N,

δp(i) = ‖ρ(Ti)− ρ‖Lp(0,1) , and e(i) = |Ŵ (Ti)−W (Ti)|. (5.14)

We assume that r0 6 ε0, with ε0 as in Theorem ??, so that we get

δp(0) + e(0) 6 r0 6 ε0. (5.15)

Let us take i ∈ N such that
δp(2i) + e(2i) 6 r0 (5.16)
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and let us show that, under suitable smallness assumption on r0, we can guarantee that

δp(2i+ 2) + e(2i+ 2) 6 (δp(2i) + e(2i))γ, (5.17)

for some γ ∈ (0, 1).
During the acquisition step, since W is constant on (T2i, T2i+1) from Lemma ??, we get from (??) that

e(2i+ 1) 6 C
(
e(2i)2 + δp(2i)

2p/(p+1)
)
, and δp(2i+ 1) = δp(2i). (5.18)

During the stabilizing step, as argued in the proof of Theorem ??, let us defined T ∗2i+2 as the largest time
larger than T2i+1 and smaller than T2i+2 such that

∀t ∈ (T2i+1, T
∗
2i+2), ‖ρ(t)− ρ‖Lp(0,1) + |Ŵ (t)− ρ| 6 ε0.

Then we have
∀t ∈ (T2i+1, T

∗
2i+2), |Ŵ (t)−W (t)| = e(2i+ 1). (5.19)

Besides, taking β > 0 and ε > 0 such that (??) holds, applying Proposition ??, we get that for all t ∈
(T2i+1, T

∗
2i+2),

‖ρ(t)− ρ‖Lp(0,1) 6 eβδp(2i+ 1) + (Cp(ε))
1/peβ

(
1 +

1

β

)
‖h‖L∞(T2i+1,T∗2i+2)

6 eβδp(2i) + (Cp(ε))
1/peβ

(
1 +

1

β

)
(1− k)ρ ‖λ′‖∞

λmin
e(2i+ 1), (5.20)

where the second estimate comes from (??), and where the used the notations (??)–(??).
This guarantees that for all t ∈ (T2i+1, T

∗
2i+2),

|W (t)− ρ| 6 eβδp(2i) + C(Cp(ε))
1/peβ

(
1 +

1

β

)
(1− k)ρ ‖λ′‖∞

λmin

(
e(2i)2 + δp(2i)

2p/(p+1)
)
,

|Ŵ (t)− ρ| 6 eβδp(2i) + C

(
1 + (Cp(ε))

1/peβ
(

1 +
1

β

)
(1− k)ρ ‖λ′‖∞

λmin

)(
e(2i)2 + δp(2i)

2p/(p+1)
)
,

where the second estimate is deduced from the first one, together with (??) and (??).
Therefore, if r0 > 0 is small enough (recall that r0 quantifies the smallness condition in (??)), we can

guarantee that for all t ∈ (T2i+1, T
∗
2i+2),

|W (t)− ρ|+ |Ŵ (t)− ρ| 6 ε0
2
.

Combined with (??) and Theorem ??, we deduce that T ∗2i+2 = T2i+2. We also have

e(2i+ 2) = e(2i+ 1),

and, with β > 0 and ε > 0 such that (??) holds, applying Proposition ??, we get that for all t ∈ (T2i+1, T2i+2),

‖ρ(t)− ρ‖Lp(0,1) 6 eβ(1−λmin(t−T2i+1))δp(2i) + (Cp(ε))
1/peβ

(
1 +

1

β

)
(1− k)ρ ‖λ′‖∞

λmin
e(2i+ 1). (5.21)

Taking t = T2i+2, we get

e(2i+ 2) + δp(2i+ 2) 6 eβ(1−λminT2)δp(2i)

+ C

(
1 + (Cp(ε))

1/peβ
(

1 +
1

β

)
(1− k)ρ ‖λ′‖∞

λmin

)(
e(2i)2 + δp(2i)

2p/(p+1)
)
.

It is then clear that, for T2 such that
λminT2 > 1,

there exists r0 small enough and γ ∈ (0, 1) such that, if the condition (??) holds at time T2i, we have (??),
and in particular the condition (??) holds at time T2(i+1) = T2i+2.
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Accordingly, by induction, we get that, if

e(0) + δp(0) 6 r0,

then, for all i ∈ N,
e(2i) + δp(2i) 6 (e(0) + δp(0))γ2i.

Since the times T2i+1 − T2i are uniformly bounded from above by 1/λmin, we can conclude as in the proof of
Theorem ?? to show the exponential stability (??) for solutions of (??)–(??)–(??)–(??) with the feedback law
given by (??) for t ∈ (T2i, T2i+1) and by (??) for t ∈ (T2i+1, T2i+2). Details are thus left to the reader.

6 Numerical simulations

In this section, we give some numerical simulations which illustrate our theoretical results established before.

6.1 Numerical implementations

The numerical scheme is implemented as follows.
For N ∈ N∗, the space interval (0, 1) is divided into N points, corresponding to a mesh size ∆x = 1/N .

The corresponding time discretization parameter is ∆t = ∆x/λM , where λM = max{λ(s), s ∈ R}.
The function ρ is then approximated by a sequence of vectors (~ρ n)n∈N = (ρn0 , · · · , ρnN )n∈N, in the sense

that ρnm denotes the discrete approximation of the value of ρ at (tn, xm) where tn = n∆t and xm = m∆x.
Similarly, (Wn)n∈N is a sequence of real number approximating W at time tn and given by

Wn = ∆x

N∑
k=1

ρnk , (n ∈ N).

The sequence (Ŵn)n∈N corresponds to the approximation of Ŵ at times (tn = n∆t)n∈N.
Corresponding to the algorithm presented in Theorem ??, we use the following explicit solver, given for

n ∈ N by

ρn+1
m = ρnm −

∆tλ(Wn)

∆x
(ρnm − ρnm−1), m = 1, · · · , N,

ρn+1
0 =


ρn+1
N , if tn+1 ∈ [T2i, T2i+1),

kρn+1
N + (1− k)ρ

λ(Ŵn+1)

λ(Wn+1)
, if tn+1 ∈ [T2i+1, T2i+2),

Ŵn+1 =



Ŵn, if tn+1 ∈ [T2i, T2i+1) for some i ∈ N,

g−1

(∑n
j=vi

λ(W j)ρjN
n− vi

)
, if tn < T2i+1 6 tn+1 for some i ∈ N,

with vi ∈ N such that T2i < tvi 6 T2i + ∆t,

Ŵn + ∆t λ(Wn)(ρn0 − ρnN ), if T2i+1 6 tn < tn+1 < T2i+2,

ρ0m = ρ0(m∆x), for m = 0, · · · , N,
Ŵ 0 = ρ

with Wn = ∆x

N∑
k=1

ρnk ,

(6.1)

Corresponding to the algorithm presented in Theorem ??, we do as in (??) when tn belongs to intervals of
the form [T2i, T2i+1) and when tn belongs to intervals of the form [T2i+1, T2i+2], except that:

• when tn < T2i+1 6 tn+1 for some i, we set

Ŵn+1 = Ŵn − 1

1 + d

Ŵn −∆t

n∑
j=vi

λ(W j)ρjN

 ,

where vi ∈ N is such that T2i < tvi 6 T2i + ∆t.
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• T2i+1 is computed when tn becomes larger than T2i with the formula

T2i+1 = T2i +
1

λ(Ŵn)
.

We also fix a stopping time Tstop given by the stopping criterion ‖~ρ n−ρ~e ‖`2N ≤ 10−2, where ~e = (1, · · · , 1)

and the `2 norm of ~a = (a0, · · · , aN ) is defined as

‖~a ‖`2N =

√√√√∆x

N∑
i=1

a2j .

6.2 Example 1

We choose the velocity function λ, the steady state ρ and the initial datum ρ0 as follows:

λ(s) =
1

1 + s2
, s ∈ R, ρ = 0.3, ρ0(x) = sin (πx) , x ∈ (0, 1).

With this example, we show that the feedback control (??)-(??) of Theorem ?? can stabilize the system
under consideration (Note that in this case, the proportional control (??) in [?] also applies locally, since
d = ρλ′(ρ)/λ(ρ) = −18/109 > −1 in this case).

Since ‖ρ0−ρ‖L1(0,1) 6 2/π < 0.65, Theorem ?? applies, with r0 = 0.65 and R0 = 0.7, and we choose T1 = 6
and T2 = 5. Theorem ?? also applies, at least locally, with the same choice of T2 since T2 > 1/λ(0.3) = 1.09.
Figure ?? left shows the convergence of ‖~ρ − 0.3~e‖`2N to 0 for various choices of the parameter k when using
the algorithm of Theorem ??, and Figure ?? right plots the same numerical experiments but when using the
algorithm of Theorem ??.

pic/bar03smallloglh2-eps-converted-to.pdfpic/bar03smallloglh2second-eps-converted-to.pdf

Figure 1: Convergence as t → ∞ of log ‖~ρ − 0.3~e‖`2N for different values of k in Example 1 using, in the left,
the algorithm of Theorem ??, and in the right, the algorithm of Theorem ??.

In Table ?? below, we also compare the different stopping time for the feedback proposed in Theorem ??,
Theorem ?? and the simpler proportional feedback (??) in [?] with the same value k, and we do it for several
choices of k.

k = 0.3 k=0.5 k=0.7 k=0.9
Tstop with the algorithm of Theorem ?? 9.94 18.59 30.18 87.26
Tstop with the algorithm of Theorem ?? 5.64 9.03 15.82 48.58
Tstop with the proportional control (??) 4.4 7.61 14.5 48.23

Table 1: Stopping times Tstop for k = 0.3, 0.5, 0.7, 0.9 in Example 1.

As expected since d = ρλ′(ρ)/λ(ρ) = −18/109 > −1 in this case, the proportional feedback controller (??)
stabilizes the system and provides a faster decay of the solutions of the system compared to the algorithms of
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Theorem ?? and ??, since these both algorithm use acquisition steps during which the stabilization process is
momentarily stopped.

However, as underlined in Figures ??, the stopping times for the algorithm of Theorem ?? are significantly
reduced compared to the ones of Theorem ??, in which the acquisition step is larger. Also note that in fact,
the performance of Theorem ?? is rather close to that of the proportional feedback controller (??) in most
cases.

Also note that, as expected, for the three algorithms presented in Table ??, the convergence of the solution
is faster when taking |k| smaller.

Let us finally mention that the algorithm of Theorem ??, which theoretically should provide stabilization
only locally, is working well in all the above mentioned numerical experiments, although the initial datum is
not in a small neighborhood of ρ (recall ‖ρ0 − ρ‖L1(0,1) 6 2/π < 0.65).

6.3 Example 2

We choose the velocity function λ, the steady state ρ and the initial datum ρ0 as follows:

λ(s) =
1

1 + s2
, s ∈ R, ρ = 5, ρ0(x) = 5 sin

(πx
2

)
, x ∈ (0, 1). (6.2)

In this case, explicit computations show that

d =
ρλ′(ρ)

λ(ρ)
= −25

13
< −1,

so that the proportional feedback controller (??) does not stabilize the system (??)-(??)-(??)-(??) (recall [?]).
Despite this, the feedback control proposed in Theorem ?? and Theorem ?? still work. Note that ‖ρ0 −

ρ‖L1(0,1) = 5− 10/π < 3, so we can choose r0 = 3, R0 = 4, and we choose T1 = 45 and T2 = 50 (T2 > 1/λ(ρ)
with this choice) in the algorithm of Theorem ??. Similarly, we choose T2 = 50 in the algorithm of Theorem

??. Regarding the algorithm of Theorem ??, Figure ?? left shows how Ŵ approximates W and Figure ??
right shows the 3D plot of ρ; the stopping time is 169.51. Figure ?? shows the same plots for the algorithm of
Theorem ??; the stopping time is then 345.3.

pic/bar5smallWhatW-eps-converted-to.pdfpic/bar5small3d-eps-converted-to.pdf

Figure 2: Example 2 with the algorithm of Theorem ?? and k = 0.25. Left, plot of W and its approximation
Ŵ versus time. Right, the 3-d plot of the solution ρ.
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pic/bar5smallWhatWsecond-eps-converted-to.pdfpic/bar5small3dsecond-eps-converted-to.pdf

Figure 3: Example 2 with the algorithm of Theorem ?? and k = 0.25. Left, plot of W and its approximation
Ŵ versus time. Right, the 3-d plot of the solution ρ.

It might seem surprising that the algorithm of Theorem ?? performs worse than the algorithm of Theorem
?? on that example. In fact, to understand this, one should look at the way both algorithms approximate W ,
that is Figures ?? and ?? left. Since the initial datum is rather far from the equilibrium, the algorithm of
Theorem ?? has difficulty to suitably estimate W at the beginning of the process, while Ŵ computed with
the algorithm of Theorem ?? catches W rather fast.

Note that this example is the one corresponding to Example 2 in [?, Section 5.2], in which the proportional
control (??) drives the solution ρ to the equilibrium ρ̃ = 0.2 instead of the desired equilibrium ρ = 5. The
reason lies in the fact that the function g : s 7→ sλ(s) coincides at ρ̃ and ρ, but the value of d = ρλ′(ρ)/λ(ρ)
at ρ is strictly less than −1, while its value at ρ̃ is strictly larger than −1, which implies in particular that the
proportional feedback controller given by (??) is not locally stabilizing around ρ.

6.4 Example 3

We choose the velocity function λ, the steady state ρ and the initial datum ρ0 as follows:

λ(s) =
1

1 + s2
, s ∈ R, ρ = 5, ρ0(x) = 10 + sin

(πx
2

)
. (6.3)

Note that example (??) differs from example (??) from the choice of the initial datum. This example is the one
given in [?, Section 5.2], where it is shown that the proportional control (??) does not work and the solution
diverges.

However, the feedback control provided by Theorem ?? and Theorem ?? still work provided that T2 is
large enough, as it is shown in Figure ?? plotting ρ with k = 0.3. In both numerical tests, we choose T2 = 130,
so that it is larger than 1/λ(ρ) and 1/λ(W0) (Since ρ0(x) 6 11 for all x ∈ (0, 1), 1/λ(W0) 6 1 + 112). The
stopping times are then 634.01 for the algorithm of Theorem ?? and 606.04 for the one of Theorem ??.

pic/bar5bigori3d-eps-converted-to.pdfpic/bar5bigori3dsecond-eps-converted-to.pdf

Figure 4: Example 3. Left, the 3-d plot of the solution ρ provided by the algorithm of Theorem ?? with
k = 0.3, T1 = 120, and T2 = 130. Right, the 3-d plot of the solution ρ provided by the algorithm of Theorem
?? with k = 0.3, and T2 = 130.
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