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Abstract
This article deals with the control design of a dual-spin projectile
concept, characterized by highly nonlinear parameter-dependent and
coupled dynamics, and subject to uncertainties and actuator satura-
tions. An open-loop nonlinear model stemming from flight mechanics
is first developed. It is subsequently linearized and decomposed into a
linear parameter-varying system for the roll channel, and a quasi-linear
parameter-varying system for the pitch/yaw channels. The obtained
models are then used to design gain-scheduled H∞ baseline autopilots,
which do not take the saturations into account. As a major contri-
bution of this paper, the saturation nonlinearities are addressed in
a second step through anti-windup augmentation. Three anti-windup
schemes are proposed, which are evaluated and compared through
time-domain simulations and integral quadratic constraints analysis.
Finally, complete guided flight scenarios involving a wind disturbance,



perturbed launch conditions, or aerodynamic uncertainties, are anal-
ysed by means of nonlinear Monte Carlo simulations to evaluate the 
improvements brought by the proposed anti-windup compensators.

Keywords: guided projectiles, anti-windup, gain scheduling, robustness 
analysis

1 Introduction
Standard ballistic projectiles suffer from a lack of accuracy, due to various
factors such as incorrect launch conditions or wind perturbations. As a con-
sequence, multiple rounds must typically be fired to intercept a single target.
This leads to significant risks of collateral damage, high deployment and oper-
ational costs, and logistical concerns. Guided projectiles aim to overcome these
limitations. Among the numerous guided projectile concepts, that of a course
correction fuse (CCF) decoupled from the body and equipped with canards
has numerous advantages over other steering mechanisms proposed in the lit-
erature on guided projectiles. Unlike impulse jet thrusters [1–3] or inertial
loads [4–6], aerodynamic surfaces provide a correction which can be modeled
in continuous time as aerodynamic effects. Additional benefits of the dual-spin
configuration, as opposed to fin-stabilized projectiles, are the capability to
retrofit existing unguided shells, thus greatly reducing development costs, and
a greater range due to the lack of stabilizing surfaces [7]. This solution leads
to a guided projectile with seven degrees of freedom (7-DoF), whose precision
and performance are then highly dependent on the embedded hardware and
flight control algorithms. In turn, the development of flight control algorithms
relies on a mathematical model of the system to control. This model must be
a sufficiently accurate description of the behaviour of the system, while also
being compatible with control design methods.

Literature on control theory applied to guided projectiles remains scarce
relative to other aerospace systems, such as aircraft, space launchers, and
UAVs. Several ad hoc open-loop algorithms based on trajectory tracking or
impact point prediction [8] have been investigated for a wealth of steering
mechanisms, but these approaches fail to handle aerodynamic uncertainties
in a satisfying manner. Regarding the dual-spin configuration, the first full
nonlinear model was published in [9] for an unguided projectile, while early
results on the control of such systems based on trajectory tracking can be
found in [10, 11]. Recent studies [12–14] developed linearisation algorithms
specific to dual-spin projectiles, as well as efficient autopilots based on gain-
scheduling techniques [15, 16] and on local H∞ syntheses [17, chap. 9] for
canards acting in pairs, demonstrating that the control of such nonlinear sys-
tems can be addressed using the more familiar methods from linear control
theory. In line with these developments, this paper, resulting from a PhD work
[18], extends the proposed linear framework by addressing canard saturations



using techniques from modern anti-windup design theory [19], as well as inte-
gral quadratic constraints (IQC) analysis [20] to evaluate the local robustness 
properties of the augmented closed-loop systems.

This paper is organized as follows. Section 2 sets up the model of the pro-
jectile airframe that will be used to tackle the control problems: compared to 
[14], the present study uses a slightly different s teering m echanism w here all 
three axes of the projectile are aerodynamically controlled using the canards, 
removing the need for a coaxial motor within the fuse. The obtained models are 
then used in Section 3 to design a baseline autopilot, which does not take sat-
urations into account. The saturation nonlinearities are addressed in Section 4 
through anti-windup design. In Section 5, complete guided flight scenarios 
involving a wind disturbance, perturbed launch conditions or aerodynamic 
uncertainties are simulated to evaluate the various anti-windup schemes.

2 Open-loop modeling
2.1 Presentation of the guided projectile concept
The guided projectile concept studied in this paper is a dual-spin projectile 
consisting of a standard 155 mm ammunition retrofitted with a roll-decoupled 
fuse. The body, or aft part, contains the explosive payload. The fuse, or forward 
part, is equipped with four canards, as shown in Fig. 1, which are indepen-
dently actuated. The CCF concept considered here differs f rom [ 14], where a 
coaxial motor dedicated to roll control is included. Instead, all three axes are 
aerodynamically controlled using the canards.

The flight s cenario o f t he s tudied p rojectile c an b e b roken i nto several 
phases, depicted in Fig. 2. At the start of the ballistic phase (0 ≤ t < tstart = 
20 s), electronic components are switched on. This is done a few seconds after 
launch to avoid possible hardware degradations due to the harsh initial con-
ditions. At t = tstart, the fuse roll rate pf , which at this point is high due to 
the mechanical bearing between the body and the fuse, is decreased by main-
taining constant deflection angles until the moment t switch when the roll rate 
reaches pf = 1800 deg/s = 10π rad/s. The roll autopilot is then activated 
to stabilize the fuse at a fixed r oll a ngle ϕf .  F inally, t he p rojectile e nters its 
guided phase at tguid = 30 s, during which additional efforts on the pitch and 
yaw axes are generated by the canards to alter its trajectory.

2.2 Nonlinear modelling using flight mechanics
The 7-DoF airframe model is described by its translational and attitude 
dynamic equations, given respectively by Newton’s and Euler’s laws of 
motions. These are expressed in a non-rolling frame as:u̇v̇

ẇ

 = 1
m

XY
Z

 −

 0 −r q
r 0 r tan θ

−q −r tan θ 0

 uv
w

 (1)



Fig. 1: 155 mm projectile with a course correction fuse equipped with canards

Fig. 2: Standard flight scenario of a canard-guided dual-spin projectile
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where [u v w]T are the linear velocities, and [pf pa q r]T are the angular
rates (the subscripts f and a denote the forward and aft parts respectively).
The constants appearing in these equations are the mass m of the projectile,
the longitudinal moments of inertia of the front and aft part Ixf , Ixa, and
the transversal moment of inertia It. Complementing these equations are the
translational and attitude kinematic equations, which describe the linear and
angular positions [xe ye ze]T and [ϕf ϕa θ ψ]T with respect to the inertial
Earth frame [21, chap. 3]:ẋe

ẏe

że

 =

cosψ cos θ − sinψ cosψ sin θ
sinψ cos θ cosψ sinψ sin θ

− sin θ 0 cos θ
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 (3)
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The most important efforts applied on the projectile are aerodynamic in
nature. For this reason, aerodynamic variables are more useful than the linear
velocities, both as state variables and to describe the forces and moments.
Hence, assuming no wind, we define the airspeed V , angle of attack (AoA) α,
and angle of sideslip (AoS) β as:

V =
√
u2 + v2 + w2, α = arctan

(w
u

)
, β = arctan

(
v√

u2 + w2

)
(5)

Differentiation of the above variables allow to rewrite Eq. (1) in a form that
is more suitable for control design purposes:V̇α̇

β̇

 =

 0
q + r(cosα tan θ − sinα) tan β

−r(cosα+ sinα tan θ)


+ 1
mV

 V cosα cosβ V sin β V sinα cosβ
− sinα/ cosβ 0 cosα/ cosβ
− cosα sin β cosβ − sinα sin β

 XY
Z

 (6)

The modeling of the forces [X Y Z]T and moments [Lf La M N ]T is
based on aeroballistics theory as presented in [22, chap. 2]. The external
forces include body, Magnus (originating from the spinning motion), control
(generated by the canards), and gravitational terms:XY

Z

 = qS

 −CA(M, α′)
−CNα(M, α′)β
−CNα(M, α′)α

 + pad

2V

 0
CY pα(M)α

−CY pα(M)β


+

 0
−CNδ(M)δr

−CNδ(M)δq

 +mg

− sin θ
0

cos θ

 (7)
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The external moments consist of body pitching, Magnus, damping, control, 
and friction terms:     

+ d
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(8)

The expressions of the forces and moments involve aerodynamic coefficients
that depend in a nonlinear manner on the Mach number M = V/a(h), with
a the altitude-dependent speed of sound, and for some also on the angle of
incidence (AoI) α′:

α′ = arccos
( u
V

)
= arccos(cosα cosβ) (9)

Due to limitations on wind-tunnel measurements, these aerodynamic coef-
ficients take uncertain values around their nominal values. The considered
uncertainty levels are reported in Table 1.

Table 1: Aerodynamic coefficient uncertainties
Force coefficient Uncertainty (%) Moment coefficient Uncertainty (%)

CA 3 - -
CNα 6 Cmα 3
CY pα 33 Cnpα 25

- - Clp 15
- - Cmq 15

CNδ 15 Clδ 15
- - Cmδ 15

Other parameters and constants appearing in the expressions of the forces
and moments are the dynamic pressure q = 1

2ρ(h)V 2, with ρ(h) the air density,
the gravitational acceleration g, the reference area S, and the caliber d. The
control variables [δp δq δr]T are virtual control signals depending on the roll
angle of the fuse ϕf and the real canard deflection angles [δ1 δ2 δ3 δ4]T through
the relation [23, chap. 3]:

δp

δq

δr

 = TV R(ϕf )


δ1
δ2
δ3
δ4

 =

1 0 0
0 cosϕf − sinϕf

0 sinϕf cosϕf

  1
4

1
4

1
4

1
4

0 1
2 0 − 1

21
2 0 − 1

2 0



δ1
δ2
δ3
δ4

 (10)



 

Finally, the friction moment Lf−a between the forward and aft part is given 

by:
Lf−a = qSCA(M, α, β) sign(pa − pf )(Ks +Kv|pa − pf |) (11)

with Ks and Kv static and viscous friction coefficients with an uncertainty
level of 40%.

2.3 Linearized models for the roll and pitch/yaw channels
The nonlinear model of the airframe can be decomposed into the roll chan-
nel on one hand, and the pitch/yaw channels on the other hand. This
decomposition corresponds to the two separate control problems broached in
Section 2.1.

2.3.1 LPV model of the roll channel
The states of interest for the control of the roll channel are the roll angle ϕf

of the fuse and its angular rate pf . Their dynamics can be extracted from
Eqs. (1) and (3) and rewritten in the following LPV form:[

ϕ̇f

ṗf

]
=

[
0 1
0 a22(σR)

] [
ϕf

pf

]
+

[
0

b2(σR)

]
δp +

[
dϕ

dp

]
(12)

where:

a22(σR) = −
(
qSd

Ixf

)
CA(M, α′)Kv b2(σR) = −

(
qSd

Ixf

)
Clδ(M) (13)

and σR = [α′ V h]T is a parameter vector. The time-varying disturbance
terms dϕ and dp are given by:

dϕ = r tan θ dp =
(
qSd

Ixf

)
CA(M, α′)[sign(pa − pf )Ks +Kvpa] (14)

Ballistic simulations show that in practical flight conditions, α′ ∈
[0 deg, 15 deg], and the value of the drag coefficient CA(M, α′) is predom-
inantly governed by the value of the Mach number, i.e. by the parameters
V and h. This observation leads to considering a reduced parameter vector
λR = [V h]T of scheduling variables.

2.3.2 Linearized model for the pitch/yaw channels
The relevant nonlinear dynamics for the pitch/yaw channels can be rewritten
in the generic parameter-dependent form:{

ẋ = f(x,u,σP Y )
y = g(x,u,σP Y )

(15)



with states x = [α q β r]T , inputs u = [δq δr]T , outputs y = [nz ny q r]T , 
and parameters σP Y = [V h pa θ]T . The outputs nz and ny are the normal 
and lateral load factors respectively, defined as the contribution of the external 
forces excluding gravity, divided by the projectile weight mg, and expressed 
in g.

In view of designing a gain-scheduled controller, a Jacobian linearization 
around trim points is performed on the nonlinear model [15, 16]. The procedure 
starts with the computation of trim points for fixed values σP Y  = [ V h p a θ]T 

of the parameter vector. That is, we seek the solutions (x, u) of the equation:

f(x,u,σP Y ) = 0 (16)

However, the above system is underdetermined, since it consists of four
equations with six unknown variables. To overcome this issue, we define an
extended trimming vector ρ = [V h pa θ α β]T by also imposing the values of
the AoA and AoS. The solutions (x,u) can then be analytically computed, and
are also exploited to compute the corresponding equilibrium outputs y (see
[24] for details on the resolution). Defining the deviation variables xε = x−x,
uε = u−u, and yε = y−y, the nonlinear dynamics can then be approximated
by a first-order Taylor expansion and written in state-space form:{

ẋε = A(ρ)xε + B(ρ)uε

yε = C(ρ)x̃ε + D(ρ)uε

(17)

Since the trimming vector used to compute equilibrium points contains
state variables, and using a common abuse of language, the bank of LTI mod-
els described by Eq. (17) and parametrized by ρ is referred to as a quasi-LPV
model. In order to reduce the computational burden of the controller synthe-
sis step, only the most influential parameters are kept as scheduling variables.
Exploiting the simulation-based sensitivity analysis done in [14], the reduced
trim vector λP Y = [V h pa]T is considered. The three-dimensional flight enve-
lope is described by the intervals V ∈ [140 m/s, 380 m/s], h ∈ [0 m, 15000 m],
and pa ∈ [750 rad/s, 1650 rad/s], with the remaining parameters fixed to:
θ = −17.5 deg, α = 0 deg, and β = 0 deg.

2.4 Definition of the actuator and sensor models
The four servomotors actuating the canards are modeled as identical second-
order systems with natural frequency ωact = 2π · 20 rad/s and damping ratio
ξact = 0.781. In addition, a position saturation δsat = ±10 deg is introduced at
the input of each actuator. This saturation level does not come from mechan-
ical limitations, but rather from considerations regarding the validity of the
aerodynamic model, and specifically the expressions of the canard forces and
moments which rely on a small angle assumption. The actuator output signals
are converted into the virtual control signals using Eq. (10).



Since the roll and pitch/yaw control problems are treated separately, it is 
natural to consider the roll autopilot output as a commanded value δp,c on the 
virtual signal δp, and the pitch/yaw autopilot outputs as commanded values 
(δq,c, δr,c) on (δq, δr). The commanded virtual signals must then be allocated 
to the four actuators. A natural choice for the allocation matrix is to use the 
pseudo-inverse TV R(ϕf )†.

The fuse is equipped with accelerometers providing load factor mea-
surements (nz,m, ny,m), and with gyroscopes providing measurements 
(pf,m, qm, rm) of the angular rates. In addition, sensors from the servomo-
tors give measurements (δ1,m, δ2,m, δ3,m, δ4,m) of the canard deflection angles. 
Eq. (10) can then be used again to obtain measurements (δp,m, δq,m, δr,m) 
of the virtual control signals. For simplicity, all sensors are given the same 
dynamics, described by a first-order m odel o f n atural f requency ω s =  2π · 
133 rad/s.

Remark 1 The impact of the position of the sensors is not taken into account in 
this study. The signals (nz,m, ny,m) then correspond to the measured load factors 
at the projectile center of mass. A more representative model could be obtained by 
applying the Grubin transformation [21], as done in [13].

3 Baseline autopilot design
In this section, control design is tackled without taking saturations into 
account, leading to a so-called baseline autopilot. Importantly, we do not seek 
to fine-tune the controller for robust performance. Rather, the aim is limited to 
designing a baseline autopilot with high enough performance to contemplate 
anti-windup augmentation, which is addressed in Section 4.

3.1 Roll autopilot design
3.1.1 Control objectives and strategy
To tackle the roll autopilot design problem, the LPV system of Eq. (12) 
describing the roll dynamics is simplified by c onsidering t he r educed param-
eter vector λR = [V h]T instead of σR, and by neglecting the disturbances 
[dϕ dpf ]T . This system has one pole at 0 and another pole given by a22(λR). 
The variations of a22(λR) and b2(λR) are shown in Fig. 3. Noticeably, the 
variations of the second pole are restricted to a small interval in the left-half 
plane. It is therefore reasonable to approximate this coefficient with a constant 
a22. The transfer function from δp to [ϕf pf ]T then takes the form:

GR(s,λR) = b2(λR)


1

s(s− a22)
1

s− a22

 = b2(λR)ĜR(s) (18)



Thus, the chosen control strategy consists of designing a controller K̂R(s)
associated to the LTI system ĜR(s). Then a gain-scheduled controller for
GR(s,λR) is directly obtained as:

KR(s,λR) = 1
b2(λR)K̂R(s) (19)

Since only one design point is needed, this strategy drastically simplifies
the design step, and the relevance of the approximations can be validated
with a posteriori analyses and simulations. The design point λR0 = [V =
380 m/s, h = 5000 m]T is chosen from a 15 × 16 grid of the reduced
flight envelope so as to minimize the distance of a22(λR0) to the midpoint
1
2

(
max
λR

a22(λR) − min
λR

a22(λR)
)

.

Fig. 3: Variation of the state-space coefficients over the flight envelope and
chosen design point λR0

3.1.2 Autopilot structure and tuning
The proposed fixed-structure controller is shown in Fig. 4. It consists of a
PI-P controller (gains Kp,e, Ki,e, and Kp,pf

) with an additional feedforward
gain Kff to help with reference tracking. Recall that the subscripts g and m
refer to guidance signals and sensor measurements respectively. The controller
gains are computed by solving a structured H∞ synthesis problem [17, 25],
illustrated by the block-diagram of Fig. 5. The closed-loop roll channel is aug-
mented with weighting functions WS(s), WKS(s), and WM (s), corresponding
respectively to low frequency disturbance rejection, high frequency control
signal attenuation, and model matching in the low to intermediate frequen-
cies. The reference model Tref,R(s) used for the model matching requirement
of the transfer from the guidance signal ϕf,g to the roll angle ϕf is given by
a second-order system of frequency ωref,R = 14.3 rad/s and damping ratio



ξref,R = 0.781. Since an accurate model matching is not perceived as an imper-
ative for the roll autopilot design, the related requirement is given as a soft 
constraint. Thus, the optimization problem to solve is:

minimise
κR

∥∥WM (s)Tϕf,g→eref
(s)

∥∥
∞

subject to
∥∥WS(s)Tdo→ϕf

(s)
∥∥

∞ < 1∥∥WKS(s)Tdo→δp(s)
∥∥

∞ < 1

(20)

where κR =
[
Ki,e Kp,e Kp,pf

Kff

]T . The weighting functions are selected as
follows:

WM (s) = s+ 30
0.15s+ 30 · 10−4

WS(s) = s+ 10
1.6s+ 10 · 10−4

WKS(s) = s+ 40
10−4s+ 40 · 0.5

(21)

Fig. 4: Roll autopilot structure

Fig. 5: Structured H∞ synthesis problem for the roll autopilot



The optimization problem is solved using the systune routine of the Mat-
lab Control System Toolbox, which yields a performance index (value of the 
soft constraint) of γ = 0.62. The resulting shaped transfer functions and 
closed-loop step response are shown in Fig. 6, illustrating the fulfillment of 
the specifications and very good model matching.

Fig. 6: Closed-loop transfer functions for disturbance rejection (upper left),
control attenuation (upper right), model matching (lower left), and unit step
response (lower right)

3.1.3 Robustness analysis and closed-loop time-domain
simulations

Robustness with respect to uncertainties is assessed using µ-analysis [26],
whose principles are briefly summarized here. As a preliminary step, the
uncertain LTI system to analyze must be put in the form of a (M(s),∆)
interconnection as shown in Fig. 7, called a Linear Fractional Representation
(LFR). The LTI system M(s) =

[
M11(s) M12(s)
M21(s) M22(s)

]
represents the nominal

closed-loop system, and the operator ∆ gathers all the uncertainties into a
block-diagonal operator of the form:

∆ = diag(∆1, . . . ,∆N ) (22)

where each ∆i is a time-invariant diagonal matrix ∆i = δiIni , with δi a
real parametric uncertainty. The set of matrices with the block-diagonal
structure described above is denoted ∆, and corresponds to the set of physi-
cally meaningful uncertainties. If all uncertainties are bounded, the LFR can
be normalized so that physically meaningful uncertainties are restricted to



 B∆ = {∆ ∈ ∆ : ∀i, δi ∈ [−1, 1]}. In that case, the (M(s), ∆) interconnection is 
stable for all uncertainties ∆ ∈ B∆ if and only if:

sup
ω∈R+

µ∆(M11(jω)) ≤ 1 (23)

where µ∆(M11(jω)) is the structured singular value (SSV), introduced in [26].
Computation of the SSV is in general NP-hard, so that in practice, upper and
lower bounds are computed instead.

Fig. 7: LFR of a system with parametric uncertainties

The GSS library of the SMAC toolbox [27] is used to obtain an LFR of the
closed-loop roll channel at the design point λR0. The resulting interconnection
consists of a nominal system MR(s,λR0) with 13 states and an uncertainty
block ∆R belonging to the set:

B∆R = {diag(δCA
, δClδ

, δKv ) : δ• ∈ [−1, 1]} (24)

A µ-upper bound of 0.19 < 1 is obtained with the SMART library of the
SMAC toolbox [28], thus validating robust stability at the design point. The
same analysis conducted at other flight points indicate that virtually identical
robustness properties are guaranteed across the whole flight envelope.

Complementing the above analysis, Fig. 8 shows the responses for 300
random samples of the uncertain system at the design point, drawn uniformly
from B∆R, and for a scenario involving a step input of 45 deg at 0 s, and a
step disturbance do = 20 deg applied at 1.5 s on ϕf . The responses are nearly
identical, illustrating that the uncertainties on the roll channel have minimal
impact. The disturbance is successfully rejected in all cases, and the control
signal remains small in amplitude, and far from the saturation level of ±10 deg.
Similar simulations can be conducted on other points of the flight envelope,
leading to dismissing the risk of saturations for the roll channel despite the
variations of the coefficient b2(λR).



Fig. 8: Simulation at the design point with model uncertainties: roll angle
(left), virtual roll control signal (right)

3.2 Pitch/yaw autopilot design
3.2.1 Control objectives and strategy
Autopilot design for the pitch/yaw channels is based on the bank of LTI mod-
els generated from the reduced flight envelope λP Y = [V h pa]T (see Eq. (17)).
The closed-loop settling time must be sufficiently large compared to the set-
tling time of the roll channel (0.43 s), since the pitch/yaw autopilot is designed
with the assumption that the roll angle is already settled, but small enough
to ensure good tracking of the guidance signal and, ultimately, good accuracy
upon impact. Due to the strong coupling between the pitch and yaw axes, a
multivariable control problem must be tackled. A low-order structured con-
troller composed of few gains is preferred, so that linear interpolation can be
used for gain-scheduling.

Remark 2 To lighten notations, the subscript ε representing deviation from equilib-
rium values is omitted in this section.

3.2.2 Autopilot structure and tuning
The proposed fixed-structure controller is presented in Fig. 9. Symmetries of
the airframe model are exploited by imposing corresponding symmetries on
the gain matrices of the controller, further reducing the interpolation and
implementation effort:

Ki,e =
[
K

(11)
i,e K

(12)
i,e

K
(12)
i,e −K(11)

i,e

]
Kp,n =

[
K

(11)
p,n K

(12)
p,n

K
(12)
p,n −K(11)

p,n

]

Kp,ω =
[
K

(11)
p,ω K

(12)
p,ω

−K(12)
p,ω K

(11)
p,ω

]
Kp,δ =

[
K

(11)
p,δ K

(12)
p,δ

K
(12)
p,δ −K(11)

p,δ

] (25)



Fig. 9: Pitch/yaw autopilot structure

The eight controller gains are computed by solving a mixed H2/H∞ con-
troller synthesis problem using systune. As with roll autopilot synthesis,
weighting functions WS(s) and WKS(s) are defined to capture respectively dis-
turbance rejection and control attenuation requirements, and a second-order
system is used as a reference model for the system response, with frequency
ωref,P Y = 5 rad/s and damping ratio ξref,P Y = 0.781. The associated soft
goal is specified as a time-domain step tracking goal in systune1. With respect
to the signals defined in Fig. 10, the quantity to minimise relates to the energy
of the step response of the transfer function:

Tnzy,g→ezy,ref
(s) = Tref,P Y (s) − Tnzy,g→nzy (s) (26)

The H2 norm, which corresponds to the energy of the impulse response of a
system2, is used to express the objective function. More precisely, systune
minimizes the following quantity:

f(κP Y ) =

∥∥∥∥1
s

Tnzy,g→ezy,ref
(s)

∥∥∥∥
2

η

∥∥∥∥1
s

[Tref,P Y (s) − I]
∥∥∥∥

2

(27)

where κP Y are the free variables of the problem, i.e. the eight controller gains
in this case, and η is a user-defined positive scalar value representing the
desired maximum relative matching error (higher values of η decrease the
performance index, loosening the requirement), and taken as 0.05 here. Thus,
the synthesis problem for a design point λP Y of the reduced flight envelope

1Using a more standard H∞ soft goal of the form
∥∥WM (s)Tnzy,g→ezy,ref

(s)
∥∥

∞
, as with the

roll channel, led to less robust margins, as well as less smooth gain surfaces when performing the
synthesis over the flight envelope.

2Thus the H2 norm of G(s)/s corresponds to the energy of the step response of G(s).



takes the form:

minimise
κP Y

f(κP Y )

subject to ∥WS(s)Tdz→nz (s)∥∞ < 1∥∥WS(s)Tdy→ny (s)
∥∥

∞ < 1∥∥WKS(s,λP Y )Tdzy→δqr (s)
∥∥

∞ < 1

(28)

Fig. 10: Structured H2/H∞ synthesis problem for the pitch/yaw autopilot

The variations of the control authority across the flight envelope is taken
into account through an appropriate parametrization of WKS(s,λP Y ). This
is done by introducing a scaling factor k(λP Y ), taken as the DC gain from
the input δq to the output nz. The weighting function WKS(s,λP Y ) is then
parametrized as:

WKS(s,λP Y ) = k(λP Y ) · ŴKS(s) (29)
with ŴKS(s) to be tuned.

A design point λP Y 0 corresponding to high velocity V = 340 m/s, low
altitude h = 0 m, and intermediate spin rate pa = 1200 rad/s is then selected
to perform a first synthesis. This point corresponds to the end of a trajec-
tory, where performance is critical to guarantee good terminal accuracy. The
weighting functions are tuned as follows:

WS(s) = s+ 5
2s+ 5 · 10−4 ŴKS(s) = s+ 110

10−2s+ 110 · 3 (30)

The resulting closed-loop step response is shown in Fig. 11 for the normal axis,
and corresponds to a soft goal value of 2.52. The signal nz is satisfyingly close
to the reference model response both in terms of guidance tracking (left plot)
and cross-axis decoupling (right plot). Identical performances are achieved on
the lateral axis (transfers from nzy,g to ny). Fig. 12 shows the shaped transfer
functions and illustrates the satisfaction of the hard constraints defined by the
weighting functions. The same synthesis problem is solved on a 7 × 6 × 5 grid
of the reduced flight envelope (210 points). The hard constraints are satisfied



for all design points, while the worst-case value of the soft goal reaches 4.86 at 
point (V, h, pa) = (380 m/s, 9000 m, 750 rad/s). Nonetheless, the correspond-
ing step response, also shown in Fig. 11, remains satisfactory. Fig. 13 and 14 
show the values of the controller gains, displayed as surfaces in (V, h) for the 
extremal values of pa. The surfaces remain relatively smooth, with the notable
exception of the gains K(11) and K(12). However, this issue is mitigated by the

p,δ p,δ

fact that variations of these two gains are in fact restricted to a small interval.

Fig. 11: Step response from nz,g to nz (left) and from ny,g to nz (right)

Fig. 12: Closed-loop transfer functions for disturbance rejection (left) and
control attenuation (right)

3.2.3 Robustness analysis and time-domain simulations
Similar to the roll channel, a µ-analysis is used to verify local robust sta-
bility for all design points. The LFR models for the closed-loop pitch/yaw
channels are parametrized by λP Y = [V h pa]T , and consist of a nominal sys-
tem MP Y (s,λP Y ) with 16 states, and a 16 × 16 uncertainty block ∆P Y with
associated unit ball:

B∆P Y =
{

diag(δCNα
I2, δCNδ

I2, δCA
I2, δCY pα

I2,

δCmαI2, δCmqI2, δCmδ
I2, δCnpαI2) : δ• ∈ [−1, 1]

} (31)

Only one design point fails to validate robust stability, with a SSV located
in the interval [1.009, 1.02], for parameter values V = 300 m/s, h = 3000 m,
and pa = 750 rad/s. Interestingly, the value of the airspeed at this point is a



Fig. 13: Gain surfaces at pa = 750 rad/s

bit below Mach 1, which corresponds to either extrema or strong variations
of several aerodynamic coefficients. This is combined with a low value of pa,
for which gyroscopic stability is weaker, thus giving a physical interpretation
of why robust stability is not achieved at this point. However, this analysis
is conservative, since it does not take into account the probability distribu-
tion of the uncertainties. Using the branch-and-bound probabilistic µ-analysis
developed in [29] shows that the probability of instability at this point is in
fact very low, with an upper bound at 0.013% assuming a uniform distribu-
tion of the uncertainties. This probability lowers to approximately 9 · 10−7%
when considering truncated normal distributions where, for each uncertainty,
the standard deviation σ is chosen so that 3σ corresponds to the maximum
uncertainty level as reported in Table 1.

The impact of the uncertainties is visualized in the time-domain simu-
lations of Fig. 15, which shows the responses of the nominal system and



Fig. 14: Gain surfaces at pa = 1650 rad/s

uncertain samples at the design point λP Y 0. Tracking and decoupling are mod-
erately degraded, and more importantly, larger control signals are required by
the autopilot. This hints at potential saturations with the proposed controller,
justifying the need to develop an anti-windup compensator for the pitch/yaw
axes.

4 Anti-windup design
4.1 Anti-windup problem setup and synthesis method

selection
The principle of anti-windup compensation in a time-invariant framework is
illustrated by Fig. 16. The anti-windup compensator AW (s) is driven by the
difference Dz(yc) = yc − Sat(yc) between the desired controller output yc and



Fig. 15: Simulation with model uncertainties at the design point

the achieved command u = Sat(yc), and generates a signal v = [v1 v2]T that
modifies the control dynamics.

Fig. 16: Principle of anti-windup compensation

In the studied application, the output signals of the baseline autopilot
δqr,c = [δq,c δr,c]T correspond to commanded virtual deflection angles, and
are not adapted to design the anti-windup compensator, since the satura-
tion level l = 10 deg affects the commanded real deflection angles δR,c =
[δ1,c δ2,c δ3,c δ4,c]T instead. To fit into the anti-windup framework, the alloca-
tion is explicitly taken into account, with the assumption that the roll angle
ϕf of the fuse is fixed at the desired position and that the contribution of
the virtual control signal of the roll channel δp on the real deflection angles is



negligible. The allocation is then given by:

δR,c =


− sinϕf cosϕf

cosϕf sinϕf

sinϕf − cosϕf

− cosϕf − sinϕf

 δqr,c (32)

Eq. (32) implies δ1,c = −δ3,c and δ2,c = −δ4,c. For the purpose of anti-windup
synthesis, this makes the signals δ1,c and δ3,c redundant, as well as the signals
δ2,c and δ4,c. Thus, with reference to the standard anti-windup architecture of
Fig. 16, we define the input yc of the normalized saturation as:

yc = 1
l

[
δ1,c

δ2,c

]
= 1
l

[
− sinϕf cosϕf

cosϕf sinϕf

]
δqr,c = 1

l
M(ϕf )δqr,c (33)

which is illustrated in Fig. 17 (note that M−1(ϕf ) = M(ϕf )), where
PP Y (s,λP Y ) gathers the airframe (4 states), two virtual actuators (2 × 2 =
4 states), and first-order sensors (two accelerometers, two gyroscopes, two
servo-sensors: 6 states), leading to a plant of order 14.

Fig. 17: Closed-loop system with anti-windup compensation

Remark 3 The real actuator and servo-sensor models could be used in the plant
model PP Y (s,λP Y ), increasing the plant order to 20. However, this does not modify
the signals seen by the anti-windup compensator and thus has no impact on the
synthesis.

It is clear from Eq. (33) and the relation u = Sat(yc) that the fuse roll angle
ϕf contributes to determining whether saturations occur or not. In fact, for a
fixed value of ϕf , the set of virtual signals (δq, δr) that will not lead to satu-
rations can be represented as a square in the (δq, δr)-plane, whose orientation
depends on ϕf . Fig. 18 shows this set for the two standard fuse orientations,



which are the ’+’ (ϕf = 0 deg) and ’×’ (ϕf = 45 deg) configurations. It can be 
observed that the ’×’ configuration a llows t o r each h igher values o f t he vir-
tual control signals. In terms of the overall projectile trajectory, and focusing 
on δr, this corresponds as a first a pproximation t o a  h igher c ontrol author-
ity on the downrange error compared to the ’+’ configuration. This happens 
because, for ϕf = 45 deg, all four canards contribute to generate the virtual 
signal δr, as opposed to only two canards in the case where ϕf = 0 deg. The 
same interpretation also holds for δq and crossrange error. The drawback is a 
loss of versatility compared to the ’+’ configuration, i n t he s ense t hat com-
manding δr ̸= 0 decreases the interval of compatible values of δq. Nevertheless, 
from nonlinear simulations of realistic launch scenarios without saturations 
(see Section 5), the ’×’ configuration seems preferable to l imit the occurrence 
of saturations. Thus the value ϕf = 45 deg is used to synthesize the pitch/yaw 
anti-windup compensator.

(a) ’+’ configuration: ϕf = 0 deg (b) ’×’ configuration: ϕf = 45 deg

Fig. 18: Set of virtual control signals leading to no saturation

A large panel of methods are available to compute anti-windup compen-
sators in a time-invariant framework. Modern anti-windup theory, as described
for instance in [19], identifies two families of methods: Direct Linear Anti-
Windup (DLAW), and Model Recovery Anti-Windup (MRAW). The DLAW
approach relies on Lyapunov stability theory and the modified sector condi-
tion from [30] to express the anti-windup design problem as a Linear Matrix
Inequality (LMI) problem. The MRAW approach embeds a model P̂ (s) of the
plant in the anti-windup compensator, as illustrated by Fig. 19. This archi-
tecture allows to track the mismatch with respect to the unconstrained model
through the state xaw of the anti-windup compensator. The anti-windup signal
ṽ2 then aims to minimize this mismatch. A notable feature of MRAW com-
pensators is that they do not depend on the controller dynamics (i.e. on the
baseline autopilot for the studied application). A drawback of this approach
is that they are, by construction, of the order of the plant, which can be high
and therefore leads to a more complicated on-board implementation.

The DLAW and MRAW approaches are formulated in a time-invariant
framework, and the theoretical guarantees regarding stability domains and
performance levels are not preserved when varying parameters are involved.



Fig. 19: MRAW architecture

Nonetheless, they remain appealing to compute local compensators, to be
subsequently interpolated using a gain-scheduling technique. In this context,
it makes sense to favor methods requiring little or no tuning, as they are easier
to implement over the whole flight envelope. Based on these considerations,
three anti-windup methods are considered for local syntheses, which are done
over the same 7 × 6 × 5 grid of the reduced flight envelope (210 points) used
for pitch/yaw autopilot synthesis.

The first method is a static DLAW synthesis method, with furthermore
v2 = 0 to avoid algebraic loops. The local syntheses are performed using the
SAW library of the SMAC toolbox (https://w3.onera.fr/smac/saw) so as to
maximize the amplitude of step input reference signals nzy,g for which stability
can be guaranteed [31]. The global compensator is then obtained by linearly
interpolating the coefficients of the matrix Daw,1 ∈ R2×2. This design was first
proposed in [32].

The second anti-windup compensator uses the LQ-based MRAW method
applicable to unstable plants [19]. Thus, with respect to the block-diagram
of Fig. 19, the anti-windup signal ṽ2 is computed as ṽ2 = Klqrxaw so as to
minimize the LQ performance index:

J =
∫ ∞

0

(
xT

awQxaw + ṽT
2 Rṽ2

)
dt (34)

The cost function is kept the same for all the design points, enforcing a stronger
penalty on the four states corresponding to the (mismatch on the) actua-
tor states with Q = diag(I10, 50 · I4) and R = I2. The relatively high order
naw = 14 of the local compensators does not lend itself to the interpolation
of state-space coefficients. Instead, the interpolation method chosen to obtain
the global compensator is based on output blending [33]. This design was first
proposed in [34].

To address the drawback of having plant-order MRAW compensators,
a third anti-windup design is explored. It consists of an LQ-based MRAW
based on a reduced plant model, where the actuator and sensor dynamics are
neglected and only the airframe dynamics remain. Thus the resulting reduced

https://w3.onera.fr/smac/saw


MRAW compensator has order naw = 4. The computation is done using 
Q = I4 and R = I2, and output blending is used as the interpolation method.

It is worth noting that computation of the local LQ-based MRAW com-
pensators is very fast, with the synthesis over all points of the flight envelope 
grid taking a bit over 6 s, both for the full and reduced cases. By contrast, 
synthesis of the 210 static DLAW compensators takes about 180 s. The rela-
tive length of the latter computation can be attributed to the required LMI 
resolution, although it should be pointed out that the SAW library uses LMI 
Lab as an LMI solver, and that CPU time reduction may be achieved by using 
faster solvers such as SeDuMi [35] or MOSEK [36].

Fig. 20 shows the closed-loop responses for different compensation schemes 
at the design point λP Y 0. The step amplitude of the reference signal ny,g is 
chosen as ny,g = 1.05 · ny,sat, where ny,sat is the lowest value leading to real 
deflection angles above 10 deg within 10 seconds. The load factors shown in the 
figures a re n ormalized a s n̂ z =  n z/ny,sat a nd n̂ y =  n y/ny,sat. W ithout anti-
windup compensation, the deflection angles eventually a ll s aturate, resulting 
in large errors on the load factors as well as badly damped oscillations. The 
anti-windup schemes all greatly improve the response, with the MRAW com-
pensators featuring some additional small oscillations compared to the DLAW 
response. Remarkably, both the MRAW and reduced MRAW responses are 
identical, despite the significant order difference.

Fig. 20: Step responses for different anti-windup schemes

4.2 IQC analysis
4.2.1 Brief reminders on the IQC framework
The robustness of the closed-loop for fixed values of the scheduling variables is
investigated using IQC-analysis. This framework relies on an LFR representa-
tion of the system to analyze, and was introduced in [20], where the following
main stability theorem is stated:



Theorem 1 With respect to the interconnection of Fig. 7, let M11(s) be a stable LTI
system and ∆ ∈ ∆ a bounded causal operator. Let Π: jR → C(ny∆ +nu∆ )×(ny∆ +nu∆ )

a measurable Hermitian-valued function. Assume that:

• well-posedness is guaranteed for every τ ∈ [0, 1], i.e. I − τM11(s)∆ has a
causal inverse;

• for every τ ∈ [0, 1], τ∆ satisfies the IQC defined by the multiplier Π, i.e.:

∀y∆ ∈ L2

∫ +∞

−∞

[
ŷ∆(jω)
û∆(jω)

]∗

Π(jω)
[
ŷ∆(jω)
û∆(jω)

]
dω ≥ 0 (35)

with u∆ = τ∆(y∆), and where L2 is the space of signals with finite energy,
and for f ∈ L2, f̂ denotes the Fourier transform of f ;

• there exists ε > 0 such that:

∀ω ∈ R
[
M11(jω)

I

]∗

Π(jω)
[
M11(jω)

I

]
≤ −εI (36)

Then the interconnection (M11(s),∆) is stable.

The strength of the IQC framework lies in the capacity to address
simultaneous uncertainties of different nature, for instance parametric uncer-
tainties and deadzone nonlinearities. Indeed, consider an operator ∆ =
diag(∆1, . . . ,∆N ), where each individual block ∆i satisfies the IQC defined by
a multiplier Πi. Then ∆ satisfies the IQC defined by the composite multiplier
Π given as:

Π =
[
diag(Π1,11, . . . ,ΠN,11) diag(Π1,12, . . . ,ΠN,12)
diag(Π∗

1,12, . . . ,Π∗
N,12) diag(Π1,22, . . . ,ΠN,22)

]
(37)

where each Πi is partitioned as Πi =
[
Πi,11 Πi,12
Π∗

i,12 Πi,22

]
according to the dimension

of the corresponding ∆i.
The numerous works on IQC theory provide multipliers for a wide variety

of uncertainties and nonlinearities. As emphasized in [37], it is particularly
convenient to work with multipliers parametrized as Π = Ψ∗PΨ with some
fixed Ψ ∈ RHnΨ×(ny+nu)

∞ and P = PT ∈ P ⊂ RnΨ×nΨ , where P is described
by LMI constraints capturing features of the uncertainty block. Indeed, appli-
cation of the Kalman-Yakubovich-Popov (KYP) lemma then allows to replace
the frequency-domain inequalities (36) by the equivalent condition:
• there exists X = XT of suitable dimension and P ∈ P such that: I 0

A B
C D

T  0 X 0
X 0 0
0 0 P

  I 0
A B
C D

 < 0 (38)



where (A,B,C,D) is a minimal realization of the system Ψ(s)
[
M11(s)
I

]
.

Thus, verifying stability of the interconnection boils down to solving an LMI
problem.

The IQC framework extends seamlessly to performance analysis, by tak-
ing into account the performance channel from w to z. In particular, when
evaluating performance through the L2 gain, the LMI (38) is adapted into: I 0

A B
C D

T  0 X 0
X 0 0
0 0 P

  I 0
A B
C D

 < 0 (39)

where P = diag(P, Inz ,−γ2Inw ), and (A,B, C,D) is a minimal realization of
the system in Fig. 21, from input [u w]T to output [zΨ z w]T . We then seek
matrices X = XT and P that minimize γ under the LMI constraints (39)
and P ∈ P . This guarantees that the interconnection is robustly stable and
provides an upper bound on the worst-case L2 gain from w to z.

Fig. 21: IQC performance analysis

Finally, from an implementation point of view, the IQC-analysis procedure
based on the KYP lemma can be summarized as follows:

1. build the interconnection (M(s),∆), with M(s) a stable LTI system, and
where ∆ = diag(∆1, . . . ,∆N ) may contain different types of uncertainties
and nonlinearities,

2. select a valid class of multipliers Πi = Ψ∗
iPiΨi for each uncertainty ∆i,

where the Ψi are fixed (several choices are possible for a same class of
multiplier), and each Pi belongs to a set Pi described by LMI constraints,

3. build the composite multiplier Ψ∗PΨ based on Eq. (37),
4. compute a minimal realization of the system of Fig. 21,
5. minimize γ under the LMI constraints (39) and P ∈ P .

4.2.2 Application to the guided projectile
To apply IQC analysis to the guided projectile, LFR models of the closed-loop
pitch/yaw channels are first computed for the different anti-windup configu-
rations using the GSS library. The resulting ∆ block gathers both the 16 × 16



  

aerodynamic uncertainty block ∆P Y ∈ B∆P Y as defined in Section 3, and a two-

dimensional deadzone nonlinearity, leading to the augmented structure:

B̂∆P Y =
{

diag(δCNα
I2, δCNδ

I2, δCA
I2, δCY pα

I2,

δCmαI2, δCmqI2, δCmδ
I2, δCnpαI2,Dz(·)) : δ• ∈ [−1, 1]

} (40)

The performance channel considered is taken as the transfer from the guid-
ance signals nzy,g to the error signals ezy,ref with respect to the second-order
reference model Tref,P Y (s) (see Fig. 10).

A robustness analysis can then be done, including both the deadzone non-
linearities and aerodynamic uncertainties. The former are locally described as
a sector bounded and slope-restricted nonlinearity Φ ∈ sec[0, b]2 ∩ slope[0, b]2.
Accordingly, we use a combination of full-block circle criterion (see e.g. Class
13 in [37]) and full-block Zames-Falb multipliers [38]. The parametrization
of the Zames-Falb multipliers requires the selection of real poles and their
multiplicity to specify basis functions. Based on a few trials, two poles are cho-
sen, −10 and −100, both with multiplicity 1. The latter are described using
dynamic DG-scaling multiplier, with a pole −10 of multiplicity 1 for each
uncertainty (see Class 5 in [37]). The normalized aerodynamic uncertainties
are then allowed to vary between [−a, a], with a ≤ 1. This allows to compute
upper bounds γ on the L2-gain of the uncertain system for given values of
b ∈ [0, 1] and a ∈ [0, 1]. Taking a = 0 corresponds to the IQC test with no
aerodynamic uncertainties. Meanwhile, taking b = 0 corresponds to computing
upper bounds on the worst-case H∞ performance which can also be obtained
using skew-µ analysis. Table 2 displays the LMI problem data corresponding
to the IQC test and the average resolution time for given values of a and b.

Fig. 22 depicts the surfaces obtained for the different anti-windup schemes.
For the configurations without anti-windup and with static DLAW, it can be
observed that the value of b for which stability is guaranteed reduces signifi-
cantly as a grows. Both MRAW configurations are comparatively more robust,
as for fixed b, an increase in a still leads to finite L2 gains in most (but not all)
cases, although the bounds on the L2 performance are noticeably degraded.
It is also worth noting that the surfaces obtained for both the MRAW and
reduced MRAW are virtually equal for small to intermediate values of b, indi-
cating that for the corresponding set of sector nonlinearities, the MRAW and
reduced MRAW have similar robust performance properties.

5 Nonlinear flight simulations
In this section, complete guided flight scenarios are simulated by combin-
ing the open-loop nonlinear 7-DoF model of the projectile with the roll and
pitch/yaw autopilots and the anti-windup compensators. In this study, per-
fect navigation is assumed, providing values of the scheduling variables VNav,
hNav, pa,Nav. In addition, the measured fuse roll angle ϕf,m is used to spec-
ify the transformation M(ϕf,m) rather than the expected value of 45 deg (cf.



Table 2: Computational burden of IQC analysis with deadzone nonlinearities 
and aerodynamic uncertainties

Configuration No AW Static
DLAW MRAW Reduced

MRAW
Order of the augmented system

(minimal realization) 60 60 70 69

Number of decision variables 2012 2012 2667 2597
Average computation time (s) 11.7 9.9 17.2 17.1

Fig. 22: Bounds on the L2-gain in the presence of aerodynamic uncertainties
|δ•| ≤ a and nonlinearity Φ ∈ sec[0, b]2 ∩ slope[0, b]2; from left to right: no
anti-windup, static DLAW, MRAW, reduced MRAW

Fig. 17), ensuring that activation of the anti-windup compensator is based on
the current fuse roll angle, and avoiding potential chattering effects in case it
oscillates around 45 deg.

5.1 Description and simulation of a nominal flight
scenario

A flight scenario representative of a standard long-range mission is considered,
characterized by the following launch conditions:

V0 = 939 m/s, θ0 = 42 deg, ψ0 = 0 deg (41)

The mission target is set as the ballistic impact point of the projectile, located
approximately 25 km downrange and 700 m crossrange from the launch point.
The position of the target is taken into account in the closed-loop through
a guidance module implementing the zero-effort-miss (ZEM) guidance law
developed in [39]. Briefly, ZEM guidance relies on an impact point prediction
method to compute the lateral and longitudinal position errors between the
target position and an estimated ballistic (zero-effort) impact point. These
errors are regularly updated based on the current state of the projectile on
a simplified model of the airframe, and serve as the basis to compute the
guidance load factors nzy,g.

Simulation results with the baseline autopilot are shown in Fig. 23, where
data from the ballistic trajectory are also provided for reference. Regarding



the ballistic phase, it can be observed that the fuse configuration ( pf reduc-
tion and ϕf control) is very short, lasting about 0.5 s. Regarding the guided 
phase, the ZEM guidance law produces reference load factors nz,g and ny,g 
that are close to the ballistic ones nz,bal and ny,bal. These guidance signals are 
tracked accurately by the pitch/yaw autopilot, leading to a miss distance at 
impact below one meter. Although the maximum tolerated miss distance may 
vary with the operational context, this order of magnitude corresponds unam-
biguously to a successful mission. Since the deflection angles remain below the 
saturation level l = 10 deg, identical trajectories are obtained regardless of the 
actuator model (linear or saturated) or anti-windup compensation used.

Remark 4 The 3D trajectories plotted in this section do not use equally scaled axes, 
since these are ill-suited to highlight the evolution along the y-axis (crossrange).

Fig. 23: Nominal scenario with baseline autopilot (no anti-windup)

5.2 Simulations of degraded scenarios
The same mission with a horizontal wind disturbance is considered next. The
coordinates of the wind velocity vector with respect to the Earth in the local-
level frame are shown in Fig. 24. Since the cannon is oriented in the North
direction (ψ0 = 0 deg), the significant eastward component vW,L of the wind
contributes to increase the deviation of the ballistic projectile to the right,
leading to a miss distance of 427.1 m in the ballistic configuration. As seen
on Fig. 25, deflection angles greater than 10 deg are required by the base-
line autopilot. This leads to saturations, and ultimately mission failure in the
absence of anti-windup compensation, with a miss distance of 67 m. Figs. 26
and 27 then show results for the same scenario, obtained with the scheduled
static DLAW and reduced MRAW (the latter are nearly identical to those



obtained with full MRAW). The guided projectile is able to recover a very sat-
isfactory closed-loop behavior, with impact points located a mere 5 mm away 
from the mission target.

Fig. 24: Horizontal wind profile

Fig. 25: Scenario with wind disturbance and resulting saturations

Remark 5 In practice, the wind vector is taken into account to define the initial yaw
angle ψ0 in order to bring the ballistic impact point closer to the target. This cor-
rection would contribute to reduce the deflection angles required by the autopilot,
possibly to the point where anti-windup is not necessary. Nonetheless, the pre-
sented scenario with no adaptation of ψ0 remains relevant to illustrate the increased
maneuverability provided by anti-windup compensation.



Fig. 26: Scenario with wind disturbance and scheduled static DLAW

Fig. 27: Scenario with wind disturbance and scheduled reduced MRAW

Next, degraded scenarios involving uncertainties are considered. A first
batch of 600 Monte Carlo trajectories with uncertainties on the initial launch
conditions is generated. The samples are drawn following normal distributions,
with mean values given by Eq. (41) and standard deviations 3 m/s, 0.09 deg,
and 0.12 deg respectively for V0, θ0, and ψ0. With no saturations, the miss
distance at impact is less than a meter for all tested trajectories. However, 24
(4%) samples involve deflection angles exceeding l = 10 deg and reaching up
to 14 deg. The left plot of Fig. 28 depicts the trajectory of the virtual control
signals in the (δq, δr)-plane for these 24 samples. The interior of the red square
represents the set of virtual control signals that do not lead to canard deflection
angles greater than l = 10 deg in amplitude, assuming ϕf,m = 45 deg and



neglecting the contribution of δp in the allocation. This plot illustrates that 
the ’×’ configuration is better suited than the ’+’ configuration in limiting the 
excess of control from the pitch/yaw autopilot.

(a) Trajectory of the virtual control sig-
nals in the (δq, δr)-plane

(b) Miss distances

Fig. 28: Simulation results for the 24 launch uncertainty samples leading to
deflection angles greater than l = 10 deg

Table 3: Global failure rate for maximum tolerated miss distance of 1, 10,
and 20 m with uncertainties on launch conditions

Objective No AW With AW
< 1 m 2% 0.3%
< 10 m 1.7% 0.3%
< 20 m 1.7% 0%

The right plot of Fig. 28 shows the miss distance corresponding to the 24
identified samples leading to saturations, for different projectile configurations:
ballistic, with the baseline autopilot only (i.e. with no anti-windup), and with
the three scheduled anti-windup compensators (static DLAW, MRAW, and
reduced MRAW). The samples are sorted by increasing order of the miss
distance for the baseline configuration. Some values are reported in Table 3,
where no distinction between the different anti-windup compensators is made,
since their performance are very similar.

The robustness of the nonlinear closed-loop to aerodynamic uncertainties
is studied next. To this end, 300 Monte Carlo simulations are performed. The
sampling of the aerodynamic coefficients is done assuming a normal distribu-
tion, where the standard deviation σ is such that 3σ corresponds to maximum
uncertainty as reported in Table 1. Note that the aerodynamic uncertainties
also impact the ZEM guidance, since it relies on nominal values of the aerody-
namic coefficients. Nonetheless, the terminal accuracy of the guided projectile



without saturations remains below one meter for all 300 simulations. However, 
47 (15.7%) trajectories feature deflection a ngles e xceeding l  =  10 d eg, with 
24 deg as a worst-case value. The trajectories of the virtual control signals for 
these samples are shown in the left plot of Fig. 29, where it is clear that aero-
dynamic uncertainties have more impact on the commanded deflection angles 
compared to launch uncertainties.

(a) Trajectory of the virtual control sig-
nals in the (δq, δr)-plane

(b) Miss distances

Fig. 29: Simulation results for the 47 aerodynamic uncertainty samples lead-
ing to deflection angles greater than l = 10 deg

Table 4: Global failure rate for maximum tolerated miss distances set to 1,
10, 20, and 50 m with aerodynamic uncertainties

Objective No AW DLAW Full and reduced MRAW
< 1 m 13.7% 8% 7.7%
< 10 m 12.7% 6.7% 6.7%
< 20 m 12% 5.7% 5.3%
< 50 m 10.7% 3% 2.7%

The miss distances for the 47 identified samples are shown in the right
plot of Fig. 29 for the different projectile configurations. Table 4 shows the
global failure rate with respect to a few values for the maximum accepted miss
distance. Performance degradations with aerodynamic uncertainties on the
baseline design are noticeably more severe compared to those stemming from
launch uncertainties, with a noticeable loss of accuracy for almost all scenarios.
The anti-windup compensators are able to mitigate this loss, although high
miss distances are still reached in some cases. In addition, Fig. 30 shows the
miss distance difference between DLAW and reduced MRAW compensation
for the 47 samples. Samples associated to positive values then correspond to



cases where MRAW compensation leads to a lower miss distance compared 
to DLAW compensation. Thus, the MRAW compensators seem to be slightly 
better in general at reducing the impact point dispersion, although this does 
not hold for every sample. Notably, Sample #47, associated to the greatest 
miss distance, performs worse with MRAW than with DLAW.

Fig. 30: Miss distance difference between DLAW and MRAW

6 Conclusion
The objective of this paper is to design an autopilot for a novel guided dual-
spin projectile concept steered by four independently actuated canards, subject
to model uncertainties and actuator saturations. In a first step, gain-scheduled
baseline autopilots, which do not take into account saturations, are developed
for both the roll and the pitch/yaw channels using robust H∞ control theory.
The resulting closed-loop systems display very good local robustness proper-
ties, as evaluated with µ-analysis. Saturations are addressed in a second step
through the addition of an anti-windup compensator to the closed-loop. Sim-
ple methods requiring little or no tuning are preferred for the synthesis of
local compensators, to make computation over the whole flight envelope easier.
Three such methods are selected, which are a static stability-based direct lin-
ear anti-windup (DLAW), an LQ-based model-recovery anti-windup (MRAW),
and a reduced LQ-based MRAW. Local robustness analysis using integral
quadratic constraints (IQC), taking into account both deadzone nonlinearities
and aerodynamic uncertainties, confirms the improved robust stability prop-
erties of the augmented closed-loop systems. Coverage of the flight envelope
is then ensured through linear interpolation of the gains for the static DLAW,
and through output blending for the two MRAW schemes. Finally, the various
closed-loop configurations are evaluated through operational flight scenarios
involving a wind disturbance, perturbed launch conditions, or aerodynamic



uncertainties. Simulation results demonstrate that the studied application 
can be successfully addressed using a combination of linear techniques and 
anti-windup compensation, with the proposed compensators improving the 
maneuverability of the system over the baseline autopilot.

Future work could investigate whether more sophisticated anti-windup 
techniques can further improve the current performance and robustness prop-
erties of the system. To this end, it could be interesting to decrease the 
conservatism of the IQC analysis by considering more representative profiles 
for the exogenous input signals. Another follow-up would be to integrate in 
the study a realistic navigation system, as well as sensor noise and computa-
tional delays. The increased complexity of the resulting system may demand 
further design iterations, and possibly some fine-tuning.
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