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ABSTRACT 1 
 2 
Comprehensive collections approaching millions of sequenced genomes have become central information 3 
sources in the life sciences. However, the rapid growth of these collections makes it effectively impossible 4 
to search these data using tools such as BLAST and its successors. Here, we present a technique called 5 
phylogenetic compression, which uses evolutionary history to guide compression and efficiently search 6 
large collections of microbial genomes using existing algorithms and data structures. We show that, when 7 
applied to modern diverse collections approaching millions of genomes, lossless phylogenetic 8 
compression improves the compression ratios of assemblies, de Bruijn graphs, and k-mer indexes by one 9 
to two orders of magnitude. Additionally, we develop a pipeline for a BLAST-like search over these 10 
phylogeny-compressed reference data, and demonstrate it can align genes, plasmids, or entire 11 
sequencing experiments against all sequenced bacteria until 2019 on ordinary desktop computers within 12 
a few hours. Phylogenetic compression has broad applications in computational biology and may provide 13 
a fundamental design principle for future genomics infrastructure.  14 
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INTRODUCTION 15 
 16 
The comprehensive collections of genomes have become an invaluable resource for research across life 17 
sciences. However, their exponential growth, exceeding improvements in computation, makes their 18 
storage, distribution, and analysis increasingly difficult 1. As a consequence, traditional search 19 
approaches, such as the Basic Local Alignment Search Tool (BLAST) 2 and its successors, are becoming 20 
less effective with the available reference data, which poses a major challenge for organizations such as 21 
the National Center for Biotechnology Information (NCBI) or European Bioinformatics Institute (EBI) in 22 
maintaining the searchability of their repositories. 23 
 24 
The key to achieving search scalability are compressive approaches that aim to store and analyze 25 
genomes directly in the compressed domain 3,4. Genomic data have low fractal dimension and entropy 5, 26 
which guarantees the existence of efficient search algorithms 5. However, despite the progress in 27 
compression-related areas of computer science 4–14, it remains a practical challenge to compute 28 
parsimonious compressed representations of the exponentially growing public genome collections, 29 
particularly in light of their heavily biased sampling. 30 
 31 
Microbial collections are particularly difficult to compress due to the huge number and the exceptional 32 
levels of genetic diversity, which reflect the billions of years of evolution across the domain. Even though 33 
substantial efforts have been made to construct comprehensive collections of all sequenced microbial 34 
genomes, such as the 661k assembly collection 15 (661k pre-2019 bacteria) and the BIGSIdata de Bruijn 35 
graph collection 16 (448k de Bruijn graphs of all pre-2016 bacterial and viral raw sequence), the resulting 36 
data archives and indexes range from hundreds of gigabytes (661k) to tens of terabytes (BIGSIdata). This 37 
scale exceeds the bandwidth, storage, and data processing capacities of most users, making local 38 
computation on these data functionally impossible. 39 
 40 
We reasoned that the redundancies among microbial genomes are efficiently predictable, as they reflect 41 
the underlying evolutionary and sampling processes. While genomes in nature can accumulate 42 
substantial diversity through vertical and horizontal mutational processes, this process is functionally 43 
sparse, and at the same time subjected to selective pressures and drift that limit their overall entropy. 44 
This is further limited by selective biases due to culture and research or clinical interests, resulting in 45 
sequencing efforts being predominantly focused on narrow subparts of the tree of life, associated with 46 
model organisms and human pathogens 15. Importantly, such subtrees have been shown to be efficiently 47 
compressible when considered in isolation, as low-diversity groups of oversampled phylogenetically 48 
related genomes, such as isolates of the same species under epidemiological surveillance 17,18. This 49 
suggests that the compression of comprehensive collections could be informed by their evolutionary 50 
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history. This would reduce the complex problem of general genome compression to a much more 51 
tractable problem of local compression of phylogenetically ordered genomes, identified for instance 52 
through phylogenetic trees. 53 
 54 
Phylogenetic trees are effective at estimating the similarity and compressibility of microbial genomes and 55 
their data representations. The closer two genomes are within a phylogeny, the closer they are likely to be 56 
in terms of mathematical similarity measures, such as the edit distance or k-mer distances 19, and thus 57 
also more compressible. Importantly, this principle holds not only for genome assemblies, but also for 58 
their similarity-preserving representations, such as de Bruijn graphs or k-mer indexes 20. Phylogenetic 59 
trees could be embedded into computational schemes in order to assort similar data together, as a 60 
preprocessing step for boosting local compressibility of data. The well-known Burrows-Wheeler 61 
Transform 21 has a similar purpose in a different context. Other related ideas have previously been used 62 
for scaling up metagenomic classification using taxonomic trees 22–25. 63 
 64 
At present, the public version of BLAST is frequently used to identify the species of a given sequence by 65 
comparing it to exemplars, but it is impossible to align against all sequenced bacteria. Despite the 66 
increasing number of bacterial assemblies available in the NCBI repositories, the searchable fraction of 67 
bacteria is exponentially decreasing over time (Fig. 1a). This limits the ability of the research community 68 
to study bacteria in the context of their known diversity, as the gene content of different strains can vary 69 
substantially, and important hits can be missed due to the database being unrepresentative. 70 
 71 
Here, we present a solution to the problem of searching vast libraries of microbial genomes: phylogenetic 72 
compression, a technique for an evolutionary-guided compression of arbitrarily sized microbial genome 73 
collections. We show that the underlying evolutionary structure of microbes can be efficiently 74 
approximated and used as a guide for existing compression and indexing tools. Phylogenetic 75 
compression can then be applied to collections of assemblies, de Bruijn graphs, and k-mer indexes, and 76 
can be run in parallel for efficient processing. The resulting compression yields benefits ranging from a 77 
quick download, through a reduction of Internet bandwidth and storage costs, to efficient search on 78 
personal computers. We show this by implementing BLAST-like search to all sequenced pre-2019 79 
bacterial isolates, which allow us to align genes, plasmids, and sequencing reads on an ordinary laptop or 80 
desktop within a few hours, a task that was completely infeasible with previous techniques. Phylogenetic 81 
compression has wide applications in computational biology and may provide a fundamental design 82 
principle for future genomics infrastructure. 83 
  84 
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Fig. 1: Overview of phylogenetic compression and its applications to different data types. 86 
a) Exponential decrease of data searchability over the past two decades – the size of the BLAST NT 87 
database divided by the size of the NCBI Bacterial Assembly database, as a function of time (Methods). 88 
b) The first three stages of phylogenetic compression before the application of a low-level compressor. 89 
(i) Partitioning genome collection into size- and diversity-balanced batches using metagenomic 90 
classification. (ii) Reversible reordering of input data according to their phylogeny, applied per batch. 91 
c) Examples of specific protocols of phylogenetic compression for individual data types, applied per 92 
batch. (i) For assemblies, data are sorted left-to-right according to the phylogeny and then compressed 93 
using a low-level compressor such as XZ or MBGC 17. (ii) For de Bruijn graphs, k-mers are propagated 94 
bottom-up along the phylogeny, the newly obtained k-mer sets compacted into simplitigs, and 95 
compressed using XZ. (iii) For BIGSI k-mer indexes, Bloom filters (in columns) are ordered left-to-right 96 
according to the phylogeny and then compressed using XZ. 97 
 98 
 99 
 100 
 101 
 102 
RESULTS 103 
 104 
We developed a technique called phylogenetic compression for evolutionarily informed compression and 105 
search of microbial collections (Fig. 1). Phylogenetic compression combines four ingredients (Fig. 1b): 106 
1) clustering of samples into phylogenetically related groups, followed by 2) inference of a compressive 107 
phylogeny that acts as a template for 3) data reordering, prior to an 4) application of a calibrated low-108 
level compressor/indexer (Methods). This general scheme can be instantiated to individual protocols for 109 
various data types as we show in Fig. 1c; for instance, a set of bacterial assemblies can be 110 
phylogenetically compressed by XZ (the Lempel-Ziv Markov-Chain Algorithm 7, implemented in XZ utils, 111 
https://tukaani.org/xz/) by a left-to-right enumeration of the assemblies, with respect to the topology of 112 
their compressive phylogeny obtained through sketching 26. 113 
 114 
We implemented phylogenetic compression for assemblies, de Bruijn graphs, and k-mer indexes in a 115 
framework called Microbes on a Flash Drive (MOF, http://karel-brinda.github.io/mof). We build upon 116 
the empirical observation that microbial genomes in public repositories usually form clusters 117 
corresponding to individual species 27, which we identify for individual genomes via standard 118 
metagenomic classification 28 (Fig. 1b, Methods). As some of the resulting clusters may be too large or 119 
too small, and thus unbalancing downstream parallelization, we further redistribute the clustered 120 
genomes into size- and diversity-balanced batches (Methods, Supplementary Fig. 1). This batching 121 
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enables compression and search in a constant time (using one node per batch on a cluster) or linear time 122 
(using a single machine) (Methods). For every batch, a compressive phylogeny is computed using 123 
Mashtree 26 and used for data reordering (Methods). Finally, the obtained reordered data are compressed 124 
per batch using particularly optimized XZ, and possibly further re-compressed or indexed using some 125 
general or specialized low-level tool, such as MBGC 17 or COBS 29 (Methods). 126 
 127 
We calibrated and evaluated MOF using five microbial collections, selected as representatives of 128 
compression-related tradeoffs between characteristics including data quality, genetic diversity, genome 129 
size, and collection size (Methods, Supplementary Table 1). We quantified the distribution of their 130 
underlying phylogenetic signal (Methods, Supplementary Table 2, Supplementary Fig. 2), used 131 
them to calibrate the individual steps of the phylogenetic compression workflow (Methods, 132 
Supplementary Fig. 3, Supplementary Fig. 4, Supplementary Fig. 5), and evaluated the 133 
resulting performance, tradeoffs, and extremal characteristics (Methods, Supplementary Table 3, 134 
Supplementary Fig. 6). For instance, we found that, as one extreme, 591k SARS-CoV-2 genomes can 135 
be phylogenetically compressed using XZ to only 18.1 bytes/genome (Methods, Supplementary 136 
Table 3, Supplementary Fig. 4,6), resulting in a file size of 10.7 Mb (13× more compressed than 137 
GZip). 138 
 139 
We found that phylogenetic compression improved the compression of genome assembly collections that 140 
comprise hundreds of thousands of isolates of over 1,000 species, by more than one order of magnitude 141 
compared to the state-of-the-art (Fig. 2a, Supplementary Table 3). As specialized compressors of 142 
high efficiency such as MBGC 17 are not applicable to highly diverse collections, the compression 143 
protocols deployed in practice for extremely large and diverse collections are still based on the standard 144 
GZip. One example is provided by the 661k datasets, containing all bacteria pre-2019 from ENA 145 
(n=661,405), which occupies 805 GB on a public FTP 15. Here, MOF recompressed the collection to 29.0 146 
GB (impr. 27.8×; 43.8 KB/genome, 0.0898 bits/bp, 5.23 bits/distinct k-mer) using XZ as the low-level 147 
tool, and even more to 20.7 GB (impr. 38.9×; 31.3 KB/genome, 0.0642 bits/bp, 3.74 bits/distinct k-mer) 148 
when combined with MBGC 17 that also accounts for reverse complements (Fig. 2a, Supplementary 149 
Table 3, Methods). Additionally, we found that the lexicographically ordered ENA datasets, as being 150 
partially phylogenetically ordered, can be used as a first-order approximation of phylogenetic 151 
compression, with compression performance, degraded only by a factor of 4.17 compared to the full 152 
phylogenetic compression (Supplementary Table 3, Methods). Phylogenetic compression proceeded 153 
through several hundred batches of at most 4k genomes per batch (Supplementary Fig. 1). The 154 
resulting compressed files are provided for download from Zenodo (Supplementary Table 4). 155 
  156 
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 157 

 158 

Fig. 2: Results of phylogenetic compression. a) Compression of the two comprehensive genome 159 
collections: BIGSI (425k de Bruijn graphs, the standard compression proceeds by McCortex binary files) 160 
and 661k (661k bacterial assemblies, the standard protocol is based on GZip). b) Comparison of the MOF 161 
vs. BIGSI methods on search of all plasmids from the EBI database. For MOF-Search, the split of the times 162 
of matching and alignment is denoted by a vertical bar. 163 

 164 
 165 
 166 
We then studied the compression of de Bruijn graphs, which are a popular genome representation 167 
directly applicable to raw read data 16,30, and found that phylogenetic compression can improve state-of-168 
the-art approaches by one to two orders of magnitude (Fig. 2a, Supplementary Table 3, Methods). 169 
As de Bruijn graphs lack practical methods for joint compression, single graphs are usually distributed 170 
individually 31. For instance, the graphs of the BIGSIdata collection 16, comprising all viral and bacterial 171 
genomes from pre-2016 ENA (n=447,833), are provided in an online repository in the McCortex binary 172 
format 32 and occupy in total >16.7 TB (Methods). Here, we managed to retrieve n=425,160 graphs from 173 
the Internet (94.5% of the original count) (Methods) and losslessly recompressed them using the MOF 174 
methodology, with a bottom-up propagation of the k-mer content, to 52.3 GB (impr. 319×; 123. 175 
KB/genome, 0.166 bits/simplitig bp 33, 10.2 bits/distinct k-mer) (Fig. 2a, Supplementary Table 3, 176 
Methods). As recent advances in de Bruijn graph indexing 20 may lead to more efficient storage protocols 177 
in the future, we also compared MOF to MetaGraph 30, an optimized tool for indexing on high-178 
performance servers with a large amount of memory. Here, we found that MOF still provided an 179 
improvement of nearly one order of magnitude (Methods). 180 
 181 
Phylogenetic compression can be applied to any data structure as long as it is based on a similarity-182 
preserving genome representation. We demonstrate this using the Bitsliced Genomic Signature Index 183 
(BIGSI) 16 (Fig. 1c(iii)), a k-mer indexing method using an array of Bloom filters, which is widely used 184 
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for large-scale genotyping and presence/absence queries of genomic elements 15,16. Using the same data, 185 
batches, and orders as inferred previously, we phylogenetically compressed the BIGSI indexes of the 661k 186 
collection, computed using a modified version of COBS 29 (Supplementary Table 5, Methods). 187 
Phylogenetic compression provided an 8.51× overall improvement compared to the original index (from 188 
937 GB to 110 GB), making it finally applicable on ordinary computers. Removing the low-quality 189 
genomes from the precomputed batches decreased the uncompressed index size by 4.9% (removing 3.7% 190 
of genomes, Supplementary Fig. 7), but the resulting phylogenetic compression improved to 12.3× 191 
(72.8 GB) (Supplementary Table 5).  192 
 193 
We found that the most divergent genomes occupied 9.4× higher proportion of the database after 194 
compression, both for assemblies and COBS k-mer indexes (Supplementary Fig. 8). On the other 195 
hand, the top ten species (accounting for 80% of the genomic content) occupied less than half of the 196 
compressed database after compression. The remarkable similarity of the post-compression species 197 
ratios between assemblies and k-mer indexes suggests that compressibility is governed by the same rules, 198 
regardless of the specific data representation used, with divergent genomes as a major driver of the final 199 
size. 200 
 201 
To demonstrate the utility of phylogenetic compression in practice, we implemented BLAST-like search 202 
across all pre-2019 bacteria for standard desktop and laptop computers (MOF-search, 203 
http://github.com/karel-brinda/mof-search). For a given batch of queries, MOF-search first filters 204 
reference genomes using phylogenetically compressed COBS k-mer indexes 29, and then computes 205 
alignment using Minimap 2 34 while iterating over phylogenetically compressed genome assemblies 206 
(Methods). The tool choice was arbitrary, and other programs could readily be used instead. Despite the 207 
size of the original database, this resulted in total download and storage requirements of only 102 GB 208 
(195 KB/genome, 0.329 bits/bp, 23.0 bits/distinct k-mer) and memory requirements starting from 12 GB 209 
(user-specified) (Supplementary Table 7); therefore, the pipeline is deployable on all modern laptop 210 
and desktop computers. 211 
 212 
We first evaluated MOF-search with 661k-HQ using three different types of queries - resistance genes 213 
(the ARG-ANNOT database of resistance genes 35, n=1,856), plasmids (EBI plasmid database, n=2,826), 214 
and a nanopore sequencing experiment (n=158,583 reads), and found consistent performance with 215 
results available within several hours (Supplementary Table 2). To benchmark against other tools, we 216 
were unable to find any tool capable of aligning queries to 661k-HQ in a comparable setup (excluding 217 
solutions based on an extensive parallelization on a compute cluster). We therefore used the EBI plasmid 218 
dataset to compare MOF-Search to BIGSI with its original database of 448k genomes (which is 219 
essentially a subset of the 661k-HQ) 16. We found that MOF-search was over an order of magnitude faster 220 
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(Fig. 2b, Supplementary Table 6); the search required 74.1 CPU hours and provided an 221 
improvement in performance of a factor of 28.6× compared to the same BIGSI benchmark with its 222 
smaller database 16 (1.43× less genomes compared to 661k-HQ) (Fig. 2b, Supplementary Table 6), 223 
while providing the full alignments rather than presence/absence only (Fig. 2b). This is to our 224 
knowledge the first time when alignment on this scale has been performed. 225 
 226 
 227 
DISCUSSION 228 
 229 
It is hard to overstate the impact on bioinformatics of BLAST 2, which has allowed biologists across the 230 
world to simply and rapidly compare their sequence of interest with essentially all known genomes – to 231 
the extent that the tool name has become a verb. The web version provided by NCBI/EBI is so standard 232 
that it is easy not to think how representative or complete its database is. However, twenty-three years 233 
on, sequencing data is far outstripping BLAST's ability to keep up, and in fact the publicly BLAST-able 234 
fraction of all sequenced microbes is shrinking exponentially (Fig. 1a). Much work has gone into 235 
approximate solutions 20, but full alignment to the complete corpus of bacterial genomes has remained 236 
completely impossible. We have addressed this problem and made significant progress, via phylogenetic 237 
compression, a highly efficient general technique using evolutionary history of microbes to improve 238 
existing algorithms and data structures. Performance of compression and search improves by one to two 239 
orders of magnitude. More concretely, BLAST-like search of all microbes moves from the impossible to 240 
the possible, not just for NCBI/EBI, but for anyone on their laptop. There are wide-ranging benefits, 241 
ranging from an easy and rapid download of large and diverse genome collections, through reductions in 242 
bandwidth, transmission/storage costs and computational time. 243 
 244 
As with all compression, our capability to reduce data is fundamentally limited by the underlying 245 
information entropy. For genome collections, this is not just introduced by the underlying signal, but also 246 
tightly connected with the sequencing process and our ability to reconstruct the genomes from 247 
sequencing reads. The underlying k-mer histograms (Supplementary Fig. 7) suggest that any methods 248 
for compression or search will have to address noise in the form of contamination, missing regions, and 249 
technological artifacts, with legacy data being a major issue for both storage and analysis. Future 250 
methods may choose to incorporate stricter filtering, and as our experiments demonstrated, this will help 251 
not only to reduce the data volume, but also improve the quality of the search output. We note that this 252 
problem may be mitigated by novel computational approaches such as taxonomic filters 36 or sweep 253 
deconvolution 37. 254 
 255 
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Many elements of our approach have been used previously in other contexts. Reversible reordering for 256 
improving compression is in the core of the Burrows-Wheeler Transform 21 and its associated 257 
indexes 38,39, and it has also been used for read compression 40. Tree hierarchies have been applied in 258 
metagenomics for lossy 22,23,41 and lossless 24 reference data compression. Finally, a divide-and-conquer 259 
methodology has been used for accelerating inference of species trees 42. 260 
 261 
In the light of technological development, the benefits of phylogenetic compression will grow in time. 262 
Only a fraction of the world’s microbial diversity has been sequenced, but as more is sequenced, the tree 263 
of life will not change, thus the relative advantage of phylogenetic compression will improve. We foresee 264 
its use from mobile devices to large distributed cloud environments, and anticipate promising 265 
applications in global epidemiological surveillance 43 and rapid diagnostics 44. Overall, phylogenetic 266 
compression of data structures has broad applications across computational biology and provides a 267 
fundamental design principle for future genomics infrastructure. 268 
 269 
 270 
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METHODS 415 
 416 
 417 
Analysis of the decrease in bacteria BLAST searchability 418 
 419 
BLAST NT size estimation. The estimates of the size of the BLAST NT database (n=27) for the time 420 
period between 2002-01-01 and 2022-11-01 were inferred from five types of online resources. First, most 421 
recent values were recorded manually from the file size reported on the official NCBI website 422 
https://ftp.ncbi.nih.gov/blast/db/FASTA/ (n=11, between 2020-04-05 and 2022-11-01); second, 423 
additional values were obtained from the snapshots of this website and its other NCBI mirrors on 424 
http://web.archive.org (n=7, between 2012-10-11 and 2022-06-06); third, the archived versions of the 425 
NT database at selected time points were found in online repositories (n=3, between 2017-10-26 and 426 
2021-01-15); fourth, the size of the database was also captured in a software documentation (n=1, 2013-427 
12-03); and fifth, the number of base pairs was also provided in scientific literature (n=5, between 2002-428 
01-01 and 2010-01-01) (Supplementary Table 6). To convert the size of the NT database between the 429 
number of nucleotides and the size of the FASTA file after compressing using GZip; the compression 430 
ratio was estimated using the NT version from 2022-06-20 to be approximately 2.04 bits per bp. 431 
 432 
NCBI Assembly DB size estimation. The number of bacteria in the NCBI Assembly database and 433 
their compressed size were estimated from the GenBank assembly summary file 434 
(https://ftp.ncbi.nlm.nih.gov/genomes/genbank/bacteria/assembly_summary.txt, downloaded on 435 
2022-11-02, n=1,280,758 records), and subsequently sorted according to the ‘seq_rel_date’ field. The 436 
resulting file was used for calculating the number of published assemblies till a given date, further 437 
aggregated per month. The total size of the assemblies was estimated from the average size of genome 438 
assembly in the 661k collection, which is 3.90 Mbp, and the corresponding GZip size was estimated as 439 
previously. We note that updates in the assembly_summary.txt file could affect the old statistics, such as 440 
the removal of old contaminated records, but a manual inspection and comparison during a several-441 
months-long period revealed that these changes have only a negligible impact on the resulting statistics. 442 
 443 
Comparison. The BLAST scalability plot (Fig 1a) depicts the estimated size of the BLAST NT database 444 
(in the .fasta.gz format) divided by the estimated size of the bacteria in the NCBI Assembly Database 45 445 
(https://www.ncbi.nlm.nih.gov/assembly/) (also in the .fasta.gz format) at the same time, as a function 446 
of time from 2002 to 2022. Both types of values, i.e., the sizes of the NT database and the bacteria in the 447 
NCBI Assembly database, were interpolated in the logarithmic scale by piecewise linear functions. The 448 
resulting interpolations were used for enumerating the estimated proportion of the sizes of NT and the 449 
bacteria in the NCBI Assembly database, by calculating their values at regular intervals (for each month). 450 
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Although the provided calculation may involve little inaccuracies (for instance, the average bacterial 451 
genome size or GZip compression ratio might differ for the NCBI Assembly database), this would have 452 
only negligible impact on the overall exponential decrease of data searchability. The resulting 453 
approximations were used for plotting Fig 1a. 454 
 455 
 456 
Conceptual overview of phylogenetic compression 457 
 458 
General overview. Phylogenetic compression is a general approach for compressing arbitrarily-sized 459 
genome collections and indexes and to search them. While the existing compression techniques excel in 460 
local compression, they struggle with widely distributed redundancies. As genomic data result from a 461 
superposition of evolutionary and sampling processes, genomic collections feature a tree-like geometrical 462 
structure reflecting vertical descent and partially confounded less frequent horizontal transfer. 463 
Reordering according to the tree topology co-localizes correlated information within the input data, and 464 
thus increases the local compressibility of data – consecutive genomes in phylogenetic orders will often 465 
be highly similar. To organize input genomes into phylogenetic trees in a scalable manner, phylogenetic 466 
compression combines four conceptual steps. 467 
 468 
Step 1: Clustering/batching (Fig. 1b(i)). The goal of this step is to separate genomes into batches of 469 
phylogenetically related genomes of limited size and diversity that can be easily compressed and searched 470 
together. In downstream compression, indexing, and analyses, individual batches are processed 471 
individually, in separation, and the guarantees on the maximum batch size and diversity enable us to 472 
establish upper bounds on the maximum time and space necessary for processing a single batch. The 473 
clustering and batching is achieved via metagenomic classification 28; it is known from the literature that 474 
microbial genomes in public repositories form distinct clusters, usually (but not always) corresponding to 475 
individual species 27 and metagenomic classification assigns genomes to individual clusters, defined by 476 
the genomes used in the corresponding reference database (e.g., RefSeq). Clusters of divergent genomes 477 
that are too small are put into a separate joint pseudo-cluster called dustbin. As some of the obtained 478 
(pseudo)-clusters can be too big (such as the clusters corresponding to oversampled species; e.g.,  479 
S. enterica), they are further divided into smaller batches in a way that provides guarantees on 480 
downstream computational resources. 481 
 482 
Step 2: Inference of a compressive phylogeny (Fig. 1b(ii)). The second step, already performed 483 
per individual batches of a limited size and diversity independently, consists in inferring a so-called 484 
compressive phylogeny that sufficiently approximates the true phylogenetic signal for compression 485 
purposes. While phylogenies computed using an accurate inference method such as BAPS 46 are 486 
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preferable, in most practical scenarios these are not available and would be too costly to compute or 487 
require particular adjustments for different species. In such cases, a rapidly estimated phylogeny, for 488 
instance using MashTree 26, is sufficient. 489 
 490 
Step 3: Data reduction/reordering (Fig. 1b(ii)). The role of the computed compressive phylogeny 491 
is to act as a template for the reduction and re-ordering of input data according to their evolutionary 492 
history. This can have multiple different forms, based on the specific application and type of compression 493 
(e.g., lossy vs. lossless), and it can involve two directions. Either the collection/batch is only reordered 494 
left-to-right according to the topology of the compressive phylogeny, or the genomic data are propagated 495 
bottom-up along the phylogeny (i.e., shared genomic content is propagated up, and thus reduced, before 496 
the left-to-right enumeration is performed). 497 
 498 
Step 4: Compression or indexing using a calibrated low-level tool (Fig. 1c). Once the data are 499 
reordered (and possibly reduced) using the compressive phylogenies, the last step is the final 500 
compression or indexing using a low-level tool that can exploit local redundancies in the data. At this 501 
stage, all the data are highly locally compressible thanks to both the phylogeny-based clustering and 502 
phylogeny-based reordering. Many general and specialized genome compressors are available and can be 503 
used at this step; however, it is important to ensure that the parameters of the underlying algorithms 504 
correspond to the characteristics of genome data; for instance, the window/dictionary of a Lempel-Ziv-505 
based compressor needs to be sufficiently large to span multiple genomes and to store a sufficient 506 
amount of phrases (Supplementary Fig. 3a). General compressors usually need to be particularly 507 
tested and calibrated, whereas specialized compressors for genomes are usually calibrated by default. 508 
Furthermore, general compressors may require additional data re-formatting; for instance, for efficient 509 
multi-genome compression using general compressors, it is important to ensure that FASTA files have 510 
one sequence per one line (Supplementary Fig. 3b). 511 
 512 
 513 
The Microbes on Flash Drive (MOF) workflow for phylogenetic compression 514 
 515 
MOF implements several protocols of phylogenetic compression for compression of assemblies, de Bruijn 516 
graphs, and for search genome; more information and links can be found on the associated website 517 
(http://karel-brinda.github.io/mof). 518 
 519 
Clustering/batching. As individual genome collections encountered in practice can have very different 520 
properties and associated data available, for the use with MOF the clustering and batching steps are 521 
expected to be performed by the user. The recommended procedure is to identify species using standard 522 
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metagenomic approaches, such as those implemented in the Kraken software suite 47 (e.g., Kraken 2 48 523 
and Bracken 49 applied on the original read sets) and divided into smaller batches analogically to the 524 
examples in Supplementary Figure 1. The protocol can be further customized based on the specific 525 
performance of algorithms downstream, e.g., by increasing/decreasing batch size or adjusting 526 
parameters for building dustbin batches. The clustering/batching step is not necessary if the number of 527 
genomes is sufficiently small (the order of thousands). 528 
 529 
Inference of a compressive phylogeny. The user can either provide a custom tree, tailored for the 530 
specific collection/batch, such as a tree computed by RHierBAPS 46, or leave MOF-Compress to compute 531 
a compressive phylogeny by Mashtree 26, which is based on estimating k-mer-set Jaccard index using 532 
locality sensitive hashing using MinHash sketches 50 and estimating mutation rate under a simple 533 
evolutionary model 51 using the so-called Mash distance 50; the obtained distances are then used for 534 
estimating the likely phylogeny using the Neighbor-Joining algorithm 52,53 as implemented in 535 
QuickTree 54. 536 
 537 
MOF-Compress (http://github.com/karel-brinda/mof-compress). This is a central package of MOF 538 
that performs phylogenetic compression of a single batch and calculates the associated statistics. It 539 
implements the following three protocols: 1) phylogenetic compression of assemblies based on a left-to-540 
right reordering, 2) phylogenetic compression of de Bruijn graphs represented by simplitigs 33 based on 541 
the left-to-right reordering, and 3) phylogenetic compression of de Bruijn graphs using bottom-up k-mer 542 
propagation using ProPhyle 25,55. The k-mer propagation proceeds recursively inside the compressive 543 
phylogeny in a bottom-up fashion – at every internal node, k-mer sets of the child nodes are loaded, their 544 
intersection computed, stored at the node, the intersection subtracted from the child nodes, and all three 545 
k-mer sets saved in the form of simplitigs. This progressively reduces the k-mer content within the 546 
phylogeny in a lossless fashion. More details on this technique can be found in ref 55. In all three 547 
protocols, the output is a TAR file with ordered text files with sequences – for assemblies in the one-line 548 
FASTA format and for simplitigs in a text file with eol-separated simplitigs. The TAR file is subsequently 549 
compressed using XZ with the parameters ‘xz -9 -T1’  (see calibration).  MOF-Compress also computes 550 
extensive statistics for all three protocols, including the size of the corresponding k-mer multiset, k-mer 551 
set, number of sequences, their cumulative length, and the resulting compressed sizes (see section 552 
Statistics). The output .tar.xz file from MOF-Compress can be used for additional recompression or 553 
indexing in the same order by other low-level tools. 554 
 555 
MOF-Compress statistics. MOF-Compress computes a multitude of statistics characterizing the 556 
compressibility using the three implemented protocols, and these are further used for computing global 557 
statistics such as phylogeny-explained redundancy. For each of the three protocols, the following 558 
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statistics are calculated: set (the size of the k-mer set of all sequences), multiset (size of the k-mer 559 
multiset of all sequences), sum_ns (number of sequences), and sum_cl (total sequence length), recs 560 
(number of records), and xz_size (size after compression using XZ). The sizes of k-mer sets and multi-561 
sets are obtained from k-mer histograms computed by JellyFish 2 56. Based on these numbers the various 562 
compression-related statistics used in this paper are computed, such as bits per distinct k-mer or 563 
kilobytes per genome. 564 
 565 
Phylogeny-explained redundancy. Comparing the sizes of k-mer sets and multisets before and after 566 
reduction using k-mer propagation along phylogenies allows further quantification of the proportion of 567 
the k-mer signal that is explained by a given compressive phylogeny. The so-called removed k-mer 568 
redundancy quantifies the proportion of k-mer occurrences that were removed by k-mer propagation out 569 
of those that could be removed if the phylogeny perfectly explained the distribution of k-mers (i.e., every 570 
k-mer occurring only once after propagation), and the corresponding formula is  571 
 572 

removed_redundancy = (|multiset_preprop|-|multiset_postprop|)/(|multiset_preprop|-|set|) 573 

 574 

MOF-COBS-Build. MOF-COBS-build (https://github.com/leoisl/mof-cobs-build) is a pipeline that can 575 
be appended to MOF-Compress for constructing phylogenetically compressed ClaBS COBS indexes 576 
(Classical Bit-sliced index) for creating XZ-compressed COBS indexes from batches of phylogenetically-577 
ordered samples. ClaBS is a mode of COBS that is conceptually analogous to the original BIGSI data 578 
structure 16, using Bloom filters of the same size, which is a key property that guarantees that Bloom 579 
filters of phylogenetically close datasets are mutually compressible (different sizes of Bloom filters would 580 
shift bits corresponding to the same k-mers to different positions). MOF-COBS-build is built as a 581 
Snakemake 57 workflow reading two directories: the first describes the sample batches as well as their 582 
ordering (in detail, this directory contains a list of text files with each such file listing the samples in the 583 
batch and their ordering, with one sample name per line). The second is a directory with the assemblies 584 
themselves. The workflow comprises four main steps: 1) creating groups of assemblies in the order 585 
specified by the input (in details this is done by creating a directory with symbolic links to the original 586 
assemblies, with these links having artificial names sorted by their phylogenetically order, forcing COBS 587 
to process them in such order); 2) building COBS classic indexes by “cobs classic-construct -T 8 {batch} 588 
{output}.cobs_classic”; 3) compressing the COBS classic indexes with “xz -9 -T1 -e -k -c --589 
lzma2=preset=9,dict=1500MiB,nice=250”; 4) combining all compressed indexes into a single TAR file 590 
that can be further used for distribution. 591 
 592 
 593 
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 594 
Overview of the five test microbial collections 595 
 596 
GISP. The collection consists of 1,102 draft assemblies constructed from clinical isolates of N. 597 
gonorrhoeae collected in the US from 2000 to 2013 by the Centers for Disease Control and Prevention 598 
within the Gonococcal Isolate Surveillance Project 58; the isolates were previously sequenced using 599 
Illumina HiSeq and assembled using Velvet 59. The collection presents a model of high-quality genomic 600 
data from a low-diversity species sequenced and assembled using identical protocols. 601 
 602 
NCTC3k. The collection consists of 1,065 draft and complete assemblies constructed from strains from 603 
the National Collection of Type Cultures (NCTC) collection, analyzed by Public Health England, the 604 
Wellcome Trust Sanger Institute, and Pacific Biosciences within the NCTC 3000 project; the isolates 605 
were sequenced using the PacBio Single Molecule, Real-Time (SMRT) DNA Sequencing technology, 606 
assembled using automated pipelines, and are provided online through the 607 
https://www.sanger.ac.uk/resources/downloads/bacteria/nctc/ website. The collection presents a model 608 
of nearly complete high-quality genomes of diverse species. 609 
 610 
SC2. The collection is a snapshot of the GISAID database 60 from 2021-05-18 of 590,779 SARS-CoV-2 611 
isolates (complete assemblies) with a known phylogeny and available complete genomic sequences, 612 
collected and sequenced from 2020 to 2021 by various laboratories, and provided online through 613 
https://gisaid.org/ and analyzed using the sarscov2phylo software 614 
(https://github.com/roblanf/sarscov2phylo/, ref 61). The collection presents a model of a large number of 615 
genomes of varying quality from epidemiological surveillance of a single species collected across the 616 
globe. 617 
 618 
BIGSIdata. The BIGSIdata collection is a snapshot of bacterial and viral isolates present in the 619 
European Nucleotide Archive (ENA) on December 2016 as published in ref 16, consisting of 425,160 620 
cleaned de Bruijn graphs (k=31) that we managed to download from the associated FTP website 621 
(http://ftp.ebi.ac.uk/pub/software/bigsi/nat_biotech_2018, out of the original 447,833 that were 622 
mentioned in ref 16); the isolates had originally been collected and sequenced using various laboratories, 623 
deposited to some repository that is synchronized with ENA (i.e., ENA, NCBI SRA, or DDBJ Sequence 624 
Read Archive), downloaded and transformed into cleaned de Bruijn graphs using McCortex 32,62 by the 625 
European Bioinformatics Institute (EBI) and provided on the FTP website together with metadata on 626 
Figshare 63. The collection presents a model of a large number of microbial isolates collected and 627 
sequenced across the globe using various sequencing technologies that are represented in a searchable 628 
representation other than genome assembly. 629 
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 630 
661k. This collection is an assembled snapshot 15 (draft assemblies) of all 661,405 Illumina-sequenced 631 
bacterial isolates present in the ENA on 2018-11-26; the isolates had originally been collected and 632 
sequenced using various laboratories, deposited to some repository that is synchronized with ENA (i.e., 633 
ENA, NCBI SRA, or DDBJ Sequence Read Archive), downloaded and assembled using a single unified 634 
pipeline (https://github.com/iqbal-lab-org/assemble-all-ena) based on Shovill 635 
(https://github.com/tseemann/shovill) by the European Bioinformatics Institute (EBI), and provided on 636 
FigShare 64 (metadata) on FTP (https://ftp.ebi.ac.uk/pub/databases/ENA2018-bacteria-661k/, 637 
assemblies). The collection presents a model of a large number of assembled microbial isolates collected 638 
and sequenced across the globe using a single sequencing technology, i.e., the state-of-the-art of the short 639 
read-assembly era. 640 
 641 
Basic characteristics of the test collections, including the size of the original files, the number of samples, 642 
as well as the number of species, and the number of distinct k-mers are provided in Supplementary 643 
Table 1. 644 
 645 
 646 
Acquisition of the test collections 647 
 648 
BIGSIdata. The files corresponding to individual samples of the collection 16 were downloaded from the 649 
associated FTP (http://ftp.ebi.ac.uk/pub/software/bigsi/nat_biotech_2018/), including cleaned de 650 
Bruijn graphs, and taxonomic information as inferred using metagenomic classification using Kraken 22 651 
and abundance reports computed using Bracken 49. The download was done in groups corresponding to 652 
individual EBI prefixes (e.g., DRR000) using RSync by 653 
 654 

rsync -avP --min-size=1 --exclude '*stats*' --exclude '*uncleaned*' --exclude '*bloom*' --exclude 655 
'*log* "rsync://ftp.ebi.ac.uk/pub/software/bigsi/nat_biotech_2018/ctx/${prefix}" 656 

The prefixes were further organized into batches by 100, which resulted in 15 batches in total. The batches 657 
were processed sequentially, and the individual contained groups were downloaded on a research 658 
computing cluster in parallel using Slurm, with jobs deployed using Snakemake 57 (between 2020-08-01 659 
and 2020-09-15). From the downloaded McCortex files, unitigs were extracted using McCortex 660 
(“mccortex31 unitigs -m 3G -”) and stored locally, after which the McCortex files were deleted. Only graphs 661 
with unitigs of length at least 2 kbp, with less then 15 M k-mers (to remove contaminated datasets), and 662 
without any file system errors were used in the subsequent processing. This resulted in n=425,161 de Bruijn 663 
graphs (out of the original 463,331 files) that were used in the subsequent analyses. 664 
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661k. All assemblies were retrieved in March 2022 from the official FTP repository provided in ref15, by 665 
running 666 

rsync -avp rsync://ftp.ebi.ac.uk/pub/databases/ENA2018-bacteria-661k/Assemblies/{pref} 667 
 668 
for individual prefixes ranging from 000 to 661. This resulted in n=661,405 .fa.gz files, occupying in total 669 
805,255,364,491 bytes (i.e., 805 GB). 670 
 671 
GISP. The GISP collection was obtained from the https://github.com/c2-d2/rase-db-ngonorrhoeae-672 
gisp, published in ref 44; the original data were originally analyzed in ref 58 and the resulting data later 673 
provided for download also on Zenodo 65. The GISP assemblies (n=1,102) were obtained from the 674 
“isolates/contigs” subdirectory of Github repository, and the associated phylogenetic tree, computed 675 
using BAPS 66 (Bayesian Analysis of Population Structure) after correction for recombination using 676 
Gubbins67, downloaded from the “tree/” subdirectory of the same repository. 677 
 678 
SC2. The following SARS-Cov-2 data were downloaded from the GISAID website 679 
(https://www.gisaid.org/, as of 2021-05-18): an assembly file (sequences_fasta_2021_05_18.tar.xz, 680 
n=1,593,858) and a Sarscov2phylo phylogeny68 data file (gisaid-hcov-19-phylogeny-2021-05-11.zip, 681 
n=590,952). Both datasets were converted to the same set of identifiers, and isolates with missing data 682 
discarded.  This resulted in 590,779 genomes accompanied with their corresponding phylogenetic tree 683 
(Tab. 2; the SC2 collection). Out of the downloaded 1,593,858 sequences that were available in May 684 
2021, we first extracted those with known phylogenetic position within the global Sarscov2phylo 685 
phylogeny 68; this resulted in 590,779 genomes accompanied with their corresponding phylogenetic tree 686 
(Tab. 2; the SC2 collection) (as of May 2021; n=590,779 sequences with phylogenetic information out of 687 
the total of 1,593,858; Methods) 688 
 689 
NCTC3k. The assemblies were downloaded in the GFF format using FTP from 690 
ftp://ftp.sanger.ac.uk/pub/project/pathogens/NCTC3000 by 691 
 692 
wget -m -np -nH --cut-dirs 3 --retr-symlinks ftp://ftp.sanger.ac.uk/pub/project/pathogens/NCTC3000 . 693 

 694 
converted them to the FASTA format by any2fasta (https://github.com/tseemann/any2fasta, v0.4.2) 695 
parallelized by GNU Parallel 69, and finally uploaded to Zenodo 696 
(http://doi.org/10.5281/zenodo.4838517). Species were counted based on the data in the main 697 
Sanger/Public Health England assembly table for NCTC3000 as provided online 698 
(https://www.sanger.ac.uk/resources/downloads/bacteria/nctc/, retrieved on 2022-09-14). The HTML 699 
table was first manually exported to the XLSX, and then used for constructing a translation table from 700 
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NCTC accession numbers to the corresponding species. Finally, the accessions of the assemblies 701 
contained in our collection were extracted from file names, translated to species, and the species counted. 702 
Overall, this resulted in 1,065 assemblies of 259 species. 703 
 704 
 705 
Calibration and evaluation of phylogenetic compression using the test collections 706 
 707 
For calibration, two collections from epidemiological surveillance (SC2 and GISP) were used to model 708 
similar genomes, and one additional high-diversity isolate collection (NCTC3k) was used to model 709 
divergent genomes (Supplementary Tab. 1). These three collections were used for calibrating and 710 
comparing individual low-level compressors, as well as for evaluating the compressibility of the datasets 711 
(Supplementary Fig. 3–5). 712 
 713 
Calibration of the XZ compressor (Supplementary Fig. 3). The comparison was performed using 714 
the GISP collection and the GZip, BZ2, and XZ low-level compressors with range of their presets, and in 715 
the case of XZ with only 1 thread. For the right panel, line length was progressively modified using seqtk 716 
seq (the “-l” parameter), the collection recompressed, and all the final results compared in function of 717 
line length. 718 
 719 
Comparison of scaling modes (Supplementary Fig. 4). The SC2 collection was provided in the 720 
left-to-right order according to the topology of the phylogeny and compressed, with genomes being 721 
progressively subsampled. The compression methods in this experiment included XZ (“xz -9 -T1”), BZip2 722 
(“bzip2 --best”), GZip (“gzip -9”), and Re-Pair 70,71 (implementation from 723 
https://github.com/rwanwork/Re-Pair, “repair -v -i”, version “Oct 26 2021”). As Re-Pair was only little 724 
scalable and suffered from various technical issues, the integrity of the output files was always verified via 725 
their decompression. The comparison for the NCTC3k collection was done analogically via MOF-726 
Compress with individual subsampling, and additional re-recompression using GZip and BZip2 with the 727 
same parameters as previously. In the case of the SC2 collection, sequence names were not included in 728 
the benchmark to their long names given the short genomes. 729 
 730 
Order comparison (Supplementary Fig. 5). For SC2, the isolates with phylogenetic information 731 
(n=590,779) were used for the compression analysis using three orderings: the original ordering 732 
(corresponding to the lexicographical ordering by sequence names), the left-to-right ordering of the 733 
phylogeny, and a randomized order. In all cases, a custom Python script using BioPython 72 was used to 734 
order the FASTA file and remove sequence names, and its output was compressed by the XZ compressor 735 
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using 1 thread and maximum compression (‘xz -T1 -9’), and the sizes of the resulting files measured using 736 
wc (‘wc -c’). The comparisons for GISP and NCTC3k was performed analogically. 737 

 738 
Summary of the findings. The most popular method, GZip, always performed poorly for bacteria, but 739 
provided a moderate scaling for viruses. Stronger compressors such XZ achieved steep compression 740 
curves for high-diversity collections, with compression ratio improving by one order per one order 741 
increase of #genomes, for both viruses and bacteria. On the other hand, NCTC3k was little compressible 742 
even with the best approaches (<1 order of magnitude of compression after a 3 orders-of-magnitude 743 
increase of #genomes), indicative of that divergent genomes is the fundamental compression bottleneck 744 
within comprehensive collections. Finally, we compared the best experimental grammar-based 745 
compressor (Re-Pair 70,71) to XZ, and found they achieved similar asymptotics, suggesting the potential of 746 
grammar compression for phylogenetic compression. As for the orders, we found that phylogeny 747 
reordering always boosted compression (reduction to 38%–67% compared to the random order), for 748 
both low- and high-diversity collections. We also found that trees computed using rapid heuristics 749 
(MashTree 26) performed nearly as well as an accurate Bayesian approach (Bayesian Analysis of 750 
Population Structure 46). Overall, based on the observed tradeoffs, we selected “xz -9 -T1” as the 751 
compression procedure for MOF-Search and Mashtree as a sufficiently accurate method for generating 752 
compressive phylogenies. 753 
 754 
 755 
Phylogenetic compression of the BIGSIdata collection of de Bruijn graphs 756 

 757 
Clustering and batching. For every sample, the output of Kraken 22 and Bracken 49 were extracted from 758 
the downloaded data. Clusters were then defined based on the most prevalent species in a sample, as 759 
identified in the corresponding Bracken report and batching proceeded as depicted in Supplementary 760 
Fig. 1. The genomes of the 1,443 identified species (clusters) were redistributed into 568 regular batches 761 
and 6 dustbin batches, resulting in a total of 574 batches. 762 

Phylogenetic compression. Phylogenetic compression first proceeded through a workflow that later 763 
resulted in MOF-Compress For individual batches, compressive phylogenies were computed using 764 
Mashtree with the default parameters. The resulting trees were then used with ProPhyle and unitig files 765 
to propagate k-mers along the compressive phylogenies and to compute simplitigs using ProphAsm 33. 766 
After the resulting files were ordered and compressed by XZ (“xz -v -z -9 -T8 --stdout”), the resulting files 767 
(occupying 74.4 GB) were deposited on https://doi.org/10.5281/zenodo.4086456 and 768 
https://doi.org/10.5281/zenodo.4087330. Furthermore, an analogical version of the propagated 769 
simplitig files, but without sequence headers and with compression using a single thread only, was later 770 
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created using the MOF compress pipeline and resulted in files occupying in total 52.3 GB that were 771 
subsequently deposited on https://doi.org/10.5281/zenodo.5555253. 772 

Phylogenetic decompression. To decompress the files obtained through phylogenetic compression 773 
based on k-mer propagation back to the original de Bruijn graphs, the original graphs need to be 774 
reconstructed by collecting all k-mers along root-to-leaf paths, which we implemented a program called 775 
MOF-Client (https://github.com/karel-brinda/mof-client). The program downloads individual data files 776 
from Zenodo from the accessions above and decompresses them using the following procedure. For it 777 
decompresses the XZ file of a given batch, splits it according to files corresponding to individual nodes of 778 
the compressive phylogeny, recompressed individual nodes using GZip parallelized using GNU 779 
Parallel 69, and for all leaves (genomes) it collects the corresponding k-mer sets from by merging all GZip 780 
files along the corresponding root-to-leaf paths using the Unix cat command. The correctness of the 781 
resulting files was confirmed using JellyFish 56. 782 

Comparison to the original compression. As the samples in our BIGSIdata collection do not fully 783 
correspond to the selected data used in the original publication 16, we calculated the original size of the 784 
published McCortex files of our graphs based on the FTP listoff files as provided within individual 785 
subdirectories of http://ftp.ebi.ac.uk/pub/software/bigsi/nat_biotech_2018/ (as of 2021-08-27). These 786 
were downloaded per individual prefix directories recursively using wget by 787 

wget -nv -e robots=off -np -r -A .html 788 
"http://ftp.ebi.ac.uk/pub/software/bigsi/nat_biotech_2018/ctx/${prefix}/", 789 

The corresponding parallelized Snakemake pipeline was run on a desktop computer. This resulted in a 790 
table containing 484,463 files, out of which 162,645 had a bz2 suffix. The individual file records were 791 
compared with the list of accessions of files that were previously retrieved and sorted in our BIGSIdata 792 
collection, and the volume of the source graphs on FTP calculated to be 16.7 TB. 793 

Comparison to Metagraph 30. The size of the phylogenetically compression BIGSIdata collection was 794 
compared to the size of an analogical Metagraph index from the original paper 30 based on the statistics 795 
in Table 1 and Supplementary Table 1 (SRA-Microbe collection): n=446,506 indexed datasets, 39.5 G 796 
canonical k-mers (with the same k-mer size k=31), and the size of the annotated de Bruijn graph being 797 
291 GB  (graph 30 GB + annotations 261 GB). This index was constructed from the same data as in the 798 
original BIGSI paper 16, but using a slightly different computational methodology. In consequence, the 799 
index of Metagraph contained a by 4% lower number of distinct k-mers compared to BIGSIdata as 800 
constructed in this paper, indicative of either lower diversity of the samples included or of their 801 
additional cleaning. To compare the two compression approaches (MOF with bottom-up k-mer 802 
propagation and XZ as a low-level tool vs. SRA-Microbe compressed using Metagraph), both applied to 803 
the similar but different input data, we used the number of bits per distinct k-mer as the statistics to 804 
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compare, which was found to be 10.2 and 58.9, respectively, Therefore, the MOF compression was more 805 
efficient by an estimated factor of 5.78, but this number might be underestimated due to a different noise 806 
level. We note that phylogenetic compression could be directly embedded into Metagraph in the future, 807 
which may help to reduce the size of its index substantially. 808 
 809 

 810 
Phylogenetic compression of the 661k assembly collection 811 
 812 
Batches. Clusters were identified based on the species identified using Kraken 2 48 + Bracken 49, as 813 
provided in the supplementary materials in ref 15 (the File1_full_krakenbracken.txt file, the V2 column), 814 
and further split into batches as displayed in Supplementary Fig. 1. 815 
 816 
Phylogenetic compression using MOF-Compress. The individual batches of the collection were 817 
compressed using the MOF-Compress pipeline, compressive phylogenies computed using MashTree 26, 818 
left-to-right reordering of the assemblies, left-to-right re-ordering of simplitigs of the de Bruijn graphs, 819 
bottom-up k-mer propagation and simplitig computation by ProPhyle, and storing simplitigs and 820 
assemblies as text and FASTA file, respectively, followed by a compression by ‘xz -9 -T1’. The resulting 821 
files were deposited on https://doi.org/10.5281/zenodo.4602622. 822 
 823 
Calculations of the statistics. All the statistics used in the plots and tables were calculated based on 824 
the numbers obtained from MOF-Compress. Additionally, the total number of k-mers was calculated 825 
using JellyFish 56 (v2.2.10) by 826 

jellyfish count --mer-len 31 --size 200G --threads 32 --output kmer_counting.jf --out-counter-827 
len=1 --canonical 828 

which resulted in 44,349,827,744 distinct k-mers (28,706,296,898 unique k-mers) for the 661k collection 829 
and in 35,524,194,027 distinct k-mers (22,904,412,202 unique k-mers) for the 661k-HQ collection. We 830 
note that the files uploaded to https://doi.org/10.5281/zenodo.4602622 are higher by approximately 0.2 831 
GB (approx. 0.7% of the total size) compared to the value Supplementary Table 3 as the Zenodo 832 
submission was done with an older version of the pipeline with slightly different trees. 833 
 834 
Recompression using MBGC. Individual phylogenetically compressed batches from the previous 835 
step were converted to single FASTA files by ‘tar -xOvf {input.xz}’ and then compressed using MBGC 836 
v1.2.1 with 8 threads and the maximum compression level (3) by ‘mbgc -i {input.fa} -c 3 -t 8 837 
{output.mbgc}’. This resulted in files occupying in total 20,726,725,129 bytes, which were then uploaded 838 
to Zenodo (https://doi.org/10.5281/zenodo.6347064). 839 
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 840 
Compression in the lexicographic order. As data in ENA and other similar repositories have 841 
identifiers assigned in the order in which they are uploaded, individual uploads typically proceed by 842 
uploading entire projects, and these typically involve phylogenetically very close genomes; for instance, 843 
genomes from a study investigating a hospital outbreak often occupy a range of accessions. As such, 844 
lexicographically sorted genomes from ENA can be considered as a first approximation of phylogenetic 845 
compression. To compare the compressibility of the 661k collection in the ENA accession order to the full 846 
phylogenetic compression, we streamed the genomes from the main collection file provided on 847 
http://ftp.ebi.ac.uk/pub/databases/ENA2018-bacteria-661k/661_assemblies.tar, decompressed them 848 
on-the-fly, converted them to the one-line FASTA format, and compressed using XZ with 32 threads, all 849 
by 850 

pv 661_assemblies.tar | tar -xOf - | gunzip -c | seqtk seq | xz -9 -T32 -v 851 
 852 
The computation, performed on a dedicated server, required 23.5 h of wall clock time and 757 CPU 853 
hours, and the resulting file had 120,701,329,280 bytes. We note that compression using a single thread 854 
was not possible in this case due to the size of the file; nevertheless, as the individual blocks used for XZ 855 
parallelization were guaranteed to be a multiple of the dictionary size (that is 68.7 MB with the ‘-9’ 856 
preset), ensuring their sufficient size for the comparison to be correct. 857 
 858 
 859 
Phylogenetic compression of the 661k/661k-HQ k-mer indexes 860 
 861 
Phylogenetic compression of 661k-HQ COBS index. We built a phylogenetically compressed 862 
COBS index from the 661-HQ dataset using the MOF-COBS-build pipeline. In short, individual COBS 863 
indexes were constructed per individual batches, with low-quality genomes removed, with the variant of 864 
the index called ClaBS (Classical Bit-sliced index), analogical to the original BIGSI data structure 16. In 865 
this index, all columns (Bloom filters) have the same size and the genomes were provided in the left-to-866 
right phylogenetic order as illustrated in Fig. 1c(i), after which every index was compressed using XZ, 867 
resulting in 72.8 GB (1.06 GB when uncompressed, 14.5× reduction) (Supplementary Table 5). See 868 
the section about MOF-COBS-build for more information. The resulting indexes were then used in MOF-869 
Search for the initial filtration of reference. 870 
 871 
Phylogenetic compression of 661k-HQ COBS index. To evaluate the gain of phylogenetic 872 
compression in the specific case of COBS indexes, we performed a series of additional experiments (see 873 
their overview in Supplementary Table 5). In particular, we also created a phylogenetically 874 
compressed index of the entire 661k collection, including the low-quality genomes, resulting in 110. GB 875 
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(2.46 TB when uncompressed, 22.5× reduction); here, the compression optically seems to be more 876 
efficient, but the only reason is that contaminated genomes too much increase the size of the Bloom 877 
filters, adding many additional rows that are predominantly composed of zeros. 878 
 879 
Comparisons to baselines. To evaluate the improvement of phylogenetic compression for COBS, we 880 
needed also to construct the compacted indexes (the default mode of the COBS program), with adaptive 881 
adjustments of Bloom filter sizes through subindexes. This was more challenging as this required to work 882 
simultaneously with the entire 661k dataset at the same time. For the entire 661k compact COBS index, 883 
we used the official one, available online (http://ftp.ebi.ac.uk/pub/databases/ENA2018-bacteria-884 
661k/661k.cobs_compact, retrieved on 2022-09-08), as published with the original manuscript 15. The 885 
index had originally been constructed by COBS, version 7c030bb, using the “compact-construct” 886 
subcommand with default options; i.e., without any batches and with adaptively sized Bloom filters (937 887 
GB). In a similar fashion, we also constructed an analogical compact COBS index for the 661K-HQ 888 
collection (893 GB). Both indexes were then compressed on a highly performant server in a combination 889 
with XZ parallelization using 32 cores (“xz -9 -T32”, resulting in 3.86× and 4.35× reductions, 890 
respectively). However, we note such indexes are not suitable for personal computers due to both the 891 
space requirements and the necessity to uncompress the index in its entirety at once. The resulting 892 
comparison of phylogenetic compression of COBS indexes is provided in Supplementary Table 5. 893 
 894 
 895 
MOF-Search pipeline for BLAST-like search across all pre-2019 bacteria from ENA 896 
 897 
Overview of the pipeline. MOF-Search (https://github.com/karel-brinda/mof-search) uses 898 
phylogenetically compressed assemblies (661k) and phylogenetically compressed COBS indexes (661-899 
HQ) as described in the corresponding sections. Upon first execution, the pipeline downloads all the 900 
input reference files from the Internet (29.2 GB of assemblies and 72.8 GB of COBS indexes, in total 102 901 
GB). The search then consists of two phases – matching of queries against the k-mer indexes using COBS 902 
29, and then aligning the identified candidates using Minimap 2 34. MOF-Search is developed as a 903 
Snakemake 57 pipeline using Bioconda 73, with the standard Snakemake resource management 57 to 904 
control the assignments of CPU cores and limiting the RAM usage (up to a user-specified threshold). 905 
 906 
Matching. Matching of queries is performed iteratively per individual batches. Individual 907 
phylogenetically compressed COBS indexes are decompressed either on-the-fly (faster, but requires 908 
additional memory for decompression), or on disk, and then they are queried using a modified version of 909 
COBS (see below, v0.2.1 with a pre-specified k-mer threshold (the minimum required proportion of 910 
matching k-mer). The output matches are either or stored on disk entirely, or only a user-defined number 911 
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of best hits (in terms of the number of matching k-mers) of interest (plus ties). To balance resources, the 912 
number of threads used by COBS is adjusted based on the size of individual batches (bigger batches are 913 
processed using more threads). Finally, the obtained results are aggregated across batches and for every 914 
query only the pre-specified number of best matches (plus ties) is kept. 915 
 916 
Alignment. Alignment of queries is performed also iteratively per individual batches. For every batch, a 917 
dedicated Python script iterates over the phylogenetically compressed genomes and if at least one of the 918 
queries was identified in the previous step as a potential hit for the current genome, its Minimap 2 34 (v919 
2.24) index is built on on-the-fly and all the relevant queries aligned with user-specified parameters and 920 
the output provided to the user. 921 
 922 
Modified COBS. To enable the integration of COBS into MOF-Search, a new major version of COBS 29 923 
was created (v2, https://github.com/iqbal-lab-org/cobs), fixing multiple bugs, implementing a support 924 
for OS X, integrating more tests, and supporting streamed loading of indexes into memory. The new 925 
versions of COBS are provided in the form of Github releases (https://github.com/iqbal-lab-926 
org/cobs/releases), as well as pre-built packages on Bioconda 73. 927 
 928 
 929 
Evaluating MOF-search 930 
 931 
Overview of the benchmarking procedure. The search using MOF-search was evaluated using 932 
three datasets, representative of different query scenarios: a database of antibiotic resistance genes, a 933 
database of plasmids, and an Oxford nanopore sequencing experiment. In all cases, the search 934 
parameters were adjusted to the query type, including the number of top hits, the COBS k-mer threshold, 935 
and the Minimap preset. The experiments were run on an iMac18,3, Quad-Core Intel CPU i7, 4.2 GHz 936 
with 42.9 GB (40 GiB) RAM with 4 physical (8 logical) cores. 937 
 938 
Time measurement. The wall clock and CPU time were measured using GNU time, and were 939 
calculated as ‘real’ and ‘usr+sys’, respectively. The measurements were done for both search phases 940 
separately (matching and alignment). 941 
 942 
Memory measurement. We have not found any reliable way of measuring peak memory consumption 943 
on macOS: GNU time was systematically providing incorrect values for our Snakemake pipeline, with 944 
values several times lower compared to the expected ones, as did another method based on the psutil 945 
Python library. Therefore, we performed additional measurements using the SLURM job manager on a 946 
Linux cluster using jobs allocated with a configuration similar to our iMac computer. We found that for 947 
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‘max_ram_gb’ equal to 30 GB, the peak memory consumption was 26.2 GB. This discrepancy is an 948 
expected behavior because the ‘max_ram_gb’ parameter defines an upper bound for the Snakemake 949 
resource management 57, corresponding to the worst-case scenario of parallel job combinations. 950 
 951 
Resistance genes – ARGannot. The resistance genes search as performed using the ARG-ANNOT 952 
database 35, as distributed within the the SRST2 software toolkit 74 in the file 953 
https://github.com/katholt/srst2/blob/master/data/ARGannot_r3.fasta (retrieved on 2022-07-24), 954 
consisting of 1,856 genes/alleles. The search parameters were set to require at least 50% matching k-955 
mers, 1,000 best hits taken for every gene (although yielding always a much higher number of them due 956 
to a high number of equally scoring matches), and the Minimap present for short reads. 957 
 958 
Plasmids – the EBI plasmid database. The list of EBI plasmid was downloaded from 959 
https://www.ebi.ac.uk/genomes/plasmid.details.txt (retrieved on 2022-04-03), and individual plasmids 960 
then downloaded from the EBI ENA using curl and GNU parallel 69 (size characteristics provided in 961 
Supplementary Table 6). The search parameters were set to at least 40% matching k-mers (as in ref 962 
16), 1,000 best hits taken for every plasmid, and the Minimap present for mapping long highly divergent 963 
sequences (‘asm20’). 964 
 965 
Oxford Nanopore reads – ERR9030361. This experiment corresponds to 159k nanopore reads of 966 
an isolate of Mycobacterium tuberculosis; the reads were downloaded from SRA NCBI and the search 967 
parameters were adjusted for a sensitive identification of the nearest neighbors in the database, with at 968 
least 40% matching k-mers, 10 best hits taken, and the Minimap present for mapping nanopore reads 969 
(‘map-ont’). 970 
 971 
Comparison to BIGSI. As we were unable to reproduce the original plasmid search experiment 16  with 972 
BIGSI on our iMac computer (due to the size of files to transfer exceeding 1.43 TB), we resorted to the 973 
values provided in the paper 16 . For a fair comparison, we focused our comparison on the the total CPU 974 
time (sys+usr) and verified that our parallelization is close from the maximal possible (680% out of 975 
800% possible, based on the values in Supplementary Table 6). 976 
 977 
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