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ABSTRACT

Decades of research indicate that emotion recognition is more
effective when drawing information from multiple modalities.
But what if some modalities are sometimes missing? To ad-
dress this problem, we propose a novel Transformer-based
architecture for recognizing valence and arousal in a time-
continuous manner even with missing input modalities. We
use a coupling of cross-attention and self-attention mecha-
nisms to emphasize relationships between modalities during
time and enhance the learning process on weak salient inputs.
Experimental results on the Ulm-TSST dataset show that our
model exhibits an improvement of the concordance correlation
coefficient evaluation of 37% when predicting arousal values
and 30% when predicting valence values, compared to a late-
fusion baseline approach.

Keywords Affective Computing, Multimodal Emotion
Recognition, Machine Learning, Transformers.

1 Introduction

Technologies for automatic emotion recognition have been
shown valuable for interpersonal communications [1], health
and wellness concerns [1] and stress management [2], for
example. People express emotions in both verbal and non-
verbal manners. Facial expressions, pitch intensity or cardiac
rhythms are examples of non-verbal communication.

Using multiple modalities for emotion recognition is advan-
tageous since modalities may be complementary, and should
thus improve the performance of the model when used to-
gether [3]. However, in real-world scenarios, there might be
cases where a modality might not be available. If for example,
the modalities consist of video, audio, and physiological sig-
nals, the camera field of view might be obstructed, the micro-
phone can be too far away, or the physiological sensor might
be on a wearable device that is not currently worn. Therefore,
we need a model capable of handling missing modalities.

In this work, we extend a multimodal Transformer [4] as an
encoder to obtain representations from the different modali-
ties and a Transformer decoder [5] to process those represen-
tations and make predictions. A Transformer-based approach

will continue to work in the case of missing modalities, al-
though the performance often decreases [6]. We investigated
a learning strategy to improve performance by eliminating the
most important modalities during part of the training, so that
the model is forced to learn from the less informative ones,
that nevertheless may carry valuable features. This has two
desirable effects. First, the model improves its performance,
by training the model to draw information from all modali-
ties rather than focusing on the most important ones. Second,
the model becomes less sensitive to missing modalities, as it
learns to handle the case where a modality is not present.

A critical aspect of multimodal emotion recognition is model-
ing the complementarity of information from different modal-
ities. In other words, the model should be capable of weighing
the different modalities according to their importance. We then
present a novel approach of using the encoder-decoder atten-
tion (cross-attention) of the Transformer decoder to weigh the
representations generated by the encoder, making this weight-
ing scheme focus on choosing between modalities rather than
paying attention to information from different time-steps. In
addition, our Transformer decoder is auto-regressive, meaning
that it takes into account past predicted values when doing the
current inference, which is important when performing time-
continuous predictions.

The main contributions of this research are: 1. we extend a
multimodal Transformer-based architecture to perform time–
continuous value-continuous multimodal emotion recogni-
tion, 2. we present a novel approach using cross-attention from
the Transformer decoder to weigh the importance of different
modalities, 3. and we develop a learning strategy to improve
the performance of the model when a modality is missing.

2 Related Work

2.1 Time-Continous Multimodal Emotion Recognition

Several works address the problem of time-continuous multi-
modal emotion recognition. Traditionally, Long Short Term
Memory - Recurrent Neural Networks (LSTM-RNN) have
been employed to model the temporal relations of the inputs
and to consider past predictions when predicting the current
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time-step [7]. Recently, employing Transformer-based ap-
proaches [8–10] has gained popularity in addressing this task.
Some works rely on LSTM-RNNs to complement the atten-
tion mechanisms from the Transformer to model the temporal
information better [8], while other works use a pure attention-
based approach [9, 10].

To fuse information from different modalities, some authors
use late-fusion combining the outputs of single modality mod-
els [11], while others employ early-fusion by combining the
input features before feeding them into the model [12]. Some
approaches that use Transformer-based techniques have pre-
sented more elaborate solutions to aggregate multimodal in-
formation. Cross-modal attention [13] can be used to incor-
porate information from different modalities [8, 12]. Different
from this, Zhang et al. [9] group the query vectors from each
modality to form a single query vector and do the same for the
key and value vectors. Then, they employ the grouped vectors
to perform a modified version of the scaled dot-product atten-
tion described in the original Transformer paper [5]. Chen et
al. [10] and He et al. [14] model temporal information using
a standard Transformer approach and they model intermodal
information through a multimodal attention mechanism.

A disadvantage of these approaches is that, at some point,
the features coming from the different modalities are concate-
nated. This requires that all the modalities need to be present,
thus breaking the approach if a modality is missing. Some au-
thors have worked on addressing this situation, and we review
some of these works below.

2.2 Handling Missing Modalities

There are three main types of approaches to handle missing
modalities [15]: 1. learning a joint representation from the dif-
ferent modalities, so only one modality could be used at test
time, 2. generating the missing modalities from the available
ones, and 3. hiding some modalities during training.

For the first type, an example is the work of Pham et al. [16],
where a joint representation is learned by encoding the text
into a representation (the joint representation) and generating
the other modalities from this representation. At test time,
only the text input is needed. For the second type, we have
the work of Mittal et al. [17], where the model generates re-
placement features using a learned linear transformation that
converts features from the available modalities into features of
the missing one. For the third type, an example is the work of
Neverova et al. [18], where a carefully designed network is de-
signed so it can still work even with missing modalities. Then,
at train time, some modalities are dropped randomly to make
the model robust to missing modalities.

Although these approaches make the model robust to miss-
ing modalities, a disadvantage of the first type of approach is
that it cannot take advantage of using all modalities if they
are present at test time. For the second type of approach, a
drawback is that there is no guarantee that the generated rep-
resentation accurately resembles the missing one. And to im-
plement the third type of approach, the architecture should be
capable of working with missing modalities. On the contrary,

if a Transformer-based approach is used, there is no need to
generate the missing modality representations, or do modifica-
tions to the architecture so it can work with modalities absent.
In this case, the attention mechanisms simply do not attend to
the missing modalities, and it is capable of attending to all of
them if they are present.

For the reasons stated in the previous paragraph, many works
that use the third type of approach to handle missing modal-
ities use a Transformer-based model. Some examples in-
clude the work of Goncalves and Busso [19], and the work
of Parthasarathy and Sundaram [20], where they use a cross-
modality Transformer to combine audio and visual modalities,
improving the robustness of the model to missing modalities
by eliminating a modality during training. A disadvantage of
using a cross-modality Transformer is that expanding the ap-
proach to use more modalities is not straightforward. To over-
come this problem, a Multimodal Transformer [4] can be em-
ployed, like in the work of Ma et al. [6], where robustness to
missing modalities is increased using a multitasking approach.

The Transformer-based models are well suited to model long
and short temporal relations of the inputs and to model the
cross-modality dependencies. Nevertheless, in the reviewed
Transformer-based approaches, the attention layers have to
model the temporal and the intermodal dependencies at the
same time. We argue that it can be advantageous to attend
only to the cross-modal dependencies when aggregating the
multimodal information. In addition, the reviewed approaches
do not explicitly consider past predictions when making the
current prediction, which we believe is beneficial.

Our approach is a Transformer-based approach that uses a
Multimodal Transformer as encoder, making it suitable for any
number of modalities. We also use the novel idea of using the
cross-attention from a Transformer decoder [5] to weigh the
information from the different modalities. The decoder uses
only the information of each modality at the current prediction
time-step, relieving it from modeling the temporal informa-
tion, which is done by the encoder. In addition, we explicitly
use past predictions to make the current one by employing an
auto-regressive approach. To handle missing modalities, we
use the approach of hiding some modalities at train time, but
different from the state of the art, we employ a technique to
find and then hide the important modalities.

3 Approach

In this section, we provide a detailed explanation of our
approach to perform multimodal time-continuous value-
continuous emotion recognition. Our objective is to predict
values of arousal and valence. We start this section by ex-
plaining our encoder that generates multimodal representa-
tions. Then we explain our decoder that predicts the values
of arousal and valence from those representations. Finally, we
describe the loss that we use to train our model.
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Figure 1: MultiModal Transformer Encoder (MMTE).

3.1 MultiModal Tranformer Encoder (MMTE)

We depict our MultiModal Transformer Encoder (MMTE) in
Figure 1. Our MMTE is based on the work by Gabeur et al. [4].
The inputs for our encoder are features extracted from raw data
from the different modalities. We discuss the features we use
in Section 6.

The first step in our MMTE architecture is to process each
modality individually using a Temporal Convolutional Net-
work (TCN) [21] to model local temporal information, sim-
ilarly to [10]. Our model learns a different TCN for each
modality. We define xm

t ∈ R
dmodality as the feature correspond-

ing to modality m at time-step t. If we denote [xm
1
, . . . , xm

T ]
as the sequence with length T of features corresponding to
modality m, then during this step we have:

[am
1
, . . . , amT ] = TCNm([xm

1
, . . . , xm

T ]), (1)

where amt ∈ R
dmodel . For all modalities, the TCN output will

have a common size dmodel.

The next step is to add positional encodings that allow the
Transformer to take into account the actual order of the se-
quence [5]. If the sequence of positional encodings is P =
[p1, . . . , pT ], with pt ∈ R

dmodel , then the output of this step is

[am
1
+ p1, . . . , a

m
T + pT ]. (2)

The elements of P are parameters that are learned during the
training of the whole architecture.

The Transformer also needs to differentiate each modality to
process cross-modality information. To do this, we follow the
original multimodal Transformer from Gabeur et al., and add
modality encodings. Similar to positional encodings, these
modality encodings are learned during training. For each
modality m, an encoding em ∈ R

dmodel is added to the input.
The output of this step is then

[am
1
+ p1 + em, . . . , amT + pT + em]. (3)

We then concatenate the sequences from all modalities to have
a single sequence. If we define the input corresponding to

Encoder
Outputs

r1
1

r1
2

r1t

r1T

...

...

...
rM
1

rM
2

rMt

rMT

...

...
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Figure 2: Auto-regressive MultiModal Transformer Decoder
(AMMTD). Decoder when predicting the emotion value at
time t. Nx means that there are N stacked TDL layers.

modality m at time-step t as fm
t = amt + pt,+em, and if we

have M modalities, the concatenated input sequence is then

[f1

1
, . . . , f1

T , . . . , f
M
1
, . . . , fM

T ]. (4)

We process this sequence using a Transformer encoder. The
output representations rmt of the Transformer are given by

[r1
1
, . . . , r1T , . . . , r

M
1
, . . . , rMT ] =

Transformer Encoder([f1

1
, . . . , f1

T , . . . , f
M
1
, . . . , fM

T ]).
(5)

Following [10], we employ a bidirectional attention mask
in the Transformer encoder. When processing a specific
time-step, this mask hides the inputs that are farther than
mask_length positions in the future and in the past. This al-
lows the model to concentrate on recent information, and not
to worry about information too far in time that probably does
not influence the current emotional state. Note that we are not
hiding complete modalities, therefore this technique is not in-
tended to make the model robust to missing modalities.

3.2 Auto-regressive MultiModal Transformer Decoder
(AMMTD)

One of the contributions of this paper is to develop a de-
coder that predicts emotion from the multimodal representa-
tions given by the encoder. To do this, we design an Auto-
regressive MultiModal Transformer Decoder (AMMTD). This
decoder has two important characteristics: first, it takes pre-
vious predictions into account to determine the current emo-
tion; second, it aggregates the representations of the different
modalities, giving more weight to the more important ones.

A Transformer Decoder Layer (TDL) [5] is composed of a
Multi-Head Self-Attention module (MHSA), followed by a

3
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Multi-Head Cross-Attention module (MHCA), and followed
by a fully-connected Feed-Forward Network (FFN). Residual
connections are used around each of these three components.
The Multi-Head Attention (MHA) mechanism in MHSA and
MHCA projects a query vector q from a given position to a key
vector k from another position to determine the attention (i.e.
the weight) given to a value v associated with the position of
k. The final value is the weighted sum of the v vectors from
the different positions. We denote the MHA mechanism as

MHA(Q,K, V ), (6)

where the three parameters Q, K , and V indicate the sequence
used as query, key, and value, respectively. More details about
MHA can be found in the original Transformer paper [5].

Our AMMTD architecture is depicted in Figure 2. It is com-
posed of a stack of TDL followed by an Emotion Regression
Network (ERN). The MHSA module in the TDL uses self-
attention to attend to previous predictions. To do this, we use
auto-regression, meaning that the previously generated outputs
are used as inputs to the decoder. Note that we cannot use the
output of the ERN, i.e. the predicted emotion values ŷ, since
we are predicting continuous outputs. Instead, we use the fea-
tures generated by the top TDL. When predicting the emotion
value at time-step t, the TDL stack should have generated a
sequence [d1, . . . , dt−1] with di ∈ R

dmodel . Then, the decoder
input is

[d0, d1, . . . , dt−1], (7)

where d0 ∈ R
dmodel is a randomly initialized vector.

As for our encoder, we learn positional encodings p′t ∈ R
dmodel

for our decoder and add them to the inputs before feeding them
to the TDL stack. Thus, when performing the prediction at
time-step t, the input sequence It = [i0, i1, . . . , it−1] with It ∈
R

t×dmodel becomes

It = [d0 + p′
0
, d1 + p′

1
, . . . , dt−1 + p′t−1

]. (8)

Inside the TDL, the features are first processed by the MHSA
module. This module uses self-attention to integrate infor-
mation from its own inputs. This means that the query, key,
and value for the MHSA all come from the input sequence.
To preserve the auto-regressive property, we make sure that a
given input at a certain time-step can only attend inputs from
past time-steps. Using Expression 6, the sequence of features
Ht = [h0, h1, . . . , ht−1] with Ht ∈ R

t×dmodel at the output of
the MHSA module is

Ht = MHA(It, It, It). (9)

The sequence of features Ht is then processed with the MHCA
module, which is used to incorporate information from the in-
put modalities. Specifically, the MHCA module attends to the
outputs of the encoder. This means that the query comes from
the output sequence of the MHSA, and the key and value come
from the output of the encoder. If we are predicting the emo-
tion value at time-step t, the MHCA attends only to the outputs
of each modality corresponding to this time step. The output
sequence of the MHCA, H ′

t ∈ R
t×dmodel , using the output of

the encoder from Equation 5 and the output of the MHSA from
Equation 9, is

H ′

t = MHA([h0, h1, . . . , ht−1], [r
1

t , . . . , r
M
t ], [r1t , . . . , r

M
t ]),

(10)

Note that we force the model to only attend to the encoder
outputs at time t instead of attending to all encoder outputs
(or other outputs around t) because we want that the MHCA
focuses only on finding the best weighting between the differ-
ent modalities. We want to avoid the MHCA having to weigh
which other time-steps in the different modalities might be im-
portant. Moreover, this restricts the information flow between
modalities, which has been demonstrated to be beneficial [22],
because it forces the shared representation to condense the
most significant information.

The final step in the TDL is processing each feature of the
sequence H ′

t through a fully connected feed-forward network
(FFN), applied independently to each position:

H ′′

t = FFN(H ′

t). (11)

If the TDL stack has more than one layer, the sequence from
Equation 11 becomes the input of the next layer. Concretely,
the new layer implements Equations 9, 10, and 11 using as
input It = H ′′

t .

For the last TLD layer, the sequence in Equation 11 is the
newly generated sequence [d1, . . . , dt] that will be used as in-
put for the decoder to predict the emotion value for the next
time-step, thus if H ′′

t = [h′′

0
, h′′

1
, . . . , h′′

t−1
], then di = h′′

i−1

with i ∈ [1, t].

Once the complete output sequence D = [d1, . . . , dT ] has
been generated, the final step is to process it with the Emo-
tion Regression Network (ERN). As shown in Figure 2, our
ERN is a Fully Connected (FC) layer that independently pro-
cesses each element of the sequence D to predict the emotion
values for each time-step, producing the predicted sequence
[ŷ1, . . . , ŷT ].

3.3 Loss Function

As suggested in previous works that address the problem of
recognizing emotion in a time-continuous manner [7, 11, 14],
we use the concordance correlation coefficient (CCC) [23] as
the loss to train our model. Specifically, the loss is

L = 1− CCC

CCC =
2ρσŷσy

σ2

ŷ + σ2
y + (µŷ − µy)2

,
(12)

where ρ is the Pearson correlation coefficient between the pre-
dicted values ŷ and the ground-truth values y. σ denotes the
standard deviation and µ denotes the average of either the pre-
dicted or the ground-truth values.

4 Handling Missing Modalities

We now describe another contribution of our paper, which is
our approach to deal with missing modalities. In our case, a
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missing modality means that the modality is completely ab-
sent, thus the input sequence defined in Expression 4 is built
with the remaining modalities. By construction, our model
will not break in the case a modality is missing. The attention
mechanisms in our Transformer-based approach can accom-
modate missing modalities as explained below. In the case of
the MMTE, if a modality is not present, the Tranformer en-
coder will simply attend to the remaining modalities. Simi-
larly, in the AMMTD, the cross-modal attention will be able
to attend to the remaining representations without the need to
generate a replacement for the missing ones.

Even if our approach is capable to continue working in the
case of missing modalities, its performance may be degraded.
To increase the robustness of the model to missing modalities,
we perform an optimized training that we describe below.

First, we identify the most important modalities. To do this,
we first train our model in a standard way, then test it without
one modality at a time. We can then identify in which cases
the performance is reduced more, meaning that the missing
modalities in those cases should be important. Next, we re-
train the model, without the important modalities a part of the
time. Specifically, for each batch, we randomly select to elim-
inate the important modality i with probability ρieliminate, and to

keep all modalities with probability ρnone = 1−
∑n

i=1
ρieliminate,

where n is the number of important modalities.

Our reasoning behind this training strategy is that by hiding the
important modalities, the model is forced to learn from the re-
maining ones, thus making the model more robust when those
important modalities are missing. Moreover, we believe that
this training strategy should lead to better results in general,
even without missing modalities, as more information will be
incorporated from all the modalities, rather than just relying
on the important ones.

5 Experimental Setup

We test our model on the task of recognizing time-continuous
values of arousal and valence. In this section, we describe
the dataset, features, and parameters of our model for these
experiments.

5.1 Dataset

To evaluate our model, we use the Ulm-Trier Social Stress Test
dataset (Ulm-TSST), which was presented for the Muse 2021
Challenge [24, 25]. This is a multimodal dataset, where par-
ticipants were recorded in a stressful situation emulating a job
interview, following the TSST protocol [26]. Each participant
gave a 5 minutes speech supervised by two interviewers, who
did not intervene during that time. Besides audio and video,
the following physiological signals are collected: Electrocar-
diogram (ECG), Respiration (RESP), and heart rate (BPM). A
transcription of the speech is also provided.

The data set was annotated by 3 raters giving continuous val-
ues of arousal and valence in the range [−1, 1]. The anno-
tations are done in a time-continuous fashion every 0.5s. To
aggregate the valence annotations from the 3 raters, Rater

Aligned Annotation Weighting (RAAW) [27] is used. For
arousal, the annotations corresponding to the lowest inter-rater
agreement are discarded, and replaced by the subject’s Electro-
dermal Activity (EDA) signal recorded during the session. The
authors of the dataset do this because EDA has been demon-
strated to be a good indicator of arousal [28]. Like it was done
for valence, RAAW is used to aggregate the annotations from
the two remaining raters and the EDA signal.

The dataset includes 69 samples, each being a 5-minute pre-
sentation given by a subject. In the original dataset, 41 sam-
ples are used as train set, 14 as validation set, and 14 as test
set. Since annotations are not provided for the test set, we ran-
domly pick 4 samples from the validation set and 6 from the
train set to form a new test set with 10 samples. In summary,
we have 35 samples in the train set, 10 in the validation set,
and 10 in the test set.

5.2 Input Features

We use audio, video, and physiological signals as input modal-
ities, with features directly provided in Ulm-TSST. All fea-
tures are aligned with annotations; that is, they are sampled at
a rate of 2 Hz. For audio, we use extended Geneva Minimal-
istic Acoustic Parameter Set (eGeMAPS) features. For video,
we use Facial Action Units (FAU) intensity. For physiologi-
cal signals, the features are the concatenation of the values of
ECG, RESP, and BPM. We selected these features by running
some experiments in the baseline model provided by the au-
thors of the Ulm-TSST dataset and selecting the features that
lead to good performance.

5.3 Model Hyperparameters and Training

We optimize the hyperparameters of our model using the Ray
Tune Framework [29] based on the validation set. Our model
is parameterized as follows: we use a TCN with 6 layers and
a kernel of size 9, with ReLU activation function. We have a
model dimension of dmodel = 64. In the Transformer encoder
and the TDL, we use the GELU activation function. The size
of the FFN inside the Transformers is dmodel × 4 = 256. We
use a Transformer encoder with 2 attention heads and 2 layers.
Our decoder is composed of a single TDL with one head. The
FC layer in the ERN has a single hidden layer of dmodel/2 =
32, with ReLU activation function. The bidirectional attention
mask for the Transformer encoder has a mask_length of 50
seconds (100 time-steps).

During training, we segment each 5-minute sample into
smaller samples, as suggested by Christ et al. [7]. Search-
ing across different options, we found that segments of 125
seconds (250 time-steps) with a hop size of 25 seconds (50
time-steps) work well in our experimental protocol.

We train our model with a batch size of 64 for a maximum of
100 epochs. We start with a learning rate of 0.0001, and halve
it if the metric does not improve for 5 epochs on the validation
set, and we early-stop the training if there is not improvement
for 15 epochs. We use Adam optimizer with B1 = 0.9 and
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B2 = 0.999. We use a dropout rate of 0.2 throughout all the
model.

6 Experiments

This section presents and discusses the experimental results.
For each experiment, we obtain 30 results by training the
model with 30 different initialization seeds, reporting the av-
erage of those results. We use the Holm-Bonferroni method
to assert statistically significant difference in the comparisons
in Section 6.1. For other results, we do a t-test using a thresh-
old of p-value < 0.05 to assert statistical significance, using a
one-sided t-test to state that a result is significantly better than
another, and a two-sided t-test to check for statistical differ-
ence. We use as metric the Root-Mean-Square Error (RMSE)
and the Concordance Correlation Coefficient (CCC) [23] be-
tween ground truths and predicted values.

6.1 Performance with all Modalities Present

We present in Table 1 the performance of our model, along
with baseline approaches, when all modalities are present. Ap-
proach No1 corresponds to the baseline model developed for
the Muse 2022 Challenge [7], where the Ulm-TSST dataset
was presented. We use the provided code1 and the original
hyperparameters to evaluate this model with the same features
we employ, using our partition of the Ulm-TSST dataset. This
approach is based on Long Short-Term Memory (LSTM) net-
works and uses late-fusion to aggregate the different modal-
ities. Approach No2 corresponds to a model where instead
of using our AMMTD to process the representations from the
MMTE, it uses directly the ERN. Recall that the ERN is a FC
network that performs regression of the emotion values. Sim-
ilarly, approach No3 uses an LSTM to process the outputs of
the MMTE. The LSTM has 4 layers, with a hidden dimension
of 32. We used a grid search to tune this LSTM. For both
approaches No2 and 3, the input is the concatenation of all
modalities per time-step. The last two entries in Table 1 corre-
spond to the approach presented in this paper. Approach No4
is our model trained in a standard way, i.e. with all modalities
present during training. Approach No5 is our model trained
with our optimized training strategy as presented in Sections 4
and 6.2, i.e. hiding some modalities during training.

In Figure 3, we present an example of the predictions of our
model when using the optimized training strategy. For the
same sample, we present the results when predicting arousal,
Fig. 3(a), and valence, Fig. 3(b). As observed, the real valence
values tend to be flat and have less variability than the arousal
values, which we noted is a common occurrence in the dataset.

6.1.1 Comparison to the LSTM-based baseline model

If we compare our approach with standard training (approach
No4 in Table 1) with the LSTM baseline (approach No1), we
can see that in all metrics except for valence RMSE, our model
performs better than the LSTM baseline, demonstrating that in

1https://github.com/EIHW/MuSe2022

predicted real

0 200 400 600
−1

−0.5

0

0.5

1

(a) Arousal Prediction

CCC: 0.6679
RMSE: 0.1317

0 200 400 600
−1

−0.5

0

0.5

1
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Figure 3: Example of an output of our model with opti-
mized training compared with the ground-truth, when predict-
ing arousal (a) and valence (b) for the same sample.

general, our Tranformer-based approach is well suited for this
task.

6.1.2 Comparison with other predictors

To test our idea of using cross-attention to weigh the input
modalities and an auto-regressive approach to incorporate past
predictions, we compare our approach with standard train-
ing (approach No4), with approaches No2 and No3 in Table
1, that use the ERN and an LSTM respectively instead of
our AMMTD. The results show that our AMMTD module in-
creases the performance in most of the metrics, demonstrat-
ing the effectiveness of our ideas of using cross-attention and
auto-regression. The performance of our approach is statisti-
cally significantly better for all the metrics except for valence
RSME, where although our approach outperforms both base-
lines, the improvement is not statistically significant.

In general, the baseline models perform well in terms of the
RMSE metric when predicting valence, but our model per-
forms better in terms of the CCC metric. We hypothesize
that this behavior is produced because the simpler architec-
ture of the baselines is good enough to predict flat sequences
of valence values that are close enough to the flat ground-truth.
On the other hand, those approaches fail to predict the small
changes in the valence values, penalizing the CCC score.

6.1.3 Comparison with our optimized training strategy

The results presented in entries No4 and No5 in Table 1 show
that our optimized training approach, designed to improve the
handling of missing modalities, also has the desirable effect
of increasing the performance of the model when all modali-
ties are present. For example, arousal RMSE decreases from
0.2948 to 0.2869 and valence CCC increases from 0.1502 to
0.1656. As we expected, the model seems to learn to use more
information from the weak modalities, improving the overall
performance.

6.2 Accommodating Missing Modalities

We present in Table 2 the results of experiments we conducted
when a modality is missing.
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Table 1: Comparison of our results with the baselines. The best result is in bold, the second best is underlined. The standard
deviation is in parentheses. (•), (†), (‡) indicate that our results are statistically significantly different than the late-fusion,
MMTE+FC, and MMTE+LSTM baselines, respectively. (↓) and (↑) indicate that a lower and a higher score is desirable
respectively.

Arousal Valence
No Approach RMSE↓ CCC↑ RMSE↓ CCC↑

1 Late-fusion (LSTM) [7] 0.3046 (0.0199) 0.2702 (0.0258) 0.1585 (0.0156) 0.1273 (0.0528)

2 MMTE+FC (ERN) 0.3238 (0.0227) 0.1388 (0.0682) 0.1850 (0.0167) 0.1221 (0.0309)
3 MMTE+LSTM 0.3189 (0.0244) 0.1387 (0.0575) 0.1842 (0.0653) 0.0435 (0.0640)

4 MMTE+AMMTD (ours) 0.2948†‡ (0.0125) 0.3578•†‡ (0.0317) 0.1796 (0.0114) 0.1502†‡ (0.0272)
5 MMTE+AMMTD, optimized train (ours) 0.2869•†‡ (0.0120) 0.3703•†‡ (0.0351) 0.1739 (0.0089) 0.1656•†‡ (0.0169)

Table 2: Summary of results when modalities are missing, for standard training and our optimized training strategy. We use
bold font to indicate that the result is better than its counterpart trained in a different fashion, and if it is statistically significantly
better we indicate this with the symbol (‡). We use a checkmark (X) to indicate that a result obtained with a modality missing
is not statistically significantly different than the result obtained with all the modalities.

All Modalities Missing Audio Missing Video Missing Physio
Training Mode RMSE↓ CCC↑ RMSE↓ CCC↑ RMSE↓ CCC↑ RMSE↓ CCC↑

AROUSAL
Standard 0.2948 0.3578 0.2926X 0.3589X 0.3252 0.2713 0.2920X 0.3539X
Optimized 0.2869‡ 0.3703 0.2850X‡ 0.3644X 0.3249 0.2984‡ 0.2878X 0.3571X

VALENCE
Standard 0.1796 0.1502 0.2533 0.0738 0.2170 0.1564X 0.1808X 0.1486X
Optimized 0.1739‡ 0.1656‡ 0.2052‡ 0.1170‡ 0.1809X‡ 0.1676X‡ 0.1746X‡ 0.1637X‡

First, we analyze the case where we are predicting arousal with
the model trained in a standard way. In Table 2, we see that
there is no significant performance degradation when the audio
or physiological modalities are missing. For example, when
audio is missing, RMSE goes from 0.2948 to 0.2926, and CCC
goes from 0.3578 to 0.3589. These differences are not sta-
tistically significant, as indicated by the checkmark (X). We
also see that performance drops significantly when the video
modality is missing, with RMSE increasing from 0.2948 to
0.3252 and CCC decreasing from 0.3578 to 0.2713. These re-
sults confirm that our model continues to accurately predict
arousal when a modality is missing, although performance is
reduced in some cases.

For valence, we see that there is no significant performance
degradation when physiological signals are missing, with
RMSE going from 0.1796 to 0.1808 and CCC going from
0.1502 to 0.1486. On the contrary, the model performance
drops significantly when the audio or video modalities are
missing. For example, RMSE increases from 0.1796 to 0.2533
when the audio modality is missing and increases to 0.2170
when the video modality is missing. Much like for arousal,
these results show that our model continues to estimate valence
when a modality is missing, albeit with a drop in performance.

With these results, we can identify the most important modal-
ities for our model, by identifying the modalities that when
missing, induce a significant drop in performance. When pre-
dicting arousal, the most important modality is video, and for
valence the most important modalities are audio and video.

Models tend to rely heavily on the important modalities, even
though other modalities may carry useful features for recog-

nizing emotions. To improve this, we apply our optimized
training strategy of hiding important modalities during parts
of the training, forcing the model to rely on other modalities.
Specifically, we use the strategy described in Section 4, elim-
inating the video modality with probability ρvideo

eliminate = 0.25,
and maintaining all modalities with probability ρnone = 0.75
when training for arousal prediction. For valence, we use
ρaudio

eliminate = 0.333, ρvideo
eliminate = 0.333 and ρnone = 0.334. These

probabilities were found empirically by testing several config-
urations and keeping the best ones for the validation set.

We see in Table 2 that our optimized training strategy improves
all results when any modality is missing. For example, when
the physiological signals are missing, CCC improves from
0.3539 to 0.3571 when predicting arousal and from 0.1486 to
0.1637 when predicting valence. Notably, the improvement is
statistically significant, as indicated by the double dagger (‡),
in all cases when the important modalities are missing, except
for RMSE when predicting arousal with the video modality
missing. In addition, the performance of the model improves
even when all modalities are present. For instance, RMSE de-
creases from 0.2948 to 2869 for arousal and from 0.1796 to
0.1739 for valence.

This shows that our optimized training strategy works well,
making our model less reliant on the important modalities and
using more information from the other ones. This strategy
improves the performance of our approach not only when a
modality is missing, but also when all modalities are present.
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7 Conclusions and Perspectives

In this work, we presented a novel Transformer-based archi-
tecture with the coupling of self- and cross-attention mecha-
nisms for emotion recognition from multimodal signals. We
experimentally showed, using the Ulm-TSST dataset, that our
proposal can competitively recognize emotional valence and
arousal. In addition, we demonstrated that our optimized
learning strategy improves performance. Consequently, our
architecture is capable of reaching high performances for emo-
tion recognition even with missing modalities.

Future works include investigating new ways to pre-train mul-
timodal models with contrastive learning strategies. Metric
learning between different signals, sharing the same seman-
tic meaning, could positively influence the whole system to
build strong correlations between input sequences produced
at different moments in time. Moreover, learning similari-
ties between signals even when some modalities are missing
may help to better understand how pretraining on Transformer-
based models behave for multimodal emotion recognition.

Ethical Impact Statement

We consider two main issues: privacy and harmful applica-
tions. First, regarding privacy, knowing the emotional state of
a person leads to privacy concerns since it is evident that the
emotional state is a private matter. Therefore, privacy should
be guaranteed. There might be cases that people involved
might agree to share this private information, as in the case
of people participating in the dataset that we use. That is why
we adhere to the dataset usage agreement. In the general case,
to avoid privacy concerns, we think the emotional record of a
person should be treated at the same level of privacy that med-
ical records are treated.

The second issue has to do with potentially harmful applica-
tions. Although in this work we do not develop an application
that uses the emotional state of a person as input, we are aware
that bad actors may use emotion recognition techniques in un-
ethical ways. For example, knowing the emotional state of a
person can be used to manipulate their behavior. Direct control
of this is out of our hands, and therefore, we think the affective
computing community should pressure governmental entities
for laws and ways to control these types of applications.
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