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{Eric.Fusy,Gregory.Kucherov}@univ-eiffel.fr

Abstract. Count-Min sketch is a hashing-based data structure to rep-
resent a dynamically changing associative array of counters. Wse analyse
the counting version of Count-Min under a stronger update rule known
as conservative update, assuming the uniform distribution of input keys.
We show that the accuracy of conservative update strategy undergoes a
phase transition, depending on the number of distinct keys in the input
as a fraction of the size of the Count-Min array. We prove that below
the threshold, the relative error is asymptotically o(1) (as opposed to
the regular Count-Min strategy), whereas above the threshold, the rela-
tive error is Θ(1). The threshold corresponds to the peelability threshold
of random k-uniform hypergraphs. We demonstrate that even for small
number of keys, peelability of the underlying hypergraph is a crucial
property to ensure the o(1) error. To our knowledge, this relationship
has not been observed previously. Finally, we provide experimental data
on the behavior of the average error for Zipf’s distribution compared
with the uniform one.

1 Introduction

Count-Min sketch is a hash-based data structure to represent a dynamically
changing associative array a of counters in an approximate way. The array a
can be seen as a mapping from some set K of keys to N, where K is drawn from a
(large) universe U . The goal is to support point queries about the (approximate)
current value of a(p) for a key p. Count-Min is especially suitable for the stream-
ing framework, when counters associated to keys are updated dynamically. That
is, updates are (key,value) pairs (p, `) with the meaning that a(p) is updated to
a(p) + `.

Count-Min sketch was proposed in [13], see e.g. [11] for a survey. A similar
data structure was introduced earlier in [10] named Spectral Bloom filter, itself
closely related to Counting Bloom filters [20]. The difference between Count-
Min sketch and Spectral Bloom filter is marginal: while a Count-Min sketch
requires hash functions to have disjoint codomains (rows of Count-Min matrix),
a Spectral Bloom filter has all hash functions mapping to the same array. This
difference is the same as between partitioned [2] and regular Bloom filters. In
this paper, we will deal with the Spectral Bloom filter version but will keep the
term Count-Min sketch as more common in the literature.
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Count-Min sketch supports negative update values ` provided that at each
moment, each counter a(p) remains non-negative (so-called strict turnstile model
[27]). When updates are positive, the Count-Min update algorithm can be mod-
ified to a stronger version leading to smaller errors in queries. This modification,
introduced in [18] as conservative update, is mentioned in [11], without any for-
mal analysis given in those papers. This variant is also discussed in [10] under
the name minimal increase, where it is claimed that it decreases the probability
of a positive error by a factor of the number of hash functions, but no proof is
given. We discuss this claim in the concluding part of this paper.

The case of positive updates is widespread in practice. In particular, a very
common instance is counting where all update values are 1. This task occurs
in different scenarios in network traffic monitoring, as well as other applications
related to data stream mining [18]. In bioinformatics, we may want to maintain,
on the fly, multiplicities of fixed-length words occurring in a big sequence dataset
[29, 3, 33]. We refer to [16] for more examples of applications.

While it is easily seen that the error in conservative update can only be
smaller than in Count-Min, obtaining more precise bounds is a challenging prob-
lem. Count-Min guarantees, with high probability, that the additive error can
be bounded by ε‖a‖1 for any ε, where ‖a‖1 is the L1-norm of a [13]. In the
counting setting, ‖a‖1 is the length of the input stream which can be very large,
and therefore this bound provides a weak guarantee in practice, unless the dis-
tribution of keys is very skewed and queries are made on frequent keys (heavy
hitters) [27, 8, 12]. It is therefore an important practical question to analyse the
improvement provided by the conservative update strategy compared to the
original Count-Min sketch.

To our knowledge, the first attempt towards this goal was made in [7], un-
der assumption that all

(
n
k

)
counter combinations are equally likely at each step

(n size of the Count-Min array, k number of hash functions) which amounts to
assuming uniform distribution on

(
n
k

)
input keys, each hashed to a distinct com-

bination of counters. Thus, the number of distinct keys in the input is assumed
to be much larger than the sketch size n. It was observed that the behavior of
this model with uniformly distributed keys has important implications to non-
uniformly distributed input. Another approach to bounding the error proposed
in [16] is based on a simulation of spectral Bloom filters by a hierarchy of ordinary
Bloom filters. However, the bounds provided are not explicit but are expressed
via a recursive relation based on false positive rates of involved Bloom filters.
Recent works [6, 5] propose formulas for computing error bounds depending on
key probabilities assumed independent but not necessarily uniform, in particular
leading to an improved precision bounds for detecting heavy hitters.

In this paper, we provide a probabilistic analysis of the conservative update
scheme for counting under the assumption of uniform distribution of keys in
the input. Our main result is a demonstration that the error in count estimates
undergoes a phase transition when the number of distinct keys grows relative to
the size of the Count-Min array. We show that the phase transition threshold
corresponds to the peelability threshold for random k-uniform hypergraphs. For
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the subcritical regime, when the number of distinct keys is below the threshold,
we show that the relative error for a randomly chosen key tends to 0 asymptoti-
cally, with high probability. This contrasts with the regular Count-Min algorithm
producing a relative error shown to be at least 1 with constant probability.

For the supercritical regime, we show that the average relative error is lower-
bounded by a constant (depending on the number of distinct keys), with high
probability. We prove this result for k = 2 and conjecture that it holds for
arbitrary k as well. We provide computer simulations showing the growth of the
expected relative error after the threshold, with a distribution showing a peculiar
multi-modal shape. In particular, keys with small (or zero) error still occur after
the threshold, but their fraction quickly decreases when the number of distinct
keys grows.

After defining Count-Min sketch and conservative update strategy in Sec-
tion 2 and introducing hash hypergraphs in Section 3, we formulate the con-
servative update algorithm (or regular Count-Min, for that matter) in terms of
a hypergraph augmented with counters associated to vertices. In Section 4, we
state our main results and illustrate them with a series of computer simulations.
In Section 5 we outline the proof of our main result for the subcritical regime
and provide a proof for the supercritical regime.

In addition, in Section 6, we study a specific family of 2-regular k-hypergraphs
that are sparse but not peelable. For such graphs we show that while the relative
error of every key is 1 with the regular Count-Min strategy, it is 1/k + o(1) for
conservative update. While this result is mainly of theoretical interest, it illus-
trates that the peelability property is crucial for the error to be asymptotically
vanishing. Finally, in Section 7, we turn to non-uniform distributions and pro-
vide a brief experimental analysis of the behavior of the average error for Zipf’s
distribution compared with the uniform one. Missing full proofs and additional
experimental data can be found in [22].

2 Count-Min and Conservative Update

We consider a (counting version of) Count-Min sketch to be an array A of size
n of counters initially set to 0, together with hash functions h1, . . . , hk mapping
keys from a given universe to [1..n]. To count key occurrences in a stream of
keys, regular Count-Min proceeds as follows. To process a key p, each of the
counters A[hi(p)], 1 ≤ i ≤ k, is incremented by 1. Querying the occurrence
number a(p) of a key p returns the estimate âCM (p) = min1≤i≤k{A[hi(p)]}. It
is easily seen that âCM (p) ≥ a(p). A bound on the overestimate of a(p) is given
by the following result adapted from [13].

Theorem 1 ([13]). For ε > 0, δ > 0, consider a Count-Min sketch with k =
dln( 1δ )e and size n = k eε . Then âCM (p) − a(p) ≤ εN with probability at least
1− δ, where N is the size of the input stream.

While Theorem 1 is useful in some situations, it has a limited utility as it bounds
the error with respect to the stream size which can be very large.
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Conservative update strengthens Count-Min by increasing only the smallest
counters among A[hi(p)]. Formally, for 1 ≤ i ≤ k, A[hi(p)] is incremented by
1 if and only if A[hi(p)] = min1≤j≤k{A[hj(p)]} and is left unchanged other-
wise. The estimate of a(p), denoted âCU (p), is computed as before: âCU (p) =
min1≤i≤k{A[hi(p)]}. It can be seen that âCU (p) ≥ a(p) still holds, and that
âCU (p) ≤ âCM (p). The latter follows from the observation that on the same in-
put, an entry of counter array A under conservative update can never get larger
than the same entry under Count-Min.

3 Hash hypergraphs and CU process

With a counter array A[1..n] and hash functions h1, ..., hk we associate a k-
uniform hash hypergraph H = (V,E) with vertex-set V = {1, ..., n} and edge-set
E = {{h1(p), ..., hk(p)}} for all distinct keys p. Let Hkn,m be the set of k-uniform
hypergraphs with n vertices and m edges. We assume that the hash hypergraph
is a uniformly random Erdős-Rényi hypergraph in Hkn,m, which we denote by
Hk
n,m, where m is the number of distinct keys in the input (for k = 2, we use the

notation Gn,m = H2
n,m). Even if this property is not granted by hash functions

used in practice, it is a reasonable and commonly used hypothesis to conduct
the analysis of sketch algorithms.

Below we show that the behavior of a sketching scheme depends on the
properties of the associated hash hypergraph. It is well-known that depending
on the m/n ratio, many properties of Erdős-Rényi (hyper)graphs follow a phase
transition phenomenon [21]. For example, the emergence of a giant component,
of size O(n), occurs with high probability (hereafter, w.h.p.) at the threshold
m
n = 1

k(k−1) [26].
Particularly relevant to us is the peelability property. Let H = (V,E) be a

hypergraph. The peeling process on H is as follows. We define H0 = H, and
iteratively for i ≥ 0, we define Vi to be the set of leaves (vertices of degree 1)
or isolated vertices in Hi, Ei to be the set of edges of Hi incident to vertices in
Vi, and Hi+1 to be the hypergraph obtained from Hi by deleting the vertices
of Vi and the edges of Ei. A vertex in Vi is said to have peeling level i. The
process stabilizes from some step I, and the hypergraph HI is called the core of
H, which is the largest induced sub-hypergraph whose vertices all have degree
at least 2. If HI is empty, then H is called peelable.

It is known [30] that peelability undergoes a phase transition. For k ≥ 3, there
exists a positive constant λk such that, for λ < λk, the random hypergraphHk

n,λn

is w.h.p. peelable as n→∞, while for λ > λk, the core of Hk
n,λn has w.h.p. a size

concentrated around αn for some α > 0 that depends on λ. The first peelability
thresholds are λ3 ≈ 0.818, λ4 ≈ 0.772, etc., λ3 being the largest.

For k = 2, for λ < 1/2, w.h.p. a proportion 1 − o(1) of vertices are in trees
of size O(1), (and a proportion o(1) of the vertices are in the core), while for
λ > 1/2, the core size is w.h.p. concentrated around αn for α > 0 that depends
on λ [32].
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We note that properties of hash hypergraphs determine the behavior of some
other hash-based data structures, such as Cuckoo hash tables [31] and Cuckoo
filters [19], Minimal Perfect Hash Functions and Static Functions [28], Invert-
ible Bloom filters [24], and others. We refer to [34] for an extended study of
relationships between properties of hash hypergraphs and some of those data
structures. In particular, peelability is directly relevant to certain constructions
of Minimal Perfect Hash Functions as well as to good functioning of Invertible
Bloom filters. However, its relation to Count-Min sketches is less direct and has
not been observed earlier.

The connection to hash hypergraphs allows us to reformulate the Count-Min
algorithm with conservative updates as a process, which we call CU-process, on
a random hypergraph Hk

n,m, where n,m, k correspond to counter array length,
number of distinct keys, and number of hash functions, respectively. Let H =
(V,E) be a hypergraph. To each vertex v we associate a counter cv initially set to
0. At each step t ≥ 1, a CU-process on H chooses an edge e = {v1, . . . , vk} ∈ E
in H, and increments by 1 those cvi which verify cvi = min1≤j≤k cvj . For t ≥ 0
and v ∈ V , cv(t) will denote the value of the counter cv after t steps, and oe(t)
the number of times edge e ∈ E has been drawn in the first t steps. The counter
ce(t) of an edge e = {v1, . . . , vk} is defined as ce(t) = min1≤i≤k cvi(t). Clearly,
for each t and each e, oe(t) ≤ ce(t). The relative error of e at time t is defined as
Re(t) =

ce(t)−oe(t)
oe(t)

. The following lemma can be easily proved by induction on t.

Lemma 1. Let H = (V,E) be a hypergraph on which a CU-process is run. At
every step t, for each vertex v, there is at least one edge e incident to v such
that ce(t) = cv(t).

Observe that, when H is a graph (k = 2), Lemma 1 is equivalent to the property
that vertex counters cannot have a strict local maximum, i.e., at every step t,
each vertex v has at least one neighbour u such that cu(t) ≥ cv(t).

4 Phase transition of the relative error

4.1 Main results

Let H = (V,E) be a hypergraph, |V | = n, |E| = m. Let N ≥ 1. We consider two
closely related models of input to perform the CU-process. In the N -uniform
model, the CU process is performed on a random sequence of keys (edges in E)
of length N ·m, each key being drawn independently and uniformly in E. In the
N -balanced model, the CU-process is performed on a random sequence of length
N ·m, such that each e ∈ E occurs exactly N times, and the order of keys is
random. In other words, the input sequence of keys is a random permutation
of the multiset made of N copies of each key of E. Clearly, both models are
very close, since the number of occurrences of any key in the N -uniform model
is concentrated around N (with Gaussian fluctuations of order

√
N) as N gets

large. For both models, we use the notation c
(N)
v = cv(Nm) for the resulting

counter of v ∈ V , o(N)
e = oe(Nm) for the resulting number of occurrences of
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e ∈ E, c(N)
e = ce(Nm) for the resulting counter of e ∈ E, and R(N)

e = Re(Nm) =

(c
(N)
e − o(N)

e )/o
(N)
e for the resulting relative error of e. In the N -balanced model,

since each key e ∈ E occurs N times, we have R(N)
e = (c

(N)
e −N)/N .

Our main result is the following.

Theorem 2 (subcritical regime). Let k ≥ 2, and let λ < λk, where λ2 = 1/2,
and for k ≥ 3, λk is the peelability threshold as defined in Section 3. Consider
a CU-process on a random hypergraph Hk

n,λn under either N -uniform or N -
balanced model, and consider the relative error R(N)

e of a random edge in Hk
n,λn.

Then R(N)
e = o(1) w.h.p., as both n and N grow1.

Note that with the regular Count-Min algorithm (see Section 2), in the N -
balanced model, the counter value of a node v is c̃(N)

v = N · deg(v), and the
relative error R̃(N)

e of an edge e = (v1, . . . , vk) is always (whatever N ≥ 1) equal
to min(deg(v1), . . . ,deg(vk))− 1, and is thus always a non-negative integer. For
fixed k ≥ 2 and λ > 0, and for a random edge e in Hk

n,λn, the probability that all
k vertices belonging to e have at least one incident edge apart from e converges
to a positive constant c(λ, k) = (1 − e−kλ)k. Therefore, R̃e is a nonnegative
integer whose probability to be non-zero converges to c(λ, k). Thus, Theorem 2
ensures that, for λ < λk, conservative updates lead to a drastic decrease of the
error, from Θ(1) to o(1).

For a given hypergraph H = (V,E) with m edges, we define errN (H) =
1
m

∑
e∈E R

(N)
e the average error over the edges of H. Formally, Theorem 2 does

not imply that errN (H) is o(1), as it might possibly happen that a small fraction
of edges have very large errors, yielding errN (H) larger than o(1). However, we
believe that this is not the case. From the previous remark, it follows that the er-
ror of an edge e = (v1, . . . , vk) is upper-bounded bymin(deg(v1), . . . ,deg(vk))− 1.
Since the expected maximal degree in Hk

n,λn grows very slowly with n, one can
expect that any set of o(n) edges should have a contribution o(1) w.h.p.. This is
also supported by experiments given in the next section.

Based on Theorem 2 and the above discussion, we propound that a phase
transition occurs for the average error, in the sense that it is o(1) in the subcritical
regime λ < λk, and Θ(1) in the supercritical regime λ > λk, w.h.p.. Regarding
the supercritical regime, we are able to show that this indeed holds for k = 2 in
the N -balanced model.

Theorem 3 (supercritical regime, case k = 2). Let λ > 1/2. Then there
exists a positive constant f(λ) such that, in the N -balanced model, errN (Gn,λn) ≥
f(λ) w.h.p., as n grows2.

Our proof of Theorem 3 extends to k ≥ 3 for λ > λ̃k, where λ̃k is the threshold
beyond which the giant component of Hk

n,λn has w.h.p. more edges than vertices.

1 Formally, for any ε > 0, there exists M such that P(R(N)
e ≤ ε) ≥ 1− ε if n ≥M and

N ≥M .
2 Formally, for any ε > 0, there exists M such that P(errN (Gn,m) ≥ f(λ)) ≥ 1 − ε if
N ≥ 1 and n ≥M .
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The analysis given in [4] ensures that λ̃k exists and is explicitly computable,
λ̃3 ≈ 0.94, λ̃4 ≈ 0.98. We believe however that the peelability threshold λk
constitutes the right critical value in Theorem 3 for k ≥ 3 as well, which is
supported by simulations presented below. Proving this would require a different
kind of argument than we use in our proof though.

4.2 Simulations

Here we provide several experimental results illustrating the phase transition
stated in Theorems 2 and 3. Figure 1 shows plots for the average relative error
errN (Hk

n,m) as a function of λ = m/n, for k ∈ {2, 3, 4} for regular Count-Min and
the conservative update strategies. Experiments were run for n = 1, 000 with the
N -uniform model (each edge drawn independently with probability 1/m) and
N = 50, 000 (number of steps N · |E|). For each λ, an average is taken over 15
random graphs.

(a) k = 2 (b) k = 3 (c) k = 4

Fig. 1: Average relative error as a function of λ = m/n for regular Count-Min
(orange) and conservative update (blue), for k ∈ {2, 3, 4}. Vertical line shows
the peelability threshold.

The phase transitions are clearly seen to correspond to the critical threshold
0.5 for k = 2, and, for k ∈ {3, 4}, to the peelability thresholds λ3 ≈ 0.818,
λ4 ≈ 0.772. Observe that the transition looks sharper for k ≥ 3, which may
be explained by the fact that the core size undergoes a discontinuous phase
transition for k ≥ 3, as shown in [30] (e.g. for k = 3, the fraction of vertices in
the core jumps from 0 to about 0.13).

For the supercritical regime, we experimentally studied the empirical distri-
bution of individual relative errors, which turns out to have an interesting multi-
modal shape for intermediate values of λ. Typical distributions for k ∈ {2, 3} are
illustrated in Figure 2 where each point corresponds to an edge, and the edges
are randomly ordered along the x-axis. Each plot corresponds to an individual
random graph.

When λ grows beyond the peelability threshold, a fraction of edges with
small errors still remains but vanishes quickly: these include edges incident to
at least one leaf (these have error 0) and peelable edges (these have error o(1)),
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as follows from our proof of Theorem 2. For intermediate values of λ, the distri-
bution presents several modes: besides the main mode (largest concentration on
plots of Figure 2), we observe a few other concentration values which are typ-
ically integers. While this phenomenon is still to be analysed, we explain it by
the presence of certain structural graph motifs that involve disparities in node
degrees. Note that the fraction of values concentrated around the main mode
is dominant: for example, for k = 3, λ = 3 (Figure 2d), about 90% of values
correspond to the main mode (≈ 3.22). Finally, when λ becomes larger, these
“secondary modes” disappear, and the distribution becomes concentrated around
a single value. More data about concentration is given in the full version [22].

(a) k = 2, λ = 1 (b) k = 3, λ = 1

(c) k = 2, λ = 3 (d) k = 3, λ = 3

(e) k = 2, λ = 5 (f) k = 3, λ = 5

Fig. 2: Distribution of relative errors of individual edges shown in a random order
along x-axis.
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Our analysis suggests that a positive average error in the supercritical regime
is due to a large core — a non-peelable subgraph with Θ(n) nodes — which
exists in this regime. To test this claim (for k = 3), we simulated the CU-process
on sparse random non-peelable 3-hypergraphs, namely 2-regular 3-hypergraphs
with 2n edges and 3n vertices (n parameter). These are sparsest possible non-
peelable 3-hypergraphs, with degree 2 of each vertex. In a separate experiment,
we observed that the average error for such graphs is concentrated around a
constant value of ≈ 0.217. While these graphs fall to the subcritical regime
(λ = 2/3 < λ3 ≈ 0.818), they still generate an average error bounded away
from 0. Along with our results of Section 6, this supports that peelability is
crucial for the error to be o(1), and the presence of large non-peelable subgraphs
results in a Θ(1) error.

5 Proofs of the main results

5.1 Sketch of proof of Theorem 2

Here we only provide main steps to show Theorem 2, the full proof is given in
[22]. Theorem 2 relies on properties of random hypergraphs.

Case k = 2 corresponds to Erdős-Rényi random graphs Gn,λn [17] which have
been extensively studied [21]. In particular, it is well known that when λ < 1/2
and n gets large, Gn,λn is, w.h.p., a union of small connected components most of
which are constant-size trees. That is, a random edge in Gn,λn is, w.h.p., in a tree
of size O(1). Thus, the proof amounts to showing that, for a fixed tree T and an
edge e ∈ T , we have w.h.p. R(N)

e = o(1) (as N gets large), both in the N -uniform
and in the N -balanced model (performed on T alone). Let m be the number of
edges in T . We first give a proof for the N -uniform model. Since o(N)

e follows
a Bin(Nm, 1/m) distribution, we have w.h.p. o(N)

e /N = 1 + o(1). Hence, it is
enough to prove that, for each vertex v ∈ T , we have w.h.p. c(N)

v /N = 1 + o(1).
The proof is done by induction on the peeling level i of v. If i = 0, then v

is a leaf. Letting e be its incident edge, we have c(N)
v = o

(N)
e , hence w.h.p.

c
(N)
v /N = 1+o(1). To let the induction work for i ≥ 1, we actually have to carry
a stronger property. Namely, we show that for each v ∈ T , there exist absolute
positive constants av, bv such that, for any N ≥ 1 and x > 0, we have

P
(
maxt∈[0..Nm]|cv(t)− t/m| ≥ x

√
N
)
≤ av exp(−bvx2). (1)

The proof of (1) for v at level 0 follows from the fact that, for each e ∈ T (in
particular, the one incident to v), o(N)

e follows a Bin(Nm, 1/m) distribution,
so that one can apply Hoeffding’s inequality combined with Doob’s maximal
martingale inequality. This yields (1) for v at level 0, where av = 2 and bv = 2/m.
For v at level i ≥ 1, we have the property that there is an edge e incident to v
such that all the other neighbors v1, . . . , vh of v (i.e., the neighbors not incident
to e) have level smaller than i, and thus satisfy (1) by induction. We then have
to check that cv(t) stays close to t/m for t ∈ [0..Nm] (in the sense of (1)).
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For the lower bound part, we use the fact that cv(t) ≥ oe(t), and that oe(t)
stays close to t/m. For the upper bound part we use the following argument.
Letting dv(t) = max(cv1(t), . . . , cvh(t)), we can show that if cv(t0) ≥ dv(t0) +M
at some time t0, then there exists t′ ≤ t0 such that |oe(t′) − t′/m| ≥ M/4 or
|dv(t′) − t′/m| ≥ M/4 (the crucial point to establish this property, specific to
the CU-process, is that in the regime where cv(t) > dv(t), any step where cv(t)
increases occurs when picking e). Since oe(t) and dv(t) stay close to t/m (for dv(t)
we use induction on i, and the union bound), this property ensures that cv(t) is
unlikely to exceed t/m. Given the lower bound part, cv(t) hence stays close to
t/m (in the sense of (1)). Estimate (1) then guarantees that, in the N -uniform
model, we have |c(N)

v /N − 1| ≤ N−1/3 with probability exponentially close to 1.
The same holds in the N -balanced model, by noting that the N -balanced model
is the N -uniform model conditioned on the event that each edge is chosen N
times, which occurs with a probability of order N−m/2 (thus, any event that is
almost sure with exponential rate in the N -uniform model is also almost sure
with exponential rate in the N -balanced model).

The proof for k ≥ 3 is analogous but requires some more ingredients. An
additional difficulty is that, for λ < λk, a random edge e in Hk

n,λn may be in
the giant component (if λ ∈ ( 1

k(k−1) , λk)). However, we rely on the fact that the
peeling level of e is O(1) w.h.p., and prove that for a vertex v of bounded level,
we have c(N)

v /N = 1 + o(1) w.h.p. as N → ∞, where the o(1) term does not
depend on the size of the giant component.

5.2 Proof of Theorem 3

The excess of a hypergraph H is exc(H) = |E| − |V |.

Lemma 2. Let H = (V,E) be a k-uniform hypergraph. Then, for the N -balanced
model, we have

∑
e∈E R

(N)
e ≥ 1

k exc(H).

Proof. During the CU process, each time an edge is drawn, the counter of at
least one of its extremities is increased by 1. Hence

∑
v∈V c

(N)
v ≥ N |E|. Hence,

with the notation R
(N)
v := c

(N)
v /N − 1, we have

∑
v∈V R

(N)
v ≥ exc(H). Now,

by Lemma 1, for each v ∈ V , there exists an edge ev incident to v such that
c
(N)
ev = c

(N)
v (if several incident edges have this property, an arbitrary one is

chosen). Hence,
∑
v∈V R

(N)
ev ≥ exc(H). Note that, in this sum, every edge occurs

at most k times (since it has k extremities), thus
∑
e∈E R

(N)
e ≥ 1

k exc(H). ut

For k = 2 and λ > 1/2, it is known [32, Theorem 6] that there is an explicit
constant f̃(λ) > 0 such that the excess of the giant component G′ = (V ′, E′)
of Gn,λn is concentrated around f̃(λ)n, with fluctuations of order

√
n. Thus,

exc(G′) ≥ 1
2 f̃(λ)n w.h.p. as n→∞. Hence, by Lemma 2, w.h.p. as n→∞ (and

for any N ≥ 1), we have

errN (Gn,λn) ≥
1

λn

∑
e∈E′

R(N)
e ≥ 1

2λn
exc(G′) ≥ 1

4λ
f̃(λ) =: f(λ),
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which implies Theorem 3.

6 Analysis for some non-peelable hypergraphs

Analysing the asymptotic behaviour of the relative error of the CU-process on
arbitrary hypergraphs seems to be a challenging task, even if we restrict our-
selves to N -uniform and N -balanced models, as we do in this paper. Based on
simulations, we expect that, for a fixed connected k-hypergraph H = (V,E),
and for v ∈ V , we have c(N)

v /N = Cv + o(1) w.h.p. as N → ∞, for an explicit
constant Cv ∈ [1,deg(v)]. Since the number of increments at each step lies in
[1..k], constants Cv must verify 1 ≤ 1

|E|
∑
v∈V Cv ≤ k, where 1

|E|
∑
v∈V Cv can

be seen as the average number of increments at a step. If H is peelable, then
Theorem 2 implies that this concentration holds, with Cv = 1. We expect that,
if no vertex of H is peelable, and if H is “sufficiently homogeneous”, then the
constants Cv should be all equal to the same constant C > 1, and thus the
relative error R(N)

e of every edge is concentrated around C − 1 > 0 w.h.p. as
N →∞. This, in particular, is supported by an experiment reported at the end
of Section 4.2.

In this Section, we show that this is the case for a family of regular hyper-
graphs which are very sparse (O(

√
|V |) edges) but have a high order (an edge

contains O(
√
|V |) vertices). The dual of a hypergraph H is the hypergraph H ′

where the roles of vertices and edges are interchanged: the vertices of H ′ are
the edges of H, and the edges of H ′ are the vertices of H so that an edge of
H ′ corresponding to a vertex v of H contains those vertices that correspond to
edges incident to v in H.

Here we consider the hypergraph K ′n dual to the complete graph Kn. It is
a (n − 1)-uniform hypergraph with n edges and

(
n
2

)
vertices, all of degree 2,

therefore no vertex is peelable. For a fixed n ≥ 3, we consider a CU-process on
K ′n, in the N -balanced model. Note that with regular Count-Min, the relative
error of every edge is 1, since all vertices have degree 2 and c(N)

v = 2N for every
vertex v of K ′n. We prove that with conservative updates, the relative error is
reduced to a smaller constant 1/(n− 1). The proof is omitted and can be found
in [23].

Theorem 4. For any fixed n ≥ 2, in the N -uniform model (resp. in the N -
balanced model), the counter of each vertex v ∈ K ′n satisfies c(N)

v /N = n/(n −
1)+ o(1) w.h.p. as N →∞. Hence, the relative error R(N)

e of each edge e in K ′n
satisfies R(N)

e = 1/(n− 1) + o(1) w.h.p. as N →∞.

7 Non-uniform distributions

An interesting and natural question is whether the phase transition phenomenon
holds for non-uniform distributions as well. This question is of practical impor-
tance, as in many practical situations keys are not distributed uniformly. In
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particular, Zipfian distributions often occur in various applications and are a
common test case for Count-Min sketches [14, 7, 16, 9, 6]. We mention a recent
learning-based variant of CountMin [25] (learning heavy hitters) and its study
under a Zipfian distribution [1, 15].

In Zipf’s distributions, key probabilities in descending order are proportional
to 1/iβ , where i is the rank of the key and β ≥ 0 is the skewness parameter.
Note that for β = 0, Zipf’s distribution reduces to the uniform one. It is therefore
a natural question whether the phase transition occurs for Zipf’s distributions
with β > 0.

One may hypothesize that the answer to the question should be positive, as
under Zipf’s distribution, frequent keys tend to have no error, as it has been
observed in earlier papers [7, 6, 5]. On the other hand, keys of the tail of the
distribution have fairly similar frequencies, and therefore might show the same
behavior as for the uniform case.

However, this hypothesis does not hold. Figure 3 shows the behavior of the
average error for Zipf’s distributions with β ∈ {0.2, 0.5, 0.7, 0.9} vs. the uniform
distribution (β = 0). The average error is defined here as the average error of all
keys weighted by their frequencies3, i.e. errN (H) = 1

mN

∑
e∈E o

(N)
e

c(N)
e −o(N)

e

o
(N)
e

=

1
mN

∑
e∈E(c

(N)
e − o(N)

e ). In other words, errN (H) is the expected error of a ran-
domly drawn key from the entire input stream of lengthmN (taking into account
multiplicities).

Fig. 3: Average error as a function of λ = m/n, for Zipf’s distributions with
β ∈ {0.0, 0.2, 0.5, 0.7, 0.9}. Plots obtained for n = 1000, k = 3, N = 50, 000.

3 This definition is natural for non-uniform distributions, as the error for a frequent
key should have a larger contribution. Note that it is consistent with the definition of
Section 4.1 in the N -balanced case, and in the N -uniform case it presents a negligible
difference when N gets large.
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We observe that the phase transition behavior disappears for β > 0. It turns
out that even in the subcritical regime, frequent elements, while having no error
themselves, heavily affect the error of certain rare elements, which raises the
resulting average error. This phenomenon is analysed in more detail in our follow-
up paper [23]. In the supercritical regime (λ > 1 in Figure 3) the opposite
happens: the uniform distribution shows the largest average error. This is because
an increasingly large fraction of the keys (those in the core of the associated
hypergraph) contribute to the error, while for skewed distributions, frequent keys
tend to have no error, and thus the larger β (with frequent keys becoming more
predominant) the smaller the average error. Note that this is in accordance with
the observation of [7] that the estimates for the uniform distribution majorate
the estimates of infrequent keys for skewed distributions.

8 Concluding remarks

We presented an analysis of conservative update strategy for Count-Min sketch
under the assumption of uniform distribution of keys in the input stream. Our
results show that the behaviour of the sketch heavily depends on the properties
of the underlying hash hypergraph. Assuming that hash functions are fully inde-
pendent, the error produced by the sketch follows two different regimes depend-
ing on the density of the underlying hypergraph, that is the number of distinct
keys relative to the size of the sketch. When this ratio is below the threshold,
the conservative update strategy produces a o(1) relative error when the input
stream and the number of distinct keys both grow, while the regular Count-Min
produces a positive constant error. This gap formally demonstrates that conser-
vative update achieves a substantial improvement over regular Count-Min.

We showed that the above-mentioned threshold corresponds to the peelability
threshold for k-uniform random hypergraphs. One practical implication of this
is that the best memory usage is obtained with three hash functions, since λ3 is
maximum among all λk, and therefore k = 3 leads to the minimum number of
counters needed to deal with a given number of distinct keys.

In [10] it is claimed, without proof, that the rate of positive errors of con-
servative update is k times smaller than that of regular Count-Min. This claim
does not appear to be true. Note that Count-Min does not err on a key rep-
resented in the sketch if and only if the corresponding edge of the hypergraph
includes a leaf (vertex of degree 1), while the conservative update can return an
exact answer even for an edge without leaves. However, this latter event depends
on the relative frequencies of keys and therefore on the specific distribution of
keys and the input length. On the other hand, our experiments with uniformly
distributed keys show that this event is relatively rare, and the rate of positive
error for Count-Min and conservative update are essentially the same.

One important assumption of our analysis is the uniform distribution of keys
in the input. We presented an experimental evidence that for skewed distribu-
tions, in particular for Zipf’s distribution, the phase transition disappears when
the skewness parameter grows. Therefore, the uniform distribution presents the
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smallest error in the subcritical regime. The situation is the opposite in the su-
percritical regime when the number of distinct keys is large compared to the
number of counters: here the uniform distribution presents the largest average
error. As mentioned earlier, for Zipf’s distribution, frequent keys have essentially
no error, whereas in the supercritical regime, low frequency keys have all similar
overestimates. This reveals another type of phase transition in error approxima-
tion for Zipf’s distribution, occurring between frequent and infrequent elements,
having direct application to accurate detection of heavy hitters in streams. We
refer to our follow-up work [23] for further insights regarding this issue.

Acknowledgments We thank Djamal Belazzougui who first pointed out to us the
conservative update strategy.
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