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The Great Indian Proterozoic Fold Belt (GIPFOB) is a curviplanar highly-tectonized zone of Precambrian crystalline rocks. In the
GIPFOB, the N/NNE-striking western arm (the Aravalli Delhi Fold Belt, ADFB) and the E-striking southern arm consisting of the
Chottanagpur Gneiss Complex (CGC) and the central/southern domains of the Satpura Mobile Belt (SMB) converge at the
Godhra-Chhota Udepur sector. To investigate the tectonics of the sector, we combine the results of analyses of mesoscale and
regional structures, U-Pb (zircon) geochronology, and monazite chemical dating to constrain the convergence. The sector is
dominated by an ensemble of shallow-dipping granitoid mylonites (D2 deformation) and recumbently folded anatectic
granulite-facies basement gneisses interleaved with allochthonous greenschist/epidote-amphibolite facies supracrustal rocks
thrust top-to-the-south. The shallow-dipping carapace is traversed by a network of E-striking steep-dipping shear zones with
sinistral and N-down kinematics (D3 deformation). The D3 shear zone hosted granitoids exhibit E-striking suprasolidus
deformation fabrics and chessboard microstructures. In the shallow-dipping carapace, the partly overlapping stretching
lineations associated with D2-D3 deformations share low-angle obliquities with the W/WNW plunging hinges of D2
recumbent folds and the upright/moderately-inclined D3 folds in the basement gneisses and the supracrustal rocks. The
transition from thrust-dominated (D2) to wrench-dominated (D3) deformation involved flipping of Y and Z strain axes for
similar orientations of orogen-parallel stretching caused by N-S shortening. U-Pb LA-ICP-MS (zircon) and monazite chemical
dates suggest the D2-D3 deformation and felsic plutonism occurred at 0.95–0.90Ga, the pre-D2 high-grade metamorphism in
the anatectic gneisses at 1.7–1.6Ga. The 0.95–0.90Ga structures in the Godhra-Chhota Udepur are identical to those in
CGC-SMB in the southern arm and terminate the N/NNE-striking structures in the ADFB. We suggest the GIPFOB comprises
two Early Neoproterozoic accretion zones, e.g., the western arm (ADFB) and the younger (GC-SMB-CGC) southern arm.

1. Introduction

Map-scale curvature of orogens, fold-and-thrust belts, and
shear zones can be a primary feature, i.e., primary arcs [1]
formed due to progressive deformation [1–4] or an outcome
of secondary processes that curve an initially linear crustal
segment [1, 5–8]. Primary arc curvature is controlled by

the characteristics of the predeformational sedimentary
basin involved in thrusting during collision, such as the
strength of the rocks and the depth and slope of the detach-
ment [1, 5, 9]. Progressive arcs are possibly the most com-
mon type of map-scale curvatures [1–4] that form at
collision zones and progressively develop their curvature
during the same orogenic cycle ([2], and references therein).
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Progressive arcs are commonly “indenter-controlled” [1–4],
but other mechanisms may prevail. On the other hand, sec-
ondary curvatures develop by buckling that accommodates
rotation around a vertical axis [1] in subsequent deforma-
tion cycles unrelated to the formation of the originally linear
belt [2].

The Great Indian Proterozoic Fold Belt, GIPFOB
(Figures 1(a) and 1(b); [10, 11]) is a crustal-scale highly-
tectonized zone that extends E-W in central India and
appears to curve into the NNE-striking Aravalli Delhi Fold
Belt (ADFB) in western India. The southern arm of the
GIPFOB comprises the domains of the Chottanagpur
Gneiss Complex (CGC) and the Satpura Mobile Belt
(SMB); both domains exhibit E-striking tectonic fabrics.
The NNE-striking ADFB constitutes the western arm of
the GIPFOB (Figure 1). The GIPFOB possibly extends
eastward into the Garo-Goalpara sector (Figure 1(a)) in
the Shillong-Meghalaya Gneiss Complex [12]. The southern
arm is deemed to be the zone of accretion between the North
India Block (NIB) and the South India Block (SIB); the
western arm is sandwiched between the NIB and the Marwar
Craton (MC) [10]. The boundaries of the crustal domains
vis-à-vis the orogen are for most parts uncertain. The GIP-
FOB has been correlated with the Capricorn Orogen [13]
within the Columbia supercontinent [14, 15], and the Albany
Fraser Orogen [16] in the Rodinia Supercontinent [17]. The
E-striking southern arm is also known as the Central Indian
Tectonic Zone (CITZ) [18].

The origin of the curvature in the GIPFOB in west-
central India where the two arms converge (Figure 1) is yet
to be investigated. A compilation of trends of dominant
tectonic fabrics in the ADFB accretion orogen (data source:
https://bhukosh.gsi.gov.in) indicates that at its southern tip
the NNE-striking structures are reoriented E-W in the
neighboring Godhra-Chhota Udepur sector (Figure 2). In
this study, we examine the implications of this reorientation
or “bend” of tectonic trends in ADFB based on an analysis of
mesoscale structures and deformation kinematics in the
Godhra-Chhota Udepur sector (Figure 2). Zircon U-Pb dat-
ing and monazite chemical ages in critical samples from the
sector are used to constrain the ages of magmatic, metamor-
phic, and deformation events. This study is the first attempt
to integrate the new structural-geochronological data with
existing information in the Godhra-Chhota Udepur sector
into a coherent analysis of the regional scale tectonics for
explaining the “bend” in the GIPFOB. The results of this
study are aimed at understanding the nature and signifi-
cance of the purported bend, prior to correlating the
GIPFOB with contemporaneous crustal-scale accretion
zones across drifted continental fragments.

2. Geological Background of the
Godhra-Chhota Udepur Sector

The Godhra-Chhota Udepur sector was chosen for the study
for three reasons. The sector is located at the inner arc of a
possible oroclinal bend (Figure 1(b)) and at the zone where
the two arms (ADFB and the CITZ) of the GIPFOB con-
verge (Figure 2). Also, the available geological information

in the sector is fragmentary at best. The Precambrian crystal-
line rocks in the Godhra-Chhota Udepur (GC) sector are
grouped into four lithodemic units: (a) a suite of variably
deformed (massive, foliated, and mylonitic) grey and pink
colored blastoporphyritic granitoids, collectively termed as
the Godhra granite; (b) mesoscale outcrops of (not shown
in Figures 3(a) and 3(b)) multiply − deformed biotite ±
hornblende bearing anatectic quartzofeldspathic gneiss
intruded by the granite body; (c) the Champaner Group
which consists of greenschist/epidote-amphibolite facies
mica schist and calc-schists, quartzites and micaceous
quartzite, metadolomites, Mn-rich horizons, meta-arenites,
deformed intraformational conglomerates, amphibolites,
and ultramafic rocks; and (d) the Lunavada group consisting
of quartzite, phyllite, schist, and minor carbonates metamor-
phosed at greenschist facies conditions [20]. In the Champa-
ner Group, the abundances of meta-carbonate and Mn-rich
horizons decrease, and mafic-ultramafic rocks increase from
south to north. The lithodemic units in the southern part are
partly obscured by the Upper Cretaceous Deccan volcanics
and the infratrappean Lameta Formation and intertrappean
Bagh beds (Figure 3; nomenclature after Sahni et al. [21]).

The Godhra granite is neither a mineralogically homog-
enous unit nor a distinct structural entity (details in Section
3). The emplacement ages of the different parts of the God-
hra granite are Late Mesoproterozoic to Early Neoprotero-
zoic, e.g., 955 ± 20Ma, Rb–Sr method [22], 1168 ± 30Ma,
Rb-Sr method [23], 1050 ± 50Ma, Sm–Nd method [24],
965 ± 40Ma, Rb–Sr method [25], and 950Ma, Rb–Sr
method [26]. The 955Ma age [22] is the most cited age for
the emplacement of the Godhra granite [27–30].

The banded anatectic gneisses that occur as enclaves
with the expansive Godhra granitoids are the structurally
the oldest lithodemic unit [27–29] in the Godhra-Chhota
Udepur sector, but no age determinations exist for the rocks.
The gneisses are composed of multiply deformed alternate
layers of biotite ± hornblende rich domains and quartzo-
feldspathic leucosomes and minor amphibolite bands [28].
By contrast, the granitoids are massive to foliated, and apo-
phytic within the gneisses; the granitoids lack the multiple
folds in the gneiss enclaves. The gneisses exhibit three defor-
mation events, D1-D3 [28]. The D2 deformation is mani-
fested by tight to isoclinal folds formed by refolding of the
S1 axial planes (corresponding to the D1 deformation).
The axial planes (S2) of the D2 folds strike NW/WNW.
The asymmetric D3 folds on S2 produced WNW-striking
steep-dipping S3 axial planes; these D3 folds are considered
to be broadly coeval with the emplacement of Godhra
granite [28].

The structural evolution of the Champaner Group of
metasedimentary rocks of low metamorphic grade is contro-
versial [28–32]. The rocks unconformably overlie the gneis-
ses [33] and have experienced multiple deformation events
[28, 30–32, 34–36]. The earliest deformation led to recum-
bent folding; these folds were overprinted by open to tight,
gentle to moderately plunging folds with WNW-ESE to
E-W striking axial traces. Locally developed N-S striking
folds and shear zones mark the last phase of deformation
in the rocks [35]. The emplacement of the Godhra granite
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is syn-to post-tectonic with respect to the Champaner
Group of rocks [35, 36]. The initial phase of granite intru-
sion was broadly syn-tectonic with the earliest deformation
in the Champaner Group, whereas the later granitoids led
to thermal metamorphism of the Champaner rocks [36].

The Lunavada Group of rocks comprises quartzite,
phyllite, schist, and minor carbonates, metamorphosed at

greenschist facies conditions [20]. Three deformation events
(D1-D3) accompanied by regional metamorphism are
recorded in the rocks [28, 37, 38]. The D1-D2 deformations
are coaxial and produced NE-trending folds [28]. In the
southern part of the belt, the WNW-ESE to E-W trending
D3 folds are prominently developed; the superposition of
D3 over the D1-D2 folds produced type I interference

Figure 1: Generalized geological map of the Great Indian Proterozoic Fold Belt, GIPFOB (shown with broken red lines), and its location
within India. The different crustal domains that make up the GIPFOB and the Godhra-Chhota Udepur sector are located in both maps.
NIB, SIB, and MC are acronyms for the North India Block, the South India Block, and the Marwar Craton, respectively. SMB and CGC
are acronyms for the Satpura Mobile Belt and the Chottanagpur Gneiss Complex. The E-striking arm of the GIPFOB vis-à-vis the
CGC-SMB composite together constitutes the Central Indian Tectonic Zone (CITZ), but the southern and the northern margins of
the CITZ, and their longitudinal extensions, are poorly constrained [19].
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patterns [28, 38]. M1 metamorphism is synchronous with
D1 deformation; the M2-1 metamorphism was syn-D2, and
the retrograde M2-2 metamorphism occurred during the
waning phase of D2 and the early phase D3; granite
emplacements are post D3 in the Lunavada rocks [37, 38].

3. Field Relations and Mesoscale Structures:
This Study

The Godhra-Chhota Udepur sector was structurally mapped
(Figure 3) based on observations at 395 field stations. The
relevant stereoplots of planar and linear deformation fabrics
in the anatectic gneisses, the foliated granitoids, and the
supracrustal rocks are shown in Figure 4. This study does
not address the structures within the Lunavada Group nor
the boundary relations between the basement gneisses and
granitoids in the Godhra-Chhota Udepur sector (Figure 3).
The major findings in this study (Figure 3) are the following:
(a) two shallow-dipping (dip < 35°) domains comprising
gently-dipping granite mylonites (S and S > L tectonite)

and older gneisses exhibiting recumbent to gently-inclined
folds on gneissic layering; (b) the supracrustal rocks in sev-
eral domains/klippen tectonically overlying the basement
of the gneiss and granitoids are erosional remnants of an
allochthonous unit thrust top-to-the-south; (c) the shallow-
dipping tectonic fabrics (dip < 35°, adopted by us) in the
basement and the cover rocks are steepened in the limbs
due to folding superposition in and adjacent to the networks
ofW/WNW-striking steep-dipping left-lateral transpressional
shear zones. Therefore, the areal extent of the shallow-dipping
domains shown in Figure 3 is a lower estimate. This is because
the restriction in the dip amount precludes accommodating
locations in which the shallow-dipping tectonic fabrics
become steeper than 35° due to the folding associated with
the younger W/WNW-striking shear zones.

3.1. Basement Gneisses. The basement gneisses are mineral-
ogically diverse. The gneisses are dominated by mesocratic
varieties in which biotite ± hornblende rich layers alternate
with quartz, K-feldspar, and plagioclase bearing leucocratic

Figure 2: Generalized tectonic trends in the NNE-striking Aravalli-Delhi Fold Belt (ADFB). Note the ADFB structures are reoriented near
the Godhra-Chhota Udepur sector at the southern tip of the ADFB.
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Figure 3: Structural map of the Godhra-Chhota Udepur sector showing (a) planar structures and (b) linear structures identified in this
study. The lithological map of the Godhra-Chhota Udepur sector is simplified after the District Resource maps of Jabua, Panchmahal,
and Vadodara of the Geological Survey of India. Axial plane foliation (S2) and fold axis and stretching lineations (L2) are associated
with D2 deformation; same scheme is adopted for S3, L3, and D3 (legend in (b)). The box in (b) corresponds to Figure 7(a). The
locations of the zircon and monazite dated samples (red circles) are shown in (b). Note within the Godhra granite, the anatectic gneisses
occur as mesoscale enclaves, but regional-scale exposures of the gneisses, the oldest lithodemic unit in the area, are lacking. In the scale of the
map, therefore, these gneisses do not appear in (a, b). (c) A schematic geologic section along A-A′ exhibits the structural relations among the
lithodemic units (see text for discussion). The lower broken line (conjectural) is taken to suggest the décollement below which the basement
rocks may be unaffected by thrusting. Note the section was drawn to illustrate the different structural units of the Godhra granite, but these
units were not comprehensively mapped throughout the area. Therefore, the colors of lithodemic units in (a, b) and (c) do not match.
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Figure 4: Lower hemisphere stereoplots of planar and linear structural elements in foliated granites (a, d), basement gneisses (b-e), and the
supracrustal rocks (c, f). Summary of D4 planar structures in gneiss, granitoid, and supracrustal rocks (g). (a) Contours of poles S2 planar
fabrics in foliated granites in the tectonic mélange; black dots are D2 stretching lineations (L2). The great circle girdle corresponds to the
mean orientation of the S2 foliation in the granites. (b) Contoured poles of recumbent to gently-inclined D2 folds on pre-S2 foliation in
gneisses. Star represents the pole to the best-fit girdle (not shown) on the pre-S2 poles. The great circle is the mean orientation of the
foliated granites in the tectonic mélange (adopted from “a”). (c) Contoured poles to pre-S2 foliation in supracrustal rocks. Star is the
best-fit β-axis to the contoured poles. Black dots are D2 fold axes obtained from pre-S2/S2 intersection lineations. (d) Contours of
poles to steep-dipping S3 foliations in granite; black dots are L3 stretching lineations. (e) Poles to S2 foliations in gneisses (contoured),
D3 fold axes in black dots, and poles to S3 foliation (in open circles). Star represents the β-axis (D3 fold axis) to the contoured best-fit
S2 girdle. (f) Contoured poles to S2 foliations in supracrustal rocks. Black dots are D3 fold axes obtained from S2/S3 intersection
lineations and D3 crenulations. (g) Mean orientations of N-striking and ENE-striking shear zones. The E-striking great circles
correspond to the mean orientation of D3 foliation in steep-dipping granites, and the mean axial plane of D3 supracrustal rocks. The
stress axes are indicated.
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layers. Melanocratic gneisses, which occur in subordinate
amounts, consist of quartz − plagioclase ± K − feldspar
leucocratic layers (+ garnet) in the biotite-dominated mela-
nocratic matrix (rare garnet, cordierite, and sillimanite).
These gneisses are interleaved with minor proportions of
nonanatectic amphibolites and plagioclase-scapolite-clino-
pyroxene-quartz bearing meta-carbonate gneisses. Musco-
vite is lacking except as a rare retrograde mineral associated
with chlorite. In spite of the lithological variations, the struc-
tural evolution in the gneisses is fairly uniform. The earliest
fabric (S1; D1 deformation) is defined by centimeters to
subdecimeter wide leucosome layers interlayered with mela-
nocratic layers dominated by biotite and/or hornblende
(Figure 5(a)). D1 folds are rarely preserved [28]. D2 folds
are tight to isoclinal and recumbent to gently-inclined in
geometry in the shallow-dipping domains. The D2 axial
planes (S2) are poorly marked in the round-hinged
biotite-poor gneisses (Figure 5(b)), but are penetrative
and characterized by a well-defined schistosity in the
biotite-rich gneisses (Figure 5(c)). The vergence of D2
folds indicates a top-to-the-south transport (Figure 5(c)).
In rare outcrops of biotite gneisses, limited amounts of
syn-D2 melt occur along the axial planes of D2 folds
(Figure 5(c)); but syn-D2 leucosomes are lacking in the
biotite-poor quartzofeldspathic gneisses.

The D3 folds are W/WNW–trending upright to steeply-
inclined with subhorizontal to gently-plunging hinge lines
(Figure 5(d)). The interlimb angles of these folds vary
widely. In the shallow-dipping low-D3 strain domains, the
D3 folds are barely discernible in outcrop scale, but the folds
become progressively tighter as the W/WNW-striking steep-
dipping D3 shear zones are approached. Within the W-
striking D3 mylonite zones, the D1-D2 composite fabrics
(S1-S2) are eventually transposed subparallel to the D3
mylonite fabric (S3) and occur obliquely to the mylonite
fabric as rafts in low-D3 strain domains (Figure 5(e)).

The D3 fabrics (S3) are modified by locally-developed
steep-dipping D4 shears; in rare outcrops, the shears occur
in pairs. The strike of the shears with apparent dextral kine-
matics varies between 10° and 30°N (mean 20°N), and the
other set of sinistral (apparent) shears trend between 45
and 70°N (mean~60°N). The ENE-striking sinistral shears
are rare, but the NNE-trending dextral shears are prominent
in some outcrops, and in rare instances, extend up to few
kilometers. These sets of shears occur together in two out-
crops, but their contemporaneity could not be unambigu-
ously assessed.

3.2. Granitoids. Granitoids in the Godhra-Chhota Udepur
sector comprise several varieties in decreasing areal abun-
dance, e.g., (type-A) grey-colored, medium-grained, broadly
equigranular (with rare cm-sized circular feldspar pheno-
crysts) hornblende-biotite granites, generally massive to
weakly foliated, and modally rich (>10 vol%) in ferromagne-
sian phases (Figure 6(a)); (type-B) coarse-grained, highly
inequigranular pink-colored granite-granodiorite with high
modal amounts of euhedral to subhedral K-feldspar mega-
crysts measuring up to 6 cm in length (augen-shaped in
deformed varieties) and contain profuse (>10 vol%) biotite

aggregates (Figures 6(b) and 6(c)); and (type-C) coarse-
grained, white-colored granodiorite having an equigranular
sugary appearance, and a low abundance (<5 vol%) of ferro-
magnesian minerals, biotite > hornblende (Figure 6(d)). In
the granite-granodiorites, dynamically recrystallized quartz,
K-feldspar, and plagioclase are the major minerals with
biotite, hornblende, sphene, apatite, and ilmenite [39];
randomly-oriented retrograde chlorite and epidote replacing
hornblende/biotite occur as minor phases. Monazite and
zircon are accessory phases.

The anatectic gneisses occur as mesoscopic to macro-
scopic enclaves within the granitoids (Figures 6(a) and
6(d)); the granitoids are intrusive into the gneisses. With
respect to the tectonic fabrics in the gneisses, the granitoids
can be grouped as those predating the D2 deformation (both
grey- and pink-colored granitoids), and the pink- and white-
colored granitoids emplaced post-D2 to syn-D3. In zones of
high-D2 strain, the pre-D2 granitoids are shallow-dipping S
and S-L tectonites (Figure 6(e)). The gentle NW-plunging
stretching lineations in these granitoids are defined by the
alignment of biotite/hornblende, quartz ribbons, and aggre-
gates of recrystallized feldspar grains. The post-D2, pre-D3
granitoids are structurally and texturally complex; one such
granitoid pluton is discussed below. In syn-D3 pink granit-
oids (Figure 6(c)), euhedral phenocrysts of K-feldspar occur
as trains of end-to-end touching grains and grain imbrica-
tions typical of magmatic flow [40].

A granitoid pluton in and around Sanada (~20 km NE of
Chhota Udepur) was structurally mapped (Figure 7(a)). The
E-W elongate pluton consists of a bulged centre (~10 km
wide) and two E-W striking asymmetric tails that extend
~35 km (Figure 7(a)). The steep-dipping D3 foliation in the
bordering high-grade gneisses wraps around the pluton.
The tails of the pluton coincide with two steep-dipping E-
striking D3 sinistral shear zones (Figure 7(a)). The core of
the central bulge comprises two textural types: (a) massive
granitoids (no mesoscale fabrics; Figure 7(b)) composed of
randomly-oriented large (up to 5 cm long) euhedral K-
feldspar (microcline) megacrysts (subhedral K-feldspar phe-
nocrysts occur in subordinate amounts) and (b) foliated
granitoids (Figure 7(c)) composed of weakly-aligned trains
of euhedral to subhedral microcline phenocrysts embedded
in a finer-grained mosaic of recrystallized quartz-feldspar
grains couple-of-mm in size, and biotite aggregates. Quartz
and biotite are interstitial to the framework of microcline
crystals in the massive varieties; but in the foliated varieties,
quartz ribbons and shape-preferred aggregates of biotite
wrap around the microcline clasts. The mantle of the pluton
exhibits a well-developed tectonic foliation defined by biotite
and quartz lentils in a finer-grained mosaic of recrystallized
minerals; K-feldspars are mostly augen-shaped and define
well-developed S-C fabrics (Figure 7(d)). These features
extend from the mantle into the asymmetric tails of the
pluton. In the intensely-sheared pluton margin around the
central bulge, and in the tails, the former K-feldspar pheno-
crysts occur as augen (Figure 7(e)). Asymmetric clasts and
rare S-C-C’ fabrics in the granitoid tectonites attest to persis-
tent sinistral kinematics; stretching lineations are rare even
in the most intensely sheared varieties. The meso- to
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microstructural and kinematic features are consistent with a
post-D2 emplacement of the pluton that subsequently expe-
rienced D3 deformation. The D3 deformation intensely
affected the pluton margin, but the core of the pluton largely
retained its magmatic texture. In several post-D2 deformed
pink-colored granitoid outcrops, chess-board subgrain
structures indicative of deformation at high-T, >650°C in
quartz [41] is common (Figure 8(a)). In the granitoids,
aggregates of K-feldspar hosted within microcracks oriented
orthogonal to the long axis of quartz lentils (Figure 8(b))
indicate submagmatic flow aided by microcracking in the
cooling pluton (cf. [42]). These meso- and microscale mag-
matic features, lacking in the pre-D2 granitoids, indicate that
the D3 deformation affected the post-D2 plutons closely fol-
lowing their emplacement.

Locally, the D3 fabrics in the granitoids are sinuous
neighboring D4 shears (Figure 6(f)). Commonly, these
shears host melts, and the curving of the D3 fabrics near
the D4 shears continued as long as the melt existed; beyond
the melt-bearing zones, the shears peter out and the D3 fab-
rics are not warped [43]. This suggests the nucleation of the
D4 shears occurred in the presence of melt through a feed-
back relationship [43, 44]. Due to the melt-hosted nature
of the conjugate NNE and ENE-striking shears, we consider
the nucleation of the shears to be broadly contemporaneous
with, albeit closely following, the D3 deformation at supra-
solidus conditions in the granitoids.

3.3. Supracrustal Rocks. The Champaner Group of rocks
occurring in four isolated domains is composed of sheared

Figure 5: Field photographs of mesoscale structures (details in text) in basement gneisses. (a) Plan view (horizontal surface) of a biotite-rich
anatectic gneiss showing D2 isoclinal folds and boudins on melt layers intrafolial to a penetrative S2 schistosity. Note (i) the biotite flakes
folded at the fold hinges, and (ii) the occurrence of garnet (arrow). (b, c) Section views (vertical surface) of D2 recumbent folds in (b) biotite-
poor gneiss and (c) biotite-rich gneiss (S2 is the axial plane of D2 folds on pre-S2 metatexite layers). Note (i) the shallow-dipping D2
foliation in the gneiss, (ii) top-to-the south movement on D2 foliation, and (iii) pinch-and-swell structures (arrow) in leucosome parallel
to S2 axial planes in anatectic biotite-gneiss. (d) Profile section of D3 gently-plunging upright fold on S2 foliation in biotite-rich
anatectic gneiss (hammerhead points North). (e) Plan view of D2 fabrics in rafts of gneisses in D3 mylonite zones. Locations of
photographs are in Supplementary Material 1.
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intraformational meta-conglomerates (with pebble/cobble-
sized round/subrounded quartz clasts) and mica schists
(whitemica − chlorite − clinozoisite/epidote ± biotite ± garnet
± kyanite), quartzites and micaceous quartzites, meta-
carbonates (calcite-dolomite-tremolite-antigorite-quartz),
Mn-rich horizons, meta-arenites (quartz −K − feldspar −
plagioclase −muscovite > biotite), amphibolites (amphibole-
plagioclase-clinozoisite/epidote-quartz), and ultramafic rocks
(tremolite − antigorite ± anthophyllite − titanite ± quartz). The
southern domains are dominated by meta-carbonate, mica
schist/micaceous quartzite, meta-arenite, meta-conglomer-
ate, and Mn-rich horizons [36]. Meta-carbonate horizons
are uncommon in the northern domain dominated by
amphibolites, mica schists, and micaceous quartzites and
ultramafic rocks. The contact between the basement gneis-
ses/granitoids and supracrustal rocks is exposed in several

localities. In zones of low-D3 strain, the contact between
the flat-lying to gently-dipping tectonic fabrics in the
overlying supracrustal rocks and the basement is intensely
deformed or mylonitized. No persistent basal conglomerate
layer was observed to demarcate the contact, but in a few
outcrops sheared oligomict conglomerate adjacent to the
mylonitized basement showed upward size reduction in
the quartz clasts.

The supracrustal rocks exhibit three sets of tectonic fab-
rics. In D3 low-strain domains, the earliest fabric (S0) is a
color banding (sedimentary layering) best observed in
meta-dolomites and quartzites (Figure 9(a)). These layers
exhibit isoclinal folds (D1 deformation) with the develop-
ment of a shallow-dipping axial planar metamorphic fabric,
S1. The D1 folds are round hinged in quartzites and meta-
arenites (Figure 9(b)), sharp hinged in meta-carbonates

Figure 6: Field photographs showing mesoscale structures in granitoids. (a) Grey-granitoid with biotite-rich enclave. Note the penetrative
foliation (arrow) in the enclave; the foliation is absent in the granitoid. (b) Pink granitoid showing steep-dipping S-C fabrics defined by
K-feldspar augen. (c) Pink-colored granitoid showing the trains and tiles of euhedral phenocrysts of K-feldspar. (d) Steeply-dipping
white-colored foliated granitoid with an enclave of biotite-rich gneiss. (e) Shallow-dipping granitoid mylonites. (f) Networks of
sinistral N-trending ductile melt-filled shears off-setting warped D3 deformation fabric in granitoid. Locations of photographs are in
Supplementary Material 1.
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(Figure 9(a)), but rarely preserved or obliterated in mica/calc
schists. The S1 fabric is either recumbently folded or trans-
posed (D2 deformation) parallel to a flat-lying to gently-
dipping S2 axial plane schistosity (Figure 9(c)). In contrast
to the gneisses, the D1 and D2 fabrics in the mica schists,
metacarbonates, and amphibolites (and interleaved ultra-
mafic rocks in the north) in the supracrustal unit are defined
by minerals of lower metamorphic grade, e.g., quartz −
chlorite −muscovite ± clinozoisite/epidote ± biotite in mica
schist, talc-tremolite-antigorite in a recrystallized mosaic of
calcite-dolomite-quartz in metacarbonates, cummingtonite
– hornblende quartz in amphibolite, and tremolite −
antigorite ± anthophyllite in ultramafic rocks.

In profile sections of open W/E-plunging D2 folds and
normal to the D2 stretching lineations (L2) in granites, the
D2 folds in the supracrustal rocks display top-to-the south
kinematics (Figure 9(d)). In and neighboring D3 shear
zones, the D1-D2 axial plane fabrics are thrown into a set
of upright to steeply-inclined folds with subhorizontal to
gently-plunging hinge lines (Figure 9(e)). Within the
W/WNW-striking D3 shear zones, the D3 folds are tigh-
ter, and the fabrics are transposed subparallel to D3 fab-
rics (S3) (Figure 9(f)). The superposition of D2 and D3
folds leads to type-3 fold interference structures locally
(Figure 9(g)). The D3 shear bands in vertical sections
normal to the W/WNW-trending D3 stretching

Figure 7: (a) Structural-lithological map of the core-mantled structured Sanada granitoid pluton with asymmetric tails. (b–d) Plan view
images of mesoscale structures in the granitoid; pen-head points north. (b) Randomly-oriented euhedral K-feldspar porphyries in the
core of the pluton; note the mesoscale tectonic fabrics are lacking, and the absence of recrystallization in K-feldspar phenocrysts.
(c) Trains of euhedral to subhedral phenocrysts of K-feldspar in a finer-grained recrystallized mineral matrix close to the northern margin
of the pluton. Finger is shown for scale only. (d) Augen of K-feldspar phenocrysts showing S-C fabrics in sheared granitoids in the eastern
tail of the pluton. (e) K-feldspar augen showing sinistral kinematics and ENE-striking extensional shear bands in granitoid in the eastern
tail of the pluton. Locations of photographs are in Supplementary Material 1.
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lineations and fold axes (L3) (see below) indicate persis-
tent N-down kinematics (Figure 9(h)).

3.4. Syntheses of Mesoscale Structures. In the two shallow-
dipping domains (Figures 3(a) and 3(b)), the poles to the
D2 mylonite foliation (earliest recognizable planar tectonic
fabric) in the pre-D2 granitoids constitute a point maxi-
mum corresponding to a plane dipping 14° ⟶ 285N
(Figure 4(a)). These D2 foliation planes in the S-L mylo-
nites with down-dip stretching lineations plunging to the
west are coplanar with the axial planes of the D2 recum-
bent/gently-inclined folds in the gneisses (Figure 4(b)).
Although data are limited because of the lack of critical out-
crops, the hinges of D2 recumbent folds are collinear with the
stretching lineations. The axial planes and fold axes of the D2
recumbent to gently inclined folds in the nonanatectic
amphibolite facies supracrustal rocks in all the four domains
(Figure 4(c)) also overlap with the D2 mylonite fabric and the
stretching lineations, respectively, in the granite mylonites
(Figure 4(a)). The D2 folds in the anatectic basement gneisses
and the nonanatectic supracrustal rocks of low metamorphic
grade and the D2 fabrics in the granite mylonites were
induced by top-to-the-south thrusting manifested by S-C
fabrics and fold vergence in all three lithodemic units
(Figure 10(a)).

The anastomosing network of W/WNW-striking steep-
dipping D3 fabrics in the granitoids (Figure 4(d)) and the
W/WNW trending D3 folds in the basement gneisses
(Figure 4(e)) and the supracrustal rocks (Figure 4(f)) are
correlated with D3 shear zones characterized by sinistral
and north-down kinematics (Figure 4(d)). The progressive
tightening of the gently-plunging D3 folds in the neighbor-
hood of the D3 shear zones, and the transposition of the for-
mer fabrics within the D3 shear zones, best observed in the
supracrustal rocks, testify to this correlation. The hinges of
the D3 folds (Figures 4(e) and 4(f)) broadly overlap with
the gently-plunging stretching lineations in the steep dip-
ping W-striking D3 mylonite zones (Figure 4(d)).

The mesoscale imbrications and trains of touching
euhedral K-feldspar phenocrysts defining steep-dipping fab-
rics in syn-D3 granitoids are significant [40, 43]. The feature

suggests the melt/crystal volume ratio in these granitoids
during emplacement was high enough to allow the euhedral
K-feldspar phenocrysts to rotate and align themselves [40].
These feldspars describe asymmetric augen locally within
the W-striking D3 shears (Figure 7(e)); this implies that
the volume fraction of melt in the magma waned consider-
ably either due to melt expulsion and/or rapid cooling in
the ascending melts thereby reducing the melt/crystal ratio.
Reduction in the ratio induced grain-to-grain contact and
caused the feldspar to deform in the solid state. The
common occurrence of high-T deformation microstructures
in the blastoporphyritic pink granites [28; this study
Figure 8(a)] indicates the D3 deformation in the granites
occurred at T > 650°C [41], but the deformation outlasted
emplacement and solidification in these granitoids. Finally,
the localized occurrence of melt-bearing NNE-striking dex-
tral shears and ENE-striking sinistral shears also suggest
local melt pods in the granitoids helped to nucleate the shear
zones [43, 45] during the D3 deformation.

In the metatexite basement gneisses, pre-D2 melting is
common. But syn-D2 melt productivity in the gneisses was
extremely limited and restricted to few biotite-rich gneiss
outcrops, and post-D2 anatexis is lacking in both the
gneisses (and the supracrustal rocks). The lack of anatexis
in the biotite-rich gneisses and the muscovite-biotite bearing
supracrustal rocks even in the neighborhood of syn-D3
granitoids suggests that the granitoids cooled below the
melting temperature both in the basement and cover rocks
[46, 47]. However, this does not preclude the fact that the
D3 deformation occurred in a crust being heated by the
cooling pre/syn-D3 granitoids.

4. Geochronology

Chronological information on the timing of the different
magmato-metamorphic and deformation events in the
rocks in the Godhra-Chhota Udepur sector is critical for
(a) understanding the tectonic evolution in the area, and
(b) correlating the tectonic history with crustal domains
to the east and the north of the Godhra-Chhota Udepur
sector. In this section, we present U-Pb (zircon) and

Figure 8: Deformation microstructures in granitoids in sections oriented orthogonal to the foliation and parallel to the stretching lineation.
(a) Chess-board subgrain structures in quartz in post-D2 pink granitoid. Note iron-grid twinning in a part of large microcline (Mc) crystal.
(b) Microfracture in quartz ribbon (symbol Qtz) showing weak strain wavy extinction is filled with aggregates of recrystallized feldspar. The
microfracture is oriented orthogonal to the long axis of quartz grain. Other mineral phases marked are biotite (Bt) and plagioclase (Pl).
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monazite chemical dates from the basement gneisses, foliated
granitoids, and a mica schist from the Champaner Group
from the Godhra-Chhota Udepur sector (locations in
Figure 3(b)).

4.1. U-Pb Zircon Dating. U-Pb zircon dating was carried out
on two samples, anatectic basement gneiss (AW-22) and
foliated granite (AW-5). For separating zircons, the samples
were crushed and sieved followed by panning to remove the

Figure 9: Field photographs of mesoscale structures in supracrustal rocks. (a) Early D1 isoclinal folds on color banding (S0) in meta-
carbonate. (b) Round hinged D1 recumbent folds on color banding in meta-arenite. (c) D2 folds on D1 schistosity in micaceous
quartzites. (d) D2 top-to-the south transport in shallow-dipping mica schist-quartzite composite. (e) Disharmonic D3 fold on shallow-
dipping D2 schistosity in micaceous quartzites. (f) Penetrative steep-dipping D3 axial plane fabric in meta-carbonate (green colored
mineral is tremolite). (g) Type-III interference in metacarbonates (hinge of D2 recumbent fold: filled arrow, hinge of D3 fold: open
arrow). (h) D3 Shear bands showing N-down sense of movement in micaceous quartzite. Locations of photographs are in Supplementary
Material 1.
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lighter fraction. Heavy liquid and magnetic separations were
then performed on the heavier fraction. Finally, the zircon
grains were handpicked under a binocular stereomicroscope
and mounted in araldite. The mount was then polished to
expose the cores of the grains. The zircon grains in both
samples are large (~200μm length, ~50μm diameter), honey
yellow to light brown in color, and transparent to translu-
cent in appearance. The zircon grains are euhedral to subhe-
dral and exhibit luminescent core-rim structures; some
grains also show patchy and oscillatory zoning in cathodolu-
minescence (CL) images taken using the RELION CL instru-
ment at the Plateforme GeOHeLiS, Géosciences Rennes,
University of Rennes (Figures 11(a) and 11(c)).

LA-ICP-MS U-Pb analysis of zircons was performed at
the Plateforme GeOHeLiS, Géosciences Rennes, University
of Rennes using an ESI NWR193UC Excimer laser coupled
to an Agilent 7700x, Q-ICP-MS equipped with a dual pump-
ing system to enhance sensitivity. Ablation spot diameters of
25μm with a repetition rate of 4Hz and a fluence of 5 J/cm2

were used. The instrumental condition is detailed in Table 1
[48–51]. Data reduction was performed using Iolite v4 soft-
ware using U-Pb Geochronology DRS [50]. As the measure-
ment of 204Pb is not precise enough using a Q-ICP-MS, we
did not apply a common Pb correction on the data. The
presence of common lead can be qualitatively assessed using
the f206c indicator which is calculated as follow:

f 206c =
207Pb
206Pbm

−
207Pb
206Pb

∗
� �

/
207Pb
206Pbc

−
207Pb
206Pb

∗
� �

, ð1Þ

where 207Pb/206Pbm is the measured ratio, 207Pb/206Pb ∗ is
the radiogenic expected ratio given a defined age
(206Pb/238U age if it is <1000Ma, 207Pb/206Pb age if not),

and 207Pb/206Pbc is the common Pb ratio based on the
Stacey and Kramers [52] Pb evolution model. As this fac-
tor relies on assumptions made on the age and on the Pb
model, it is only indicative; however, we are confident that
the data used for age calculation do not show high level of
common Pb.

For individual analyses (Tables 2(a) and 2(b)), the repro-
ducibility of the quality control reference material (Supple-
mentary Material 2) has been propagated by quadratic
addition as proposed by [51]. The long-term uncertainty
(1.9%) is only applied to population age and is quoted in
italics between brackets in the text. All uncertainties are
quoted at two sigmas. Concordia diagrams (Figures 11(b)
and 11(d)) are generated using IsoplotR [53], and the
reported MSWD is for concordance and equivalence. The
analytical data for the zircon standard GJ-1 is provided in
Supplementary Material 2.

AW-22 (anatectic basement gneiss): the gneiss within the
shallow-dipping D2 tectonic mélange is located in the south
of the investigated area, outside the bounds of the steep-
dipping D3 shear zone (Figures 3 and 4). A total of 45 spots
were analyzed in 25 grains from AW-22. The zircon grains
mostly exhibit patchy zoning with some grains displaying
core-rim structures (Figure 11(a)). Most analyses show
Th/U ratios >0.2; two spots, however, have Th/U ratios <
0:1. These spots (Th/U < 0:1) pertain to CL-dark patches
in two zircon grains and furnish discordant ages. Concor-
dant analyses are obtained from 11 spots with a Concordia
age of 1618 ± 5 (± 62) Ma (MSWD: 1.4, Figure 11(b)).
Analyses of another 18 spots plot together with concor-
dant analyses on a Discordia whose upper intercept age
is 1672 ± 18 (± 66) Ma.

AW-5 (granite): the blastoporphyritic pink granite is also
located within the shallow-dipping carapace (Figure 3); the

Figure 10: Schematic block diagrams displaying the structural development in the Godhra-Chhota Udepur sector during the (a) D2
deformation and (b) D3 deformation events. Strain ellipsoids showing the possible strain axes orientations for each deformation are also
shown. The question marks in the block diagrams indicate the uncertainty of the basement structures below the D2 shallow-dipping
carapace.
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steep-dipping D3 shears are lacking in the granite. A total of
35 spots were analyzed in 25 grains from the foliated granite
sample AW-5. The zircon grains mostly show patchy
zoning with weakly preserved core-rim structures
(Figure 11(c)). All analyses have Th/U ratios > 0:2, except
for 5 analyses. These 5 spots (Th/U ~ 0:02 – 0:09) pertain
to CL dark domains, and three of them occur as rims

on zircon grains and furnish a concordant age of 926 ±
11 (± 37) Ma (MSWD: 0.09). As this age comes from only
one grain with a very low MSWD, we consider it as
poorly constrained. Another Concordia age population is
obtained at 1613 ± 7 (± 62) Ma (16 analyses, MSWD:
0.72) from the cores of the zircon grains. Altogether, and
with 4 additional discordant spots, these analyses define

Figure 11: (a, c) Representative cathodoluminescence (CL) images of zircon grains in basement gneiss AW-22 and granite AW-5,
respectively, showing analyzed U-Pb spots (circled) and their corresponding 207Pb/206Pb ages with 2σ errors, (b, d) Zircon U-Pb
Concordia plots for the two samples, respectively.
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a Discordia that yields an upper intercept age of 1658 ± 35
(± 72) Ma and a lower intercept age of 921 ± 43 (± 55)
Ma (Figure 11(d)).

4.2. Monazite Chemical Dating. In this study, monazites in
four samples were analyzed by electron microprobe dating
[54] in the Department of Earth Sciences, Indian Institute
of Technology, Bombay (Powai). The protocol for monazite
analyses is detailed in [55], and only a brief summary is pre-
sented here. The analyses were performed with a focused
beam (~1μm diameter), the accelerating voltage was 15 kV,
and the beam current was 200nA. Th, U, and Pb were
analyzed using the ThMa, UMb, and PbMa X-ray lines simul-
taneously on two LPET crystals with peak counting times of
160 s, 160 s, and 240 s, respectively. Background measure-
ments were made with half the peak time. The peak and
background acquisitions for Pb were done using the PbMa
peak position based on a two-point exponential fit following
the suggestions of [56]. This is in contrast to a multipoint
exponential fit [57, 58] that produces statistically meaningful
background values for Pb and reduces the uncertainties in
the chemical dates obtained from monazites by tens of
millions of years. For our samples, we have adopted the
two-point exponential fit method, and the measured intensi-
ties for PbMa were corrected for ThM2-O4, ThMζ1, ThMζ2,
YLC2, YLC3, and LaLa interferences. Also, samples were cho-
sen such that the abundances of the elements ThO2 (3.35–
17.43wt%), UO2 (0.01–1.40wt%), PbO (0.17–0.77wt%),
and Y2O3 (0.21–3.03wt%) were high to keep errors in back-
ground measurement low; only spots with 2σ errors < 8%
errorð100 × 2σerrors/totalage inMaÞ [59] were considered.

The Th-U-Pb (total) chemical dates in monazites were
obtained following the formulation of Montel et al. [54].
Based on X-ray element maps Th, U, Pb, and Y
(Figure 12) and back-scattered electron images, 80 spot dates
in chemically distinct domains were analyzed in the samples,
e.g., basement anatectic gneiss (AW-142), a biotite-rich
gneiss enclave within grey-colored granitoid (AW-77B),

Table 1: Operating conditions for the LA-ICP-MS equipment.

U-Pb zircon analyses

Laboratory and sample
preparation

Laboratory name
Plateforme GeOHeLiS, Géosciences

Rennes/OSUR, Univ. Rennes

Sample type/mineral Zircon

Sample preparation
Conventional mineral separation,

1-inch araldite mount, 1μm polish to
finish

Imaging
CL: RELION CL instrument,

Olympus microscope BX51WI, Leica
color camera DFC 420C.

Laser ablation system

Make, model, and type ESI NWR193UC, excimer

Ablation cell ESI NWR TwoVol2

Laser wavelength 193 nm

Pulse width <5 ns
Fluence 5 J/cm2

Repetition rate 4Hz

Spot size 25μm (round spot)

Sampling mode/pattern Single spot

Carrier gas
100% He, Ar make-up gas and
N2 (3ml/min) combined using
in-house smoothing device

Background collection 15 seconds

Ablation duration 60 seconds

Wash-out delay 15 seconds

Cell carrier gas flow (he) 0.75 l/min

ICP-MS instrument

Make, model, and type Agilent 7700x, Q-ICP-MS

Sample introduction Via conventional tubing

RF power 1350W

Sampler, skimmer cones Ni

Extraction lenses X type

Make-up gas flow (Ar) 0.75 l/min

Detection system
Single collector secondary electron

multiplier

Data acquisition protocol Time-resolved analysis

Scanning mode Peak hopping, one point per peak

Detector mode
Pulse counting, dead time correction
applied, and analog mode when

signal intensity >~ 106 cps

Masses measured
204(Hg +Pb), 206Pb, 207Pb, 208Pb,

232Th, 238U

Integration time per peak 10-30ms

Sensitivity/efficiency 28000 cps/ppm Pb (50 μm, 10Hz)

Dwell time per isotope 10-30ms depending on the masses

Data processing

Calibration strategy

91500 zircon used as primary
reference material, GJ-1 zircon used
as secondary reference material

(quality control)

Table 1: Continued.

U-Pb zircon analyses

Reference material info
91500 [48]
GJ-1 [49]

Data processing
package used

Iolite v.4.4, U-Pb Geochronology
DRS [50]

Mass discrimination

Standard-sample bracketing with
207Pb/206Pb and 206Pb/238U
normalized to reference

material 91500

Common Pb correction No common Pb correction

Uncertainty level and
propagation

Ages are quoted at 2 sigma,
propagation is by quadratic addition

according to [51].

Quality control/validation
GJ-1, Concordia age = 603:2 ± 2:3Ma

(n = 14; MSWD= 1:8)
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muscovite-biotite schist within the supracrustal unit (AW-
82A), and pink granitoid with steep-dipping D3 fabrics
(AW-16). A brief description of the rocks, textural-
chemical characteristics, and summary dates in monazite
are provided in Table 3. The mean population ages were
statistically resolved using Isoplot 3.0 [60]. The spot ages
were calibrated against the monazite standard Steenkamp-
skraal (SHRIMP age 1030 ± 6Ma) [61]. Monazite analytical
data and spot ages (±2σ errors) are presented in Supplemen-
tary Material 3 [62].

In the samples, monazite grains are common within
mica aggregates and are rarely observed in quartz-feldspar
rich domains. The analyzed monazites occur as ellipsoidal
to prismatic grains xenoblastic to subidioblastic in shape
(Figures 12(a)–12(d)). The long axis of the monazites in
the gneisses and granites was > 20μm, and up to 50μm in
rare grains (Figure 12). Out of 35 meta-argillaceous/arena-
ceous supracrustal rocks, monazites were identified in only
one sample (AW-82A) with grains typically ~10um in
length. The monazites in the four samples are of two textural
types, i.e., monazites nebulously and concentrically zoned in
Th, Y, U, and rarely Pb, and chemically homogenous mon-
azites (Figure 12). In total, 74 spots were analyzed in the four
samples (Supplementary Material 3). Monazite spot ages in
all the samples taken together varied between 905 ± 35Ma
and 1059 ± 71Ma (Table 3, Supplementary Material 3).
The error%½100 x ð2σ error inMaÞ/ðabsolute age inMaÞ� per
spot is less than 5%, except for 3 spot ages (6.2%, 5.1%,
and 5.2%) in AW-142, and between 5.38 and 13.8 in 9 out
of 10 spots in the mica schist AW-82A (Supplementary
Material 3). The error% increases with decreasing ThO2
and PbO contents, but is weakly correlated with UO2 and
Y2O3 contents (cf. Prabhakar [62]).

Seventeen spot dates in the anatectic gneiss AW-142
yield a mean population date of 905 ± 9Ma (MSWD= 0:59)
(Figure 12(a)). The 23 spot dates in the anatectic gneiss
(AW-77B) occurring as an enclave within a foliated gran-
ite are resolved into two populations with mean dates of
947 ± 12Ma (MSWD = 0:63) and a subsidiary peak at
1005 ± 15Ma (MSWD= 2:1) (Figure 12(b)). By contrast,
the statistically-resolved mean population dates obtained
from 25 spots in the foliated granite (AW-16) are 912 ±
12Ma (MSWD= 0:27) and 974 ± 11Ma (MSWD= 2:1)
(Figure 12(c)). And finally, the 10 spot dates in muscovite-
schist AW-82A neighboring Jambughoda in the Champa-
ner Group are resolved into a single age population with
the mean age of 972 ± 31Ma (MSWD= 1:7) (Figure 12(d)).

5. Discussion

5.1. Kinematics of Deformation in the Godhra-Chhota
Udepur Sector. In this section, we summarize several crucial
aspects in the Godhra-Chhota Udepur sector that are con-
spicuous from an analysis of the mesoscale and regional
structures (Figure 10). First, the D2 stretching lineations in
granitoids, and the hinges of recumbent to gently-inclined
tight folds in the basement gneisses (Figures 4(a) and 4(b))
and the lower grade supracrustal rocks (Figure 4(c)) in the
shallow-dipping tectonic mélange are broadly collinear.

Second, top-to-the south overthrusting resulted in the D2
folding in the supracrustal rocks and the gneisses that are
interleaved with pre-D2 granitoid mylonites; the axial planes
of D2 folds are coplanar with the earliest tectonic fabric in
the grey granitoids (Figure 4(b)). Third, the D3 stretching
lineations in granitoids (Figure 4(d)) and the hinges of
upright to steeply-inclined gently-plunging tight to open
folds in the gneisses (Figure 4(e)) and the supracrustal rocks
are broadly collinear (Figure 4(f)). Fourth, the W/WNW-
plunging stretching lineations in the D2 shallow-dipping
tectonic nappes (Figure 4(b)) and in the steep-dipping
W/WNW-striking shear zones (Figure 4(e)) that dissect
the carapace share a low-angle obliquity. And finally, the
D3 deformation was broadly contemporaneous with the
emplacement of pink blastoporphyritic granitoids, but in
most cases, the deformation outlasted solidification in the
granitoids.

Any kinematic model for deformation in the Precam-
brian rocks in the area needs to account for these attributes
of planar and linear structures. Several authors have
addressed the issue of colinearity of fold hinges and stretch-
ing lineations both parallel and oblique to the slip direction
[63–69]. The colinearity may result from the progressive
rotation of hinges of contemporary folds that formed ini-
tially oblique to the extension direction of the strain ellipsoid
[69, 70]. Alternatively fold hinges subparallel to stretching
lineations may nucleate as a consequence of shearing
[68, 71, 72]. The D2 stretching lineations (x-axis of the
strain ellipsoid) in the two domains of the shallow-dipping
carapace (XY plane) of the Godhra-Chhota Udepur sector
(Figures 3(a), 3(b), and 10(a)) were determined in granite
mylonites. The mylonite fabric, demonstrably axial planar
to the recumbent/gently-inclined D2 folds in the basement
gneisses, is the first recognizable tectonic fabric in the gran-
ites that otherwise do not preserve any preexisting tectonic
fabric. In addition, the lack of wide variations in the orienta-
tions of the D2 fold hinges in the gneisses (Figure 4(b)) and
the supracrustal rocks (Figure 4(c)), and the stretching linea-
tions (Figure 4(a)) suggest the colinearity of the fold hinges
and the stretching lineations were not formed by the progres-
sive rotation of the early formed folds towards the x-axis.
Instead, the persistent top-to-the-south sense of movement
on D2 foliation surfaces both in the allochthonous supracrus-
tal rocks and in the gneisses was caused by basement involved
thrust tectonics involving N-S shortening (Figure 10(a)).

The subvertical E-striking D3 shear zones with persistent
sinistral and N-down kinematics exhibit W/WNW-trending
moderately-plunging stretching lineations (Figure 10(b)). In
transtensional shear zones, folds typically originate at angles
>45° to the shear plane and are subsequently rotated towards
the orientation of the divergence vector. In contrast, the
folds induced by transpressional deformation form at angles
<45° to the XY plane, but rotate towards the shear zone
with increasing strain [72]. It stands to reason therefore
that the low-angle obliquity between the D3 fold hinges
in the basement gneisses/supracrustal rocks, and the D3
stretching lineations (x-axis) (Figure 10(b)) was the
result of transpressional deformation. Although quantitative
information is lacking, it appears that D2-D3 deformations

19Lithosphere

Downloaded from http://pubs.geoscienceworld.org/gsa/lithosphere/article-pdf/doi/10.2113/2022/9322892/5581946/9322892.pdf
by guest
on 17 November 2023



Figure 12: Monazite characteristics arranged column wise. Back scattered electron images of textural settings of monazites, representative
Th and Y element maps of two monazites/per sample with embedded spot dates (±2σ) in Ma, and probability-density plots showing mean
populations dates (in Ma) in monazites in four samples: (a) anatectic gneiss (AW 142), (b) anatectic gneiss enclave within granite (AW 77B),
(c) steeply foliated granitoid (AW 16), and (d) mica schist (AW 82A). Acronyms used for minerals: plagioclase (P), K-feldspar (K), quartz
(Q), muscovite/biotite (M/B), and apatite (A). Monazites are circled.
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essentially involved a transition from thrust-dominated (D2)
to wrench-dominated (D3) deformation that involved flip-
ping of the Y and Z axes for orogen-parallel stretching caused
by N-S shortening. The flipping of the z-axes from near-
vertical during D2 to near-horizontal during D3 occurred
irrespective of the nature of the rock types. But imbrications
and linear trains of touching euhedral K-feldspar pheno-
crysts defining the steep-dipping W-trending magmatic
fabrics in syn-D3 granitoids, subgrain chessboard micro-
structure in post-D2 granitoids ([28]; Figure 8(a)), and the
pair of possibly conjugate near-vertical NNE and ENE
melt-hosted D4 shear zones in the pink granitoids indicate
that the D3-D4 deformations involving crustal shortening
postdating D2 thrusting and crustal thickening were broadly
contemporaneous with the emplacement of felsic melts. The
transpressional W-striking D3 shears with moderately
plunging stretching lineations and the near-vertical NNE
and ENE shears indicate that the shortening direction was
probably close to NNE-SSW. The expansive syn-D3 felsic
plutonism is likely to have reduced the dynamic viscosity of
the melt-bearing crust [73] and contributed to the nucleation
of the D3 shear zones (cf. [74]). Also, the addition of large
amounts of felsic magma during inhomogeneous progressive
NNE-SSW shortening (cf. [75]) may have contributed to
the flipping of the Y- and z-axes during D2-D3 for a similar
orientation of orogen-parallel x-axis (Figures 10(a) and 10(b)).

5.2. Timing the Tectonic Events and Implications. Both
monazite and zircon can be used to date high-T events,
but monazites have the added advantage of being used to
date low-T events [76–78] by fluid-induced dissolution-
precipitation [78, 79] much below the temperature at which
intracrystalline diffusion of Pb ceases in monazite and
zircon, >750°C [80]. However, the problem with monazite
dating is two-fold. First, chemical dates in monazites are
associated with larger errors relative to isotopic dating.
Second, chemical compositions of monazites are readily
modified by fluid-induced processes [76–78], and therefore,
there is less likelihood of preservation of older dates,
unless the monazite grains are sequestered from fluid-
aided alterations.

For the two samples dated with zircon, the Concordia
dates are younger (ca. 1618Ma) than the upper intercept
age (1672Ma). Given the large ellipses of the concordant
points, it is possible that some of the points were actually
affected by the lead loss and thus drive the Concordia dates
towards younger age. Therefore, the upper intercept dates
are considered to be more representative of the zircon age,
although not very different than the Concordia dates. The
U-Pb age of 1672 ± 18Ma in the anatectic gneiss AW-22
(Figure 11(b)) pertains to the age of the pre-D2 high-grade
metamorphism in the rocks and overlaps with the age of
zircon cores in the foliated granite AW-5 (Figure 11(d)).
The cores of these zircon grains are inherited and the date
926 ± 11 ð±37Þ Ma (MSWD: 0.09; Figure 11(d)) obtained
from a single zircon grain and the lower intercept date
921 ± 43 ð±55Þ Ma (Figure 11(d)) obtained from the Discor-
dia defined by 23 analyses at the rims of the zircon grains
dates magmatic crystallization. This age is comparable with

the existing Rb-Sr isochron dates for the Godhra granite,
e.g., 965 ± 40Ma [25], 955 ± 20Ma [22], and 955Ma [26].
The range of monazite ages (905 ± 35Ma to 1059 ± 71Ma)
obtained from 74 spots in the four samples, including the
Champaner white mica schist, straddle the Early Neoproter-
ozoic U-Pb dates obtained in zircon (this study), and the
existing Rb-Sr ages in the Godhra granite. These data suggest
that the 1.0–0.9Ga (mean value 0.95Ga) corresponds to
the intense D2-D3 deformation-metamorphism events
and expansive emplacements of post-D2 to syn-D3 felsic
intrusives. The granite AW-5 is likely to have formed
due to partial melting of the Late Paleoproterozoic base-
ment gneisses prior to experiencing the D2-D3 Early Neo-
proterozoic tectonism related to N-S crustal shortening
induced by oblique accretion.

It is important to note that the Late Paleoproterozoic
dates are not recorded in the cores of the analyzed mon-
azite grains in the gneisses. It is likely that the older
monazites, if present, were chemically modified due to
dissolution-precipitation processes during the pervasive
D2-D3 deformation-metamorphism experienced by all
lithodemic units in the Godhra-Chhota Udepur sector.

5.3. Structural Evolution in the CGC-SMB vis-à-vis GC
Sector. The lithological ensemble in the Chottanagpur
Gneiss Complex (CGC) and the central and southern
domains of the Satpura Mobile Belt (SMB) in the southern
arm of the GIPFOB, also labeled as the Central Indian
Tectonic Zone [18], is broadly similar ([19]; Figure 1(b)).
Both in the CGC ([47, 81, 82] and references therein) and
in the central and the southern domains of SMB [83–86],
the basement is dominated by anatectic high-grade quartzo-
feldspathic gneisses, garnet-sillimanite-K-feldspar bearing
metapelites (khondalites), and charnockite-enderbite gneis-
ses. These are intruded by granitoids that are massive,
gneissose, foliated, or mylonitic. Nonanatectic amphibolite
facies supracrustal rocks such as muscovite-biotite schist
(±garnet ± sillimanite ± staurolite), micaceous quartzites, meta-
dolomite/marble and meta-marl, and meta-arenaceous rocks
constitute the third lithodemic component. Monazite
chemical dates and Pb-Pb zircon dates in the lithodemic
units in the CGC-SMB are compared by Banerjee et al.
[19]. The dates in the CGC-SMB, disregarding those
obtained from detrital zircon, are Late Paleoproterozoic/
Early Mesoproterozoic (1.65–1.50Ga) to Early Neoproter-
ozoic (1.0− 0.9Ga); the oldest dates correspond with
high-grade metamorphism in the anatectic gneisses and
gneissose granitoids [85–91]. The supracrustal rocks and
the younger granitoids are dominantly Early Neoproterozoic
([19], and references therein). The mid-Mesoproterozoic
granitoids (1.45−1.35Ga), prolific in northern and central
CGC [47], are not recorded in the central and southern seg-
ments of the SMB.

The Precambrian crystalline rocks of the CGC are
traversed by a network of E/ENE-striking regional-scale
steeply-dipping basement-piercing dominantly left-lateral
transpressional shear zones [46, 47, 92–94]. The shear zones
are commonly characterized by gently plunging stretching lin-
eations, although steep stretching lineations are documented
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in the centrally located parts of the CGC [46, 94], and along
the orogen margins [92–94]. The flipped lineations in the
Hundru Falls shear zone are attributed to perturbations in
the convergence direction as a result of oblique NIB-SIB
accretion [94]. The shear zones truncate a shallow-dipping
carapace of allochthonous supracrustal rocks, Early Neopro-
terozoic (1.0− 0.9Ga) and Mid-Mesoproterozoic (1.45
− 1.35Ga; [47]) granitoid mylonites, and recumbently folded
Late Paleoproterozoic/Early Mesoproterozoic (1.65–1.5Ga)
basement gneisses [19, 46, 47, 92, 94]. The thrusting of the
allochthonous supracrustal rocks (formation of the
shallow-dipping carapace) and the nucleation of E/ENE-
striking transpressional steep shear zones are correlated
with continued crustal shortening induced by Early Neo-
proterozoic SIB-NIB convergence [46, 47, 94].

The central and southern domains of the E-striking
Satpura Mobile Belt (SMB) [95–97] exhibit significant struc-
tural similarities with those in the CGC. The recumbent
folds in anatectic gneisses in these domains are attributed
to southward thrusting leading to the interleaving of the
basement rocks and the supracrustal rocks [96]. In the
CGC, the thrusting is inferred to have been caused by
northward translation of the allochthonous unit over the
high-grade gneiss-granitoid basement [46, 47, 92–94]. Addi-
tionally, in these domains, the hinges of gently-plunging/
subhorizontal E/W-closing folds in supracrustal rocks and
anatectic gneisses with steep-diping axial surfaces [97, 98]
are collinear with gently-plunging stretching lineations in
the networks of steeply-inclined E-striking left-lateral trans-
pressional shear zones [96]; some of these SMB shear zones
exhibit steeply-plunging stretching lineations [96]. These
shear zone networks originated due to oblique accretion
between the Bundelkhand Craton in the north and the
Bastar Craton in the south [85, 96, 98]; the variations in
the orientations of the stretching lineations in the SMB are
attributed to deformation strain partitioning [96].

Summarizing, it appears that the formation of shallow-
dipping carapace and the nucleation of steep-dipping shears
that affected the granite body, still hot and locally melt-bear-
ing, was also Early Neoproterozoic in age. We suggest, there-
fore, that the Godhra-Chhota Udepur sector forms the
westernmost extension of the E-striking arm of the GIPFOB
or the CITZ that possesses a coherent Early Neoproterozoic
accretion tectonic history involving oblique convergence
between the NIB and the SIB.

5.4. The Southern Arm vis-à-vis the Western Arm (ADFB).
The N/NNE-striking ADFB essentially comprises Archean
basement gneisses and granitoids (BGC-I), some of which
are deemed to be remobilized (Sandmata Mangalwar
Complex, BGC-II) and are overlain by two sedimentary
successions, namely, the Aravalli and Delhi Supergroup
of rocks juxtaposed along multiple thrusts and shear zones
[99–105; https://bhukosh.gsi.gov.in)]. The E-striking Early
Neoproterozoic structures in the Godhra-Chhota Udepur
sector at the southern tip of the ADFB (Figures 1(a) and
1(b)) are nearly orthogonal to the trend of the N/NNE-
striking mesoscale structures in the ADFB (Figure 2); in
fact, the ADFB structures are reoriented and terminated

against the E-striking regional structures along the south-
ern arm of the GIPFOB. Several features in the northern
arm of the GIPFOB—especially the mesoscale structures
and the chronology of magmato-metamorphic events
[99–118]—differ considerably from those in the southern
arm. First, the tectonic trends in the ADFB are dominantly
NNE striking (Figure 2). At the southern end of the
ADFB, the structural trends swing to an E-W orientation
[27] (Figure 2). Second, the basement rocks of the ADFB
are Mesoarchaean (~3.2Ga; [99, 101, 112, 119–122]); these
Mesoarchean amphibolite-facies tonalite-trondhjemite
gneisses are intruded by Late Neoarchean (~2.5Ga) granit-
oids at Berach, Untala, Gingla, and Ahar River [33, 100,
112, 121, 123–125]. By contrast, the basement rocks in the
SMB-CGC and the GC sector (this study) are significantly
younger, i.e., Late Paleoproterozoic to Early Mesoproterozoic
[19]. Third, the basement (anatectic) gneisses [102, 103, 105,
106, 125–127] or remobilized BGC [128], associated granites
(BGC-II), and the Sandmata granulites along the Kaliguman
thrust are Paleoproterozoic in age (1.85–1.70Ga; [103, 104,
106, 129, 130]). Fourth, the supracrustal rocks in South Ara-
valli share an angular unconformity with the basement gneis-
ses [131, 132]. By contrast, an erosional contact between the
basement rocks and the supracrustal rocks is lacking in the
CGC. In the SMB, the unconformity suggested at Mansar
[133–136] has been refuted [137, 138]. In the Godhra-
Chhota Udepur sector, an erosional unconformity between
the supracrustal rocks of low metamorphic grade and the
basement gneisses/granitoids has been suggested [139], but
no clear cut persistent unconformity/basal conglomerate
layer at the intensely sheared contact between the two units
was observed in this study, and we suggest the contact is
tectonic in nature. Fifth, unlike in the southern arm of the
GIPFOB, expansive Early Neoproterozoic shallow-dipping
tectonic foliations are not reported in the ADFB. Open
recumbent folds in Salumbar in southern parts of the ADFB
[128] are locally developed and do not constitute a major
fabric-forming event, as recorded in CGC-SMB. And finally,
the regional D3 and D4 structures in the Aravalli and Delhi
Supergroups in ADFB are identical [128], where the D4
upright thrust-related conjugate folds [128] are NNE and
W-trending, with moderate to steep-plunging hinge lines.
By contrast, the D4 structures in the Godhra-Chhota Udepur
sector are E/WNW striking, near-orthogonal to the NNE-
trending D4 folds [128] in ADFB.

6. Conclusions

Based on the foregoing discussion and the findings from
this study and existing data, we suggest the curved nature
of the N/NNE-trending structures at the southern tip of
the ADFB (Figure 2) is due to the termination of the N/
NNE-striking structures against the Early Neoproterozoic
E-W-striking D2-D3 accretion-related deformation fabrics
in the Godhra-Chhota Udepur sector that forms the west-
ernmost extent of the E-striking southern arm of the GIP-
FOB. In other words, the Great Indian Proterozoic Fold
Belt is composed of two distinct accretion orogens, e.g., the
N/NNE-striking western arm formed due to the convergence

23Lithosphere

Downloaded from http://pubs.geoscienceworld.org/gsa/lithosphere/article-pdf/doi/10.2113/2022/9322892/5581946/9322892.pdf
by guest
on 17 November 2023

https://bhukosh.gsi.gov.in


between the Marwar Craton (MC) in the west with the NIB,
and the E-striking southern arm that resulted from the obli-
que accretion between the NIB and the SIB. We suggest that
both, the MC-ADFB and NIB-SIB accretions, occurred dur-
ing the Early Neoproterozoic, but the NIB-SIB accretion in
the southern arm postdated the ADFB accretion orogen.

Data Availability

All data is included in table format and in figure (structural
data) within the manuscript and in supplementary files sub-
mitted with the manuscript.

Additional Points

Highlights. (1) The Central Indian Tectonic Zone (CITZ)
extends west till Godhra-Chhota Udepur (GC) [85]. (2) At
GC Grenvillian-age N-S shortening led to thrust and
wrench-dominated deformations [85]. (3) NNE-striking
Aravalli Delhi Fold Belt (ADFB) juxtaposed against E-
striking CITZ [82]. (4) The deformation structures in
GC resulted from termination of ADFB against CITZ
[80]. (5) Two accretion orogens ADFB and CITZ comprise
Great Indian Proterozoic Fold Belt [83].
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