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The Mason-Weaver equation (MWE) is an advection-diffusion equation that describes the time-
evolution of the concentration profile of a solution of nanoparticles undergoing sedimentation and
Brownian motion from an initially homogeneous state towards sedimentation equilibrium. In spite
of the availability of analytic solutions, recent work has used numerical schemes to obtain practical
solutions for the MWE. Here, the numerical evaluation of analytic solutions of the MWE is investi-
gated using standard floating-point computations. It was found that the numerical evaluation is not
always straightforward as this involves summing over an infinite series of terms which is sometimes
automatically truncated due to limitations in floating-point computation. By combining several
analytic expressions, each having its own range of validity in the MWE parameter space, robust
and computationally efficient numerical evaluation of the solution is finally achieved. The expres-
sions and the numerical procedure have been coded into a computer program enabling practical
calculation of nanoparticle sedimentation profiles.

I. INTRODUCTION

The development of synthetic functional nanoparticles
for applications in medicine, solar energy and so forth has
brought renewed interest in the sedimentation behaviour
of such small particles dispersed in fluids (i.e. colloidal
solutions[1]). The sedimentation behaviour of sufficiently
small colloidal particles is governed both by sedimenta-
tion (which forces the particles in a specific direction,
typically towards the bottom of the container) and dif-
fusion (which tends to disperse the particles through the
entire available volume). The basic model describing this
behaviour was established almost a century ago in the
form of a partial differential equation now known as the
Mason-Weaver equation (MWE)[2].

In their original publication, Mason and Weaver
(M&W) gave an analytic solution for their equation. This
solution takes the form of a periodic infinite series (i.e.
a Fourier series) that converges slowly to the true solu-
tion, in particular at short times, requiring summation
of many terms of the series to overcome the oscillatory
behaviour known as the Gibbs phenomenon. More anec-
dotally, there are typographical errors in some of the for-
mulae in the original paper, which does not facilitate the
task of coding the expressions into a working computer
program. It may be for these reasons that recent work
has resorted to using finite-difference schemes to calcu-
late numerical solutions for the MWE[3][4]. These finite-
difference schemes are computationally inexpensive for
short times, and may also be adapted to cases that de-
viate from the classic MWE (e.g. different initial con-
ditions, non-constant diffusion and sedimentation coeffi-
cients). However, finite-difference schemes do not gener-
ally conserve the total mass in the system, may display
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unphysical numerical divergence at very long times, and
become expensive for calculation of the solution at long
times.

Therefore, it is desirable to have an efficient method
for evaluating the analytic solution that exists. The an-
alytic solution holds for all times, will not display de-
viations from mass conservation, and its computation is
likely to be inexpensive even for longer times. Very re-
cently, Holt et al. used the analytic solution in their work
on the rôle of nanoparticle sedimentation in cytotoxicity
studies.[5] They reported that they needed to numeri-
cally sum a great number of terms (over 105) in the ex-
pression by M&W to obtain satisfactory results, but did
not give further details. Here, the numerical evaluation
of the expressions derived by Mason & Weaver is further
investigated over a wide range of parameters.

In addition to the infinite-series solution (ISS) requir-
ing computation of many terms, M&W derived an inte-
gral solution (IntS) that works for short times and does
not involve summation over an infinite series. On basis
of the original work, further expressions can be derived
for the case where sedimentation begins to dominate over
the Brownian diffusion term, i.e. at high Péclet numbers
(hiPe). We found that, with current ‘double precision’
floating-point arithmetic and scientific software libraries,
each of these three solutions has its own range of param-
eters where it produces reliable results. The standard
numerical floating-point precision of 64 bits was used.
In certain critical cases, 80 bits ‘extended precision’ was
tested, but this did not substantially improve the nu-
merical results. In contrast, switching to 32 bits ‘single
precision’ floating point proved highly detrimental to nu-
merical evaluation of the expressions.

A computer code was developed for numerical evalu-
ation the different analytic solutions of the MWE in its
dimensionless form. The program also provides a func-
tion that automatically selects evaluation of the relevant
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Figure 1. Sedimentation behaviour of Brownian particles as
described by the Mason-Weaver equation (MWE). The parti-
cles are initially homogeneously distributed. Top: concentra-
tion profiles as a function of height at (a) t = 0, (b) interme-
diate t, and (c) sedimentation equilibrium (t → ∞, steady-
state solution of the MWE). Bottom: visualization of the
corresponding vertical gradients such as can be observed, e.g.
with gold nanoparticles in solution.[4]. The z coordinates re-
fer to the ‘real-world’ dimensional version of the MWE, where
z = 0 is the bottom of the cell. The y coordinates in the di-
mensionless form move in the opposite direction, y = 0 being
the top of the cell.

expression on basis of the input parameters, and a func-
tion that handles the interface between the ‘real world’
parameters and the dimensionless expressions. The lat-
ter can readily and transparently be used to calculate
concentration profiles for Brownian nanoparticles under-
going sedimentation in solution.

II. THE MASON-WEAVER EQUATION

With concentration c, position z and time t, the time-
evolution of the nanoparticle concentration profile c =
c(z, t) of a colloidal solution undergoing sedimentation
is illustrated in Figure 1, from an initially homogeneous
distribution of nanoparticles to an equilibrium nanopar-
ticle gradient. This evolution is governed by the MWE,
Eqn. (1).

∂c

∂t
= D

∂2c

∂z2
+ sg

∂c

∂z
(1)

which has boundary conditions

D
∂c

∂z
+ sgc = 0 @(z = 0, z = zmax) (2)

and initial condition

c(z, t = 0) = c0 (3)

D, s and g are, respectively, the diffusion coefficient
of the particles in the fluid, their sedimentation coeffi-
cient and the gravitational acceleration. The z-axis cor-
responds to the height position in the cell, with z = 0
being the bottom and z = zmax the top.

A dimensionless form of the Mason-Weaver equation is
obtained through application of the changes of variable
expressed in Eqn. (4).

z0 =
D

sg
α =

z0
zmax

tsed =
zmax

sg

τ =
t

tsed
y = 1− z

zmax

(4)

The dimensionless form of the MWE for c = c(y, τ) is
then given by Eqns. (5)-(7).

∂c

∂τ
= α

∂2c

∂y2
− ∂c

∂y
(5)

α
∂c

∂y
− c = 0 @(y = 0, y = 1) (6)

c(y, τ = 0) = c0 (7)

III. INFINITE-SERIES SOLUTION (ISS)

M&W showed that Eqn. (8) is a solution to the di-
mensionless form of the MWE, Eqn. (5).[2]

c(y, τ)

c0

∣∣∣∣
ISS

=
exp

(
y
α

)
α
(
exp

(
1
α

)
− 1
)+

16α2π exp

(
2y − τ

4α

) ∞∑
m=1

exp (−αm2π2τ)m

(1 + 4π2m2α2)2

(
1− (−1)m exp

(
−1

2α

))(
sin (mπy) + 2πmα cos (mπy)

) (8)
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The first term of this ‘infinite series’ solution (ISS) cor-
responds to the steady-state solution, css(y), while the
second term (i.e. the infinite series) corresponds to the
transient solution, ct(y, τ). This is expressed as Eqn. (9).

c(y, τ)

c0
= css(y) + ct(y, τ) (9)

Taking the limit of the complete solution when τ tends
towards infinity yields the steady-state solution, since the
transient solution vanishes at long times (Eqn. (10)).

lim
τ→∞

[
c(y, τ)

c0

]
= css(y) (10)

The transient term of the solution has the following
form (Eqn. (11)).

ct(y, τ) = sf (y, τ)

∞∑
m=1

sm(y, τ) (11)

where sm(y, τ) and sf (y, τ) are, respectively, the terms
of the series and a constant pre-factor with respect to m
that can be taken out of the summation.

As pointed out earlier,[2][5][6] the series converges
rapidly for large values of {τ, α}, but slowly for small
values. A large number of terms for the series (e.g.,
> 100000) might be evaluated and added to the final re-
sult in the hope of reaching convergence, as was done by
Holt et al.[5]. However, it was found in the present work
using standard double precision floating-point arithmetic

that the factor exp (−αm2π2τ)m
(1+4π2m2α2)2 in the series summation

of (8), numerically evaluates as strictly zero already for
modest values of m. Any terms evaluated beyond that
point do not contribute numerically to the solution, lead-
ing to a false convergence. Switching from the standard
64-bit to 80-bit floating-point precision did not substan-
tially alleviate this problem.

This numerical artefact limits the number of terms that
can be usefully evaluated for the ISS. It also provides a
clear condition for stopping evaluation of the series: the
loop evaluating terms for increasing m can be ended once
exp (−αm2π2τ)m
(1+4π2m2α2)2 numerically evaluates to zero. The result

obtained in this manner is the best result numerically
attainable, which does not necessarily mean that that
result is sufficiently close to the correct solution.

Satisfactory results with the numerical evaluation of
the ISS are obtained systematically only for α ⩾ 0.02.
For α < 0.02, significant high-frequency numerical oscil-
lations are often present in the ‘best’ numerically attain-
able result, in particular at low values for τ (short times).
It is numerically impossible to add further terms. Low
values of α correspond to high Péclet numbers, where
sedimentation dominates diffusion giving rise to a sharp
sedimentation front, requiring a large number high fre-

quency terms to be included.
The limits for α and τ for correct evaluation of the ISS

were investigated in more detail, and it was found possi-
ble to work at values for α slightly lower than 0.02 (say,
0.01), but only for values for larger values of τ (say, 0.5).
It is possible to automatically detect numerical artefacts
in evaluated ISS concentration profiles, by testing if the
result is monotonous (within a certain tolerance) and by
detecting deviations is the mass conservation. This may
identify satisfactory numerical evaluations of the ISS at
α < 0.02. However, the safe choice was made finally
to constrain validity of the numerically evaluated ISS to
α ⩾ 0.02. At α < 0.02, other analytic expressions exist
that have better numerical behaviour, not needing any
summing over a series (see the “high Péclet” solution be-
low).
Under the constraint that α ⩾ 0.02 and using

the aforementioned numerical vanishing of the factor
exp (−αm2π2τ)m
(1+4π2m2α2)2 as a stopping condition, the number of

terms of the series that is included in the numerical eval-
uation of the ISS is plotted as a function of τ for various
values of α in Figure 2. This graph clearly illustrates
the strong increase in number of terms for low α, τ . This
makes evaluation of the ISS in those cases computation-
ally expensive. The number of terms reaches almost 2000
for α = 0.02 and τ = 0.001, but drops rapidly as diffu-
sion starts dominating sedimentation and when solutions
close to the steady-state are evaluated.

Figure 2. The number of terms, Nterms, used in evaluation of
the ISS as a function of τ for different values of α (⩾ 0.02).
Inclusion of further terms is not possible due to very small
factors numerically evaluating as zero in floating-point arith-
metic (see Text).

IV. INTEGRAL SOLUTION (INTS) FOR SMALL
{α, τ}

At small {α, τ}, where a large number of terms need to
be included for evaluation of the ISS, M&W suggested[2]
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an alternative solution that they obtained using the im-
age method. This approximate analytic solution will be

referred to as the ‘integral’ solution (IntS, Eqn. (12)).
It is highly accurate at very small values of {α, τ}, as is
clear from the very low RMS error between IntS and ISS.

c(y, τ)

c0

∣∣∣∣
IntS

=

1

2
exp

(
y − 1

α

)[
1 +

y + τ − 1

α

][
θ

(
2− y − τ√

4ατ

)
− θ

(
1− y − τ√

4ατ

)]

−
√

τ

απ
exp

(
y − 1

α

)exp(−(2− y − τ√
4ατ

)2
)

− exp

(
−
(
1− y − τ√

4ατ

)2
)

+
1

2
exp

(
y

α

)[
1 +

y + τ

α

] [
θ

(
1 + y + τ√

4ατ

)
− θ

(
y + τ√
4ατ

)]

+

√
τ

απ
exp

(
y

α

)exp(−(1 + y + τ√
4ατ

)2
)

− exp

(
−
(
τ + y√
4ατ

)2
)

+
1

2

[
θ

(
1− y + τ√

4ατ

)
− θ

(
τ − y√
4ατ

)]

(12)

Using the same symbol as M&W, θ(x) =
(2/

√
π)
∫ x

0
exp (−t2) dt is the error function, erf(x).

IntS becomes less accurate at larger values, and fails
badly when used outside of its domain of validity. For
instance, the IntS exhibits convergence issues when α <
0.02 due to the limited stiffness of the error function at
the junction (i.e anti-symmetry points) in the construc-
tion process by mirror image. Thus, both ISS and IntS
cannot be used for α < 0.02.
In practice, the principal advantage of the IntS is the

reduction of the computational effort compared to ISS.
The range of values {α, τ} where the IntS is favourably
applied instead of the ISS can be found by considering
the mean square error (MSE), calculated between the
IntS and the ISS, and identifying where this MSE is
very small. Subsequently, a function τswitch(α) should
be found in the aim of giving the time τ value below
which the IntS will be used instead of the ISS, while re-
maining below a given MSE. The MSE of IntS relative
to ISS is calculated over a grid spanning a range of α
and τ . Visualized as a ‘heat map’ (Figure 3) it is clearly
seen that there is a region at low {α, τ} where the MSE
is very small, and where IntS can be used instead of ISS
in order to limit the computation effort.

Using curve fitting, a parametric function τswitch(α)
was obtained that defines a boundary for the region
where IntS has low MSE (typically, less than 10−8). The
function is given by Eqn. (13), and is traced in red in
Figure 3). Below the red trace, the IntS is used. Above
the trace, the ISS is used. The range of α for which this
τswitch is considered has been chosen to go from 0.02 to
20.

τswitch(α) =

{
A1α

k1 if α < 0.04625
A2α

k2 else
(13)

where Ai, ki are the constants given in Eqn. (14).

A1 = 8.134 k1 = 0.9666

A2 = 0.02934 k2 = −0.8634
(14)

This parametrization was made on a specific computer
system (Intel Core i7 (12th gen.) processor, Python
3.9.13 with numpy 1.22.3, scipy 1.9.1), and might depend
somewhat on the numerical properties of the specific sys-
tem, e.g. the software implementation for the evaluation
of the error function θ(x). The optimal parameters for
defining the switch between IntS and ISS are not ex-
pected to change significantly for other computer systems
and languages (Matlab, FORTRAN), since these use the
same basic numerical libraries and floating-point opera-
tions.

As illustrated in Figure 4, IntS is roughly between 50
to 10000 times faster than ISS, while having a MSE rel-
ative to ISS of less than 10−8. This is a useful gain in
performance, especially in cases where multiple evalua-
tions of profiles need to be made, such as in iterative
curve fitting. The Figure also shows the switching be-
tween IntS and ISS at τswitch, after which only the ISS
is considered (MSE becomes trivially 0). Taking the de-
cision on which solution (IntS or ISS) to use generates
negligible overhead.
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Figure 3. Logarithm of the MSE between the IntS and ISS
(color map) as a function of α and τ (plotted as their loga-
rithms). The red trace is the boundary defined by τswitch in
Eqn. (13).

Figure 4. Comparison of pure ISS and mixed IntS/ISS for
the calculation of MW concentration profiles at α = 0.02 as
a function of τ . Top: Calculation time for a single profile.
Bottom: Mean-square error between IntS/ISS and ISS solu-
tions, dropping to zero when ISS is used in both calculations.
Profiles were calculated over y from 0 to 1 in 200 points. The
calculation time was measured for the Python program exe-
cuted on a single core of an Intel Core i7 (12th gen.) 64-bit
processor running at 2.4 GHz. The green dotted vertical line
indicates where the switch between IntS and ISS is made.

V. APPROXIMATE “HIGH PÉCLET”
SOLUTIONS FOR VERY SMALL α

For very small α (α < 0.02, as explained above), nei-
ther the IntS nor the ISS can be reliably evaluated nu-
merically. This is illustrated in Figure 5 which presents
a typical case where both IntS and ISS display numerical
artefacts. The case shown is for {α = 0.01, τ = 0.23},
but many combinations of parameters yield this kind of
artefacts when α < 0.02, indicating the need for an al-
ternative solution for small α.

Figure 5. Example of the failure of both ISS and IntS, when
α < 0.02. Three analytic solutions to the Mason-Weaver were
evaluated for {α = 0.01, τ = 0.23}. Only the hiPe solution
gives a completely artefact-free concentration profile.

The situation where α is small corresponds to a high
Péclet number, i.e. the contribution of nanoparticle dif-
fusion becomes small compared to the sedimentation.
The particles sediment with a clear sedimentation front
that shows only little diffusive broadening. The advec-
tion due to sedimentation and the diffusive behaviour can
be decoupled which leads to an approximate solution in
the form of Eqn. (15), referred as ”high Péclet” (hiPe)
solution.

c(y, τ)

c0

∣∣∣∣
hiPe

=
1

2

[
1 + θ

(
y − τ√
4ατ

)
+

K(τ)
exp

(
y
α

)
α
(
exp

(
1
α

)
− 1
)] (15)

In Eqn. (15), K(τ) corresponds to a mixing between
the steady state and the propagating diffusive front solu-
tions. K(τ) was obtained using mass conservation con-
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sideration (i.e.
∫ y=1

y=0
c(y,τ)
c0

dy = 1) as proposed in Eqn.

(16).

K(τ) = 1−√
4ατ

π

exp(−(τ − 1)2

4ατ

)
− exp

(
−τ

4α

)+

(τ − 1)θ

(
1− τ√
4ατ

)
+ τθ

(
τ√
4ατ

) (16)

This “hiPe” solution was found to work well, numeri-
cally, for 0.0015 ⩽ α < 0.02.

For α < 0.0015, Eqn. (15) can be modified keeping
only the sedimentation front and excluding the steady-
state part by limiting the range of y to 0.99. This
“hiPe2” solution, Eqn (17), does not conserve mass, and
basically only describes the moving sedimentation front,
which undergoes a minor broadening due to diffusion.
For these very small values of α, the MWE is less rele-
vant, since these systems are almost purely sedimentation
systems, with a sharp sedimentation front. We include
the “hiPe2” solution so that the entire range of α can be
handled.

c(y, τ)

c0

∣∣∣∣
hiPe2

=
1

2

[
1 + θ

(
y − τ√
4ατ

)]
,

0 < y < 0.99

(17)

VI. COMBINED, PIECE-WISE ANALYTIC
SOLUTION (PWS) FOR SUCCESSFUL

NUMERICAL EVALUATION AT ANY α, τ

Considering the different regions in the {α, τ} plane
where each of the analytic solutions to the MWE (ISS,
IntS, hiPe, hiPe2) can be successfully evaluated numer-
ically, a piece-wise analytic solution (PWS) can be con-
structed that covers the entire parameter space for α > 0
and τ > 0. Figure 6 contains a plot of the domains of
application for the different analytic solutions discussed.

The PWS can be formulated according to Eqn. (18),
with the understanding that α > 0 and τ > 0.

c(y, τ)

c0
=



chiPe2(y, τ, α) if α < 0.0015

chiPe(y, τ, α) if 0.0015 ⩽ α < 0.02

cIntS(y, τ, α) if 0.02 ⩽ α < 20
and τ < τswitch(α)

cISS(y, τ, α) if 0.02 ⩽ α < 20
and τ ⩾ τswitch(α)

cISS(y, τ, α) if α ⩾ 20

(18)

Figure 6. Graph representing the range of application of each
numerically evaluated analytic solution to the MWE as a
function of {τ, α} in the combined PWS. Evaluation using
standard floating-point arithmetic with 64 bits precision.

Eqn. 18 forms the point of entry to the computer
program module masonweaver analytic [7] implementing
the computational strategy for evaluation of the ana-
lytic solution of the MWE explained in this work. It
was coded in the Python programming language[8] with
use of the numpy [9] and scipy [10] scientific libraries, and
may be readily ported to other languages. The dimen-
sionless Eqn. 18 is implemented as the function routine
MW adim(y, τ , α) which returns a vector1 containing the
numerical values of the nanoparticle concentration pro-
file for the (dimensionless) positions given by the vector
y.
Finally, a ‘real-world’ (dimensional) function routine

MW c profile(t, zmax, D, sg, . . . ) is provided. It returns
a pair of vectors (z, c) giving the numerical values for
the (dimensional) positions and corresponding concen-
trations reproducing the full nanoparticle concentration
profile using the analytic solutions of the MWE.

VII. COMPARISON WITH CURVES
PUBLISHED BY MASON & WEAVER AND

EXPERIMENTAL DATA

In addition to extensive testing of the PWS against
the numerical solutions generated by the previously pub-
lished finite-difference program,[4] the computational ac-
curacy of the combined piece-wise solution was demon-
strated by comparing its results to curves from the
original publication by M&W.[2]. To this end, these
curves were digitized using the Engauge Digitizer soft-
ware package,[11] converting them into sets of data points
representing c(y, τ)/c0 as a function of y for different val-
ues of τ . These curves are shown in Figure 7, together

1 In this text, a ‘vector’ is a one-dimensional array of floating-point
numbers.
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Figure 7. Comparison of the curves from first Figure in the pa-
per by M&W [2] (dotted lines) and the numerically evaluated
analytic solution from the present work (continuous lines) for
α = 0.025.

with curves obtained using the numerical evaluation of
the PWS by our computer program.

It is evident from Figure 7 that the curves evaluated
by our PWS procedure are in accordance with the curves
from the original publication. No precise error estima-
tion is proposed here, since the digitization process by
itself is a source of significant uncertainty. Interestingly,
the PWS result for τ = 1, does not match the original
M&W curves. This is a minor mistake in the original
publication.

The numerically evaluated analytic solution also fits
previously published experimental sedimentation pro-
files obtained using quantitative digital photography
of gold nanoparticles in aqueous solution undergoing
sedimentation.[4] This is shown in Figure 8 which revis-
its Figure 2 from the original publication, using the an-
alytic solution instead of the numerical finite-difference
solution. There is no obvious difference between the two
sets of theoretical curves (analytic vs finite-difference).
The analytic function is calculated more quickly, espe-
cially for longer times in the sedimentation process. It
instantly generates the corresponding concentration pro-
file, whereas the finite-difference solver needs to start at
the beginning and iterate over time steps. The analytic
solution perfectly preserves the total mass in the sys-
tem, whereas the finite-difference scheme causes a small
increase in the total mass.[4]

VIII. CONCLUSION

It is not an entirely trivial task to evaluate numeri-
cally the analytic solution to the Mason-Weaver equa-
tion. Straightforward evaluation of the ISS by simply
including a great number of terms does not always lead
to satisfactory solutions, due to higher terms being eval-
uated as strictly zero by the floating-point arithmetic.
In the original paper by M&W,[2] alternative approxi-

Figure 8. Evolution of the vertical particle density gradient in
an aqueous solution of 40 nm diameter gold nanospheres to-
ward sedimentation equilibrium, observed using quantitative
digital photography at 277 K. Photos were taken at t = 0, 1
h, 21 h, 27 h, 44 h, 52 h, 7 d, 9 d, 11 d, 14 d, 21 d, 23 d, 28
d, 35 d, and 39 d. Top: Experimental optical density profiles
obtained from digital photographs.[4] The arrow indicates the
direction of time. Bottom: theoretical optical density (con-
centration) profiles evaluated using the analytic solution of
the Mason-Weaver equation, with D = 5.1×10−12m2s−1 and
s = 7.9× 10−10 s.

mate solutions were suggested that can be applied to cir-
cumvent this problem (hiPe) or significantly alleviate the
computational burden (IntS). Implemented in a Python
computer program,[7] the combination of these different
solutions, each being operational in a specific range of
parameters, leads to a computationally robust and effi-
cient method for calculating nanoparticle sedimentation
profiles.
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