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Abstract 

Birds are so stable that they can rest and even sleep standing up. We propose that stable static balance is achieved 
by tensegrity. The rigid bones can be held together by tension in the tendons, allowing the system to stabilise under 
the action of gravity. We used the proportions of the bird's osteomuscular system to create a mathematical model. 
First, the extensor muscles and tendons of the leg are replaced by a single cable that follows the leg and is guided 
by joint pulleys. Analysis of the model shows that it can achieve balance. However, it does not match the 
biomechanical characteristics of the bird's body and is not stable. We then replaced the single cable with four 
cables, roughly corresponding to the extensor groups, and added a ligament loop at the knee. The model is then 
able to reach a stable equilibrium and the biomechanical characteristics are satisfied. Some of the anatomical 
features used in our model correspond to innovations unique to the avian lineage. We propose that tensegrity, 
which allows light and stable mechanical systems, is fundamental to the evolution of the avian body plan. It can 
also be used as an alternative model for bipedal robots. 
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Main text 

The 10,000 bird species share strict bipedalism with one mammal, Homo sapiens. The fundamental difference is 
that avian bipedalism is flexed, whereas human bipedalism is upright. The flexed bipedalism of birds gives them 
such stability that they can perch on substrates such as thin branches or electrical wires. The upright human postural 
stability is largely based on a compressive skeletal organisation (Figure 1), with lines of force propagating through 
the bones (Carter et al 1987). The support of the structure requires a very precise adjustment of the skeletal 
elements, thanks to the curvatures of the spine and the peculiar shape of the pelvis, which distributes the 
mechanical constraints towards the two legs that form pillars (Tardieux 2013). The musculature is required to adjust 
the orientation of the bony segments (Do Rosário 2014). People tend to rest sitting or lying down. The body 
structure of birds is different (Fig. 1). Under a thick plumage, the legs support a rigid trunk with a short bony tail, 
the wings and the head at the end of a long neck. The legs are more or less long, but the structure is always the 
same, with three long bones plus toes. The musculature of the back is reduced due to the bony stiffening of the 
spine (Raikow 1985). The powerful wing muscles are carried ventrally on the sternum. The sternum is very large, 
usually with a keel to increase the surface area for the pectoral muscles that move the wing for flight. The 
musculature of the thigh is very large, as is that of the calf. There are very few fleshy muscles below the ankle, but 
long tendons that connect to the toes (Raikow 1985). The trunk is oblique, the hip and knee are always flexed, and 
the distribution of muscle mass places the centre of mass of the body well forward of the hip (Allen 2013), between 
the two knees when the birds are standing (Abourachid 1993). This position of the centre of mass towards the 
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centre of the trunk is critical for flight (Harvey & al 2022). The avian leg is a very versatile system. In addition to 
locomotion (walking, running, swimming, taking off, landing) in a variety of environments, they can be used for 
grasping food or for predation (Abourachid & Hofling 2012). Phylogeny and the diversity of living environments and 
behaviours imply morphological adaptations of the osteo-muscular system to meet functional constraints. 
However, postural stability is a fundamental trait shared by all birds. The osteo-muscular system is sufficiently 
stable to allow birds to sleep upright (Galton et al 2012), their preferred resting position. They are seen standing 
still on a wire or soft branch, even in the wind. The system is sufficiently balanced to allow them to sleep standing 
on one leg (Chang and Ting 2017). We therefore hypothesised that stability could be achieved at minimal energy 
cost, i.e. with almost no muscular effort through passive tension. Our approach aims to overcome specific 
differences to reveal possible intrinsic properties of the organisational plan shared by all birds. We are looking for 
the characteristics of the osteomuscular system that are required to keep a standing bird stable at rest with minimal 
effort. 

 

Because the joints are highly flexed, the postural stability of birds cannot be understood as a compressive system 
like the human bipedal system. An alternative system is tensegrity. Tensegrity is defined as a system of rigid bodies 
that are held together by stresses. Tensegrity systems are lightweight and flexible. Originally used by artists, then 
in architecture, they are defined as a self-stressing mechanical structure composed of rigid elements in compression 
(rods) and elements in tension that are not rigid in compression (cables and/or springs). The prestressed state is 
achieved by pretensioning the cables or springs. This state provides a stable equilibrium for the tensegrity structure 
(Snelson 1965). They are used in architecture, for example in the construction of bridges suspended by cables. For 
biological systems, Ingberg and colleagues (2014) propose to define tensegrity as a structure in which a synergy 
between tensions and compressions creates a tensile stress that stabilises the whole structure in 3D. This definition 
is very broad, as the presence of cables and rigid bodies is not mandatory for a system to be defined as tensegrity. 
It can then be identified from micro to macroscopic scales, from molecular to organismal levels. Tensions can arise 
from atomic forces of attraction (molecular level) as well as from muscles or tendons at the level of the 
osteomuscular system. Compressive elements can be microtubules in cells or bones for the osteomuscular system 
(Swanson 2013). We hypothesised that a tensegrity sensus Ingber (2014) can be identified in the body of the birds. 
Static posture and balance would be achieved through passive tension in the osteomuscular system that provides 
extension of the hindlimb under the action of gravity when the bird is standing.  

  

Figure 1: Bipeds: In birds, a thick plumage hides most of the body. The rigid trunk is supported by the 
long segmented legs, with the hip and knee always bent. Muscle mass is mainly distributed between the 
flight muscles at the front and the leg muscles at the back, with the centre of mass between the two. 
Human bipedalism relies on upright compressive skeletal organization, with forces propagating through 
the bones and precise adjustments made through vertebral curvatures and the shape of the pelvis. ( 
Drawing by Camille Degardin). 



To address this question, we use a multidisciplinary biology-robotics approach. This collaboration allows 
evolutionary biology to identify structural features that are uniquely associated with stability. The geometry of 
robotic models is free from the historical constraints associated with the evolutionary origin of the animal group, 
and from the structural compromises associated with the need to associate in the same mechanical system all the 
vital functions of a living organism (Abourachid & Hugel 2015). In robotics, this collaboration allows the analysis of 
an existing stable structure to test whether it could be a candidate as an alternative to current bipedal robots based 
on the erect human model. The difference between the resting position of a human in compression and the resting 
position of a bird in tensegrity is illustrated in Figure 1. 

We have used an idealised theoretical framework by considering a bilaterally symmetric biomechanical system and 
studying this system in the sagittal plane. Like Alexander and Dimery (1985), we assume that the forces "act in a 
single plane, the joints are frictionless, and their movements are considered to be rotations about a centre of 
rotation". In addition, we have introduced pulleys into the biomechanical system. They represent the path of the 
cables and allow the lengthening and shortening of the cables associated with the joint movements to be calculated. 
The system combines 5 rigid bodies (Fig. 2): the trunk T (which includes the head and wings), the femur F, the 
tibiotarsus Tbt and tarsometatarsus Tmt and the toes. The system is in contact with the ground at the base of the 
toe III. The segments are articulated between T and F at H (hip), between F and Tbt at K (knee), between Tbt and 
Tmt at A (ankle) and between Tmt and the fingers at P (metatarsophalangeal joint). 

The muscle and tendon system is complex. We first propose a drastic simplification by replacing all the muscles and 
tendons of the leg with a single cable that follows the leg, guided by the pulleys. It attaches proximally to the 
posterior trunk, in the geometric centre of the origin of the iliofibular muscle, on the post-acetabular part of the 
pelvis, and distally under the feet on the first phalanx of the toes III. (It therefore attaches to T behind H, passes in 
front of K, behind A and in  front of P and attaches to the toe III to compensate for gravity. The direction of the 
cable is redirected without friction using pulleys at joints K, A and P. The cable does not run along F, and there is a 
rotation at the hip to model the movements of F relative to T. 

The mass of the legs is negligible compared to the mass of the trunk T. We therefore consider the centre of mass 
(CoM) to be integral with the trunk. The CoM is in front of H (Abourachid 1991)..The action of gravity will tend to 
rotate T clockwise around the centre of rotation of H and put tension on the cable attached to the other side of the 
centre of rotation of H (Fig. 2). 

 Based on the anatomy of birds, we designed a mathematical model to test the hypothesis of postural equilibrium 
and the stability of this equilibrium. This model allows us to highlight the parameters necessary for stability and to 
identify them among the anatomical characteristics of birds. 

Material and method 

Anatomical parameters (Figure 2) 



 

 

We have used our expertise in functional anatomy to propose the generic bird model. (Fig 2A and fig 4 A) 

Hip H – The trunc of the birds forms a rigid body. The dorsal vertebrae are ankylosed. The elongated pelvis is 
anchored to the spine by 10 to 12 sacral vertebrae (Boas, 1933) ( between points 1 and 2). The head of the femur 
is inserted into the acetabulum of the pelvis (point 3) to form the ball and socket hip joint. The extensor muscles 
insert on the postacetabular part of the pelvis, (caudally to the point 3).   

Knee K -  The femur articulates on the posterior part of the tibial plateau (point 4). The patella (point 7), slides into 
the femoral groove and the patellar ligament attaches to the patellar crest of the tibiotarsus (point 8, and Fig4) 
(Baumel & A)Raikow 1993). We considered that the joint could be represented by a pulley centred on the posterior 
part of the tibial plateau at the level of the menisci (point 4), with its circumference passing through the patella, 
(point 7) where the knee extensors attach, and the patellar crest of the tibiotarsus (point 8), where the patellar 
ligament attaches (Allen & al 2017).  

  

Figure 2: Construction of the one-cable model modelling 

 A: Lateral view of the zebrafinch's leg skeleton with anatomical landmarks used for modelling. A and b : The 
knee and ankle are rotated slightly to show the structures.  

 F: femur, Tbt: tibiotarsus, Tmt: tarsometarasus, CoM: center of mass. 0 : middle of the synsacrum, 1: Middle 
of the first sacral vertebrae. 2: Caudal extremity of the synsacrum. 3: Middle of the femoral head Lig.capitis 
femori., 4: Proximal extremity of the tibiotarsus area interarticularis. 5: Proximal extremity of the 
tarsometatarsus Eminentia intercotylari. .6: Distal extremity of the tarsometatarsus trochlea metatarsi III 
plantar face,.7: Proximo cranial part of the patella. 8: Proximal extremity of the tarsometatarsus Crista 
patellaris. 9: Distal extremity of the tibiotarsus, caudal face condylus lateralis.  10: Proximal extremity 
tarsometarsus Crista medialis hypotarsi. 11: middle lateral crest ilium.  

B: Modelling of the one cable system. The red cable attached on  the ilium (11) caudaly to the Hip (H), passes 
in front of the knee (K) pulley, behind the ankle (A) pulley and in front of the foot pulley (P). 

C: Dimensions used for modelling 



Ankle A - The two tibiotarsal condyles articulate on two cotyls on the anterior part of the hypotarsal plateau (point 
5 and Fig4). The tendons of the toe flexor muscles pass through the ankle joint (intertarsal joint) by sliding caudally 
on the tibial cartilage (point 9) and into channels or grooves of the hypotarsal (Fig 4A) (Baumel 1993). We 
considered that the joint could be represented by a pulley centred on the hypotarsal plateau between the cotyls 
(point 5), with its circumference passing through the tibial cartilage (point 9) and the hypotarsal sulcus (point10).  

Metatarsophalangeal joint, P - The toes of birds are very diverse in shape and orientation, but the toe III is always 
oriented forward (Abourachid et al. 2017, Leblanc & al. 2023). Therefore, we use in our model the articulation 
between the metatarsus and the first phalange of the toe III. Metatarsus III is shaped more or less anteriorly and 
upwardly depending on the species. The plantar surface of birds is covered by the podotheca, which covers very 
thick pads (fat bodies), which in turn cover the ligamento-tendinous system (Baumel & Raikow 1993). The thickness 
of the pad and the podotheca provides a distance between the P-joint and the substrate when the bird is in a 
standing position (Hofling & Abourachid 2021). We considered the centre of the pulley to be at the level of 
metatarsophalangeal joint III (point 6) and the circumference to be on the ground, under the podotheca. 

 

The morphology and proportions of the zebra finch (Taeniopygia guttata) were used to construct the mathematical 
model. The resting position of the body was determined from lateral and frontal radiographs. A 3D model obtained 
by X-ray tomography of the whole individual, segmented bone by bone (Provini & Abourachid 2018), was used to 
position each bone in the resting position (Meshlab v2021 07). Landmark software (v3.0.0.6) was used to obtain 
the 3D Cartesian coordinates of the anatomical landmarks required to parameterise the model (Table 1, Figure 2). 
Three points on the sagittal plane of the bird (points 0, 1 and 2) were used as reference to calculate the coordinate 
of all the anatomical landmarks onto the sagittal plane. These in plane coordinates were used to parameterise the 
geometric model. 

 

 

 

We estimated the location of the centre of mass using the double suspension method (Abourachid 1993). X-ray 
images were used to determine the position of the body segments (head, neck, trunk, wings and legs) suspended 
from two points. The vertical line through the suspension point passes through the centre of mass. The intersection 
of the straight lines of the radiographs at two positions indicates the part's centre of mass. The geometric sum of 
the parts' centres of mass is the body's CoM (SM 1). We graphically projected the estimated position onto the 
sagittal plane of the digital model. 

 

The hypothesis of equilibrium and postural stability was tested using a mechanical approach. Matlab software was 
used for the various calculations. The calculations are based on a static model taking into account the effects of 
gravity and the stiffness of the cable (modelled as an undamped linear spring). 



The equations are developed below. 

 

 

Results  

Mathematical model with one cable 

The length of the cable l connecting the attachment points on the pelvis and toe III varies according to the angles 
of the different joints. The variation in cable length for a joint displacement is proportional to the angle variable 
with a coefficient of proportionality equal to the pulley radius at P, A and K for joint angles qP , qA and qK respectively. 
rP , rA , rK are the radii of the different pulleys shown in Figure 2C. The position of the major muscles in front of or 
behind the knee and ankle joints is fairly clear and their placement on either side of the pulley is not controversial. 
The shape of the metatarsal trochlea is more complex. We introduce the term sP, which can take a value of 1 or -1, 
to study the cases where the cable passes in front of or behind the centre of rotation of P. The + sign is used as soon 
as the cable passes in front of the pulley, increasing the joint variable in an anti-clockwise direction will result in 
lengthening the cable. Similarly, the - sign is used when the cable passes behind the pulley. The total length of the 
cable also includes a constant length noted l0 depending on the length of the bone segments. Since the modelling 
in the following section essentially concerns the effect of variations in cable length, this quantity l0 will have no 
impact and is therefore not further detailed here. 

On the balance sheet, we have the following relationship: 

 

   X Y Z 
0 Sagittal plan middle of the synsacrum 981 211 140 
1 Sagittal plan Middle of the forst sacral vertebrae 914 274 184 

2 Sagittal plan Caudal extremity of the synsacrum 1183 222 170 
3 CoR hip  H Lig.capitis femoris 1042 192 221 
4 CoR knee  K Proximal extremity of the 

tibiotarsus area interarticularis 
892 259 434 

5 CoR ankle A Proximal extremity  of the 
tarsometatarsus Eminentia 
intercotylaris  

1299 411 498 

6 CoR phalangeal 
joint P 

Distal extremity of the 
tarsometatarsus trochlea metatarsi 
III plantar face  

1188 636 668 

7 Radius knee 1 Proximo cranial part of the patella 841 261 442 

8 Radius knee 2 Proximal extremity of the  
Tarsometatarsus Crista patellaris   

871 282 466 

9 Radius ankle 1 Distal extremity of the tibiotarsus 
caudal face condylus lateralis E 

1323 383 509 

10 Radius ankle 2 Proximal extremity tarsometarsus 
Crista medialis hypotarsi  

1334 422 520 

11 Cable origin middle lateral crest ilium,  1138 177 227 

 

Table 1 Landmarks on the 3D model of the zebra finch skeleton.  

Anatomical Nomenclature from Baumel (1986) non metric coordinates (pixels). 



l(𝒒) = 𝑙! + 𝑠"𝑟"𝑞" −  𝑟#𝑞# + 𝑟$𝑞$ + 𝑙%(𝑞%) 

where 𝒒 = [𝑞" 𝑞# 𝑞$ 𝑞%]&  is the vector of joint variables. 

 

Searching for balance 

To find the equilibrium positions, we write the static equilibrium of all the bodies under the action of gravity and 
the elongation of the cable of stiffness K and natural spring length 𝑙'.  

In a reference frame placed under the toe at the vertical to the point P, with axis x horizontal and the axis y 
vertical (see figure 5). The vertical axis was measured in the space of the landmarks. An angle of 33° was 
found between the vertical and vector between the points 11  and 3. (see figure 2B). The position of the CoM 
according to the joint positions is then : 

𝑥()* = −𝑙&+,sin(𝑞") − 𝑙&-,sin(𝑞" + 𝑞#) − 𝑙.sin(𝑞" + 𝑞# + 𝑞$) − 𝑙/sin(𝑞" + 𝑞# + 𝑞$ + 𝑞% + θ/) 

𝑦()* = 𝑟" + 𝑙&+,cos(𝑞") + 𝑙&-,cos(𝑞" + 𝑞#) + 𝑙.cos(𝑞" + 𝑞# + 𝑞$) + 𝑙/cos(𝑞" + 𝑞# + 𝑞$ + 𝑞% + θ/) 

The different lengths are shown in Figure 2C. lG and θ/define the position of the CoM on the trunk relative to H. 

The forces acting on the system are the gravity forces and the forces in the cables (or muscles/tendons). 
Gravity comes from a potential energy of gravity. The energy of the force in the cable F l was modeled using 
Wenger & Chablat ‘s (2019) method.  
An equilibrium position q minimises the potential energy U(𝒒) of the system.  

U(𝐪) = m g 𝑦()*(𝐪)  +  F l(𝐪) 

where F is the force in the cable 𝐹 = 𝐾(𝑙(𝒒) − 𝑙') 

This equilibrium position therefore satisfies equation : 01
02
= 0. This gives the following equation: 

?

−𝑙&+,𝑆𝑃 − 𝑙&-,𝑆𝑃𝐴 − 𝑙.𝑆𝑃𝐴𝐾 − 𝑙/𝑆𝑃𝐴𝐾𝐺
−𝑙&-,𝑆𝑃𝐴 − 𝑙.𝑆𝑃𝐴𝐾 − 𝑙/𝑆𝑃𝐴𝐾𝐺

−𝑙.𝑆𝑃𝐴𝐾 − 𝑙/𝑆𝑃𝐴𝐾𝐺
−𝑙/𝑆𝑃𝐴𝐾𝐺

D +

⎣
⎢
⎢
⎢
⎡
𝑠"𝑟"
−𝑟#
𝑟$

0 4!(6!)
0 6! ⎦

⎥
⎥
⎥
⎤
8
9:

= ?

0
0
0
0

D                                                    (1) 

where  

𝑆𝑃 = sin(q;);	 𝑆𝑃𝐴 = sin(q; + q<)	; 𝑆𝑃𝐴𝐾 = sin(q; + q< + q=); 	𝑆𝑃𝐴𝐾𝐺 = sin(q; + q< + q= + q> + θ?) 

The position obtained is an equilibrium position under 2 additional conditions : the force in the cable must be 
positive, i.e. 𝑙(𝒒) > 𝑙' and 𝑥()*(𝑞) must be  in the support surface of the foot, which is assumed to be horizontal. 

 

 

Importance of geometry 

In this equation, we see the geometric parameters of the bird's leg that affects its equilibrium position. The first 
vector describes the distances along the horizontal axis between the different joints and the CoM. The second 
vector describes the extension of the cable as the different joints move. It consists of the lever arms corresponding 
to the effect of the force in the cable on the different joints. When the cable is modelled using a pulley, the lever 
arm is constant and is defined by the radius of the pulley. Depending on the direction in which the cable passes, 
the moment generated will be negative or positive, which determines the signs that appear in this equation. For 

the hip, there are no pulleys, so the term 0 4!(6!)
0 6!

  is directly the lever arm defined by the minimum distance between 

the hip and the cable. This term varies slightly with joint position, but is negative. To make it easier to interpret, we 



will use the notation 𝑟%(𝑞%) = − 0 4!(6!)
0 6!

 with 𝑟%(𝑞%) > 0.					This means that we are modelling the system as if 

there were a pulley with radius	𝑟%  that varies according to the position of the hip. 

 

 

The equations can be rewritten as: 

?

𝑥()* − 𝑥"
𝑥()* − 𝑥#
𝑥()* − 𝑥$
𝑥()* − 𝑥%

D = ?

−𝑠"𝑟"
𝑟#
−𝑟$
𝑟%(𝑞%)

D 8
9:

                                                    (2) 

 

The term 8
9:

  is a dimensionless term. It expresses the ratio between the tension in the cable and the weight of the 

bird. Its value is around 1. This term can be varied to adjust the equilibrium position, but it can only be positive, 
otherwise equilibrium is not possible.   

By combining the equations we can also have information about the relative equilibrium positions of the different 
joints: 

P
𝑥# − 𝑥"
𝑥$ − 𝑥#
𝑥% − 𝑥$

Q = P
−𝑠"𝑟" − 𝑟#
𝑟# + 𝑟$

−	𝑟$ − 𝑟%(𝑞%)
Q 8
9:

                                                    (3) 

We will first interpret these equations assuming that the terms rP , rA , rK , rH are positive and correspond to the radii 
of the pulleys shown in Figure 2. 

 

Equations (2) and (3) then show us that the only possible equilibrium configurations have the following properties: 

1) From the first line of equation (2) it can be seen that rP  defines the vertical projection, along x, of the distance 
between the centre of mass and point P. The radius rP must therefore be small; this ensures that the mechanical 
equilibrium condition of not tilting the bird is satisfied. Depending on the sign of  𝑠", the projection of the CoM will 
be in front of or behind P, the centre of rotation of the toe joint on the tarsometatarsus. If the cable passes in front 
of (or behind) the pulley, the x-projection of the CoM will be behind (or in front of) the toe joint ( Fig.3) 

2) From lines 2 to 4 of equation (2), it can be seen that along the horizontal x-axis the CoM is at the back of the knee 
K and at the front of the ankle and hip. The horizontal distance between the joints and the projection of the CoM 
is directly proportional to the size of the pulleys of the different joints. 

3) The first line of equation (3) shows that the tibia is more inclined (or more vertical) when the cable passes in 
front of (or behind) the pulley rP (see figure 3). 

 

The equilibrium equations give us a number of constraints on the position of the joints along the x axis. The vertical 
arrangement is then directly related to the length of the bodies and the length of the cable. 

Equilibrium can exist for a wide range of different geometries characterized by different values for sP, rP, rA, rK, lTmt, 
lTbt, lF, lG, qG which can be calculated using the Matlab code supplied with SM 3. The relative size of the pulleys and 
the trajectory of the cable at the foot influence the orientation of the segments at equilibrium and the required 
tension in the cable.. With our anatomical parameters it is possible to find different configurations of equilibrium if 
the parameters lG, qG are properly adapted as shown in figure 3. However, based on equation (2), with rK > 0 i.e. the 
cable passing in front of the knee, the CoM along the X-axis must be at the back of the knee (see Figure 3). Since it 



is observed in the zebra finch that the CoM along the X-axis is in front of the knee, a condition needed for stabilizing 
the flight, (see Figure 1), the equilibrium given by the model is not coherent with the biological observation. In order 
to have the centre of mass located at the front of the knee, the cable would have to pass behind the knee pulley 

 

Postural stability  

The bird's equilibrium is subject to 2 types of instability. A mechanical instability: if the CoM is projected outside the 
toes support zone, the leg will tilt around a limit of the support zone. This instability is characterized by the geometry 
of the equilibrium as seen previously. The second one is instability in face of disturbances. Faced with a tiny 
disturbance in the configuration of the leg, will it return to its equilibrium position under the action of the elastic 
cable, or will it move away from it? This instability is characterized by the system's potential energy. That is what 
this section is all about. 

The stifness 𝑲 = 0"@(𝒒)
0"𝒒

 is positive for stable equilibrium. For our 4-joint system, the stiffness matrix is a (4 x 4) 

matrix with each term defined by : 𝐾B,D =
0"@(𝒒)
06# 06$

.	 

The system studied includes only gravity and cable stiffness terms. The stiffness matrix is decomposed into 2 
contributions:  

𝑲 = 𝑲𝒈 +𝑲𝒄  (4) 

where 𝑲𝒈contains the contribution of gravity and 𝑲𝒄	the contribution of the cable. 

The matrix 𝑲𝒈 is written as: 

𝑲𝒈 = −𝑚𝑔 ?

𝑦" 𝑦# 𝑦$ 𝑦%
𝑦# 𝑦# 𝑦G 𝑦%
𝑦$ 𝑦$ 𝑦$ 𝑦%
𝑦% 𝑦% 𝑦% 𝑦%

D  (5) 

Where 𝑦B  is the distance between joint i and the position of the CoM along the vertical axis. For our bird in 
equilibrium, the CoM is at the knee, so the distances 𝑦" and 𝑦# are positive, while 𝑦$  and 𝑦% are negative. As a 
result, we observe instabilities due to the effect of gravity on the toe and ankle joints.  

For the system studied with a single long cable, and taking 𝑲𝒄	 as the cable stiffness, the stiffness matrix has the 
form: 

𝑲𝒄 =

⎣
⎢
⎢
⎢
⎢
⎡ 𝐾𝑟"H −𝐾𝑟"𝑟# 𝐾𝑟"𝑟$ 𝐾𝑟"𝑟%(𝑞%)
−𝐾𝑟"𝑟# 𝐾𝑟#H −𝐾𝑟#𝑟$ −𝐾𝑟#𝑟%(𝑞%)
𝐾𝑟"𝑟$ −𝐾𝑟#𝑟$ 𝐾𝑟$H 𝐾𝑟$𝑟%(𝑞%)

𝐾𝑟"𝑟%(𝑞%) −𝐾𝑟#𝑟%(𝑞%) 𝐾𝑟$𝑟%(𝑞%) 𝐾 U𝑟%H(𝑞%) +
  ∂𝑙%H (𝑞%)
  ∂H𝑞%

(𝑙 − 𝑙')W
⎦
⎥
⎥
⎥
⎥
⎤

 

 

It can be shown that there is no choice of morphological parameters that allows a stable equilibrium. Without going 
into details, since the matrix 𝑲 = 𝑲𝒈 +𝑲𝒄 is positive, all the determinants of the minors must be positive. If we 
are interested in the submatrix (2 x2) associated with the toe and ankle joints, the matrix 𝑲𝒈 associated with the 
negative terms and the associated matrix 𝑲𝒄 must provide stability. In fact, the CoM is higher than the toe and 
ankle joints, and the system is an inverse pendulum that is not stable under the action of gravity. With a single cable 
passing through both joints, the cable cannot prevent an internal falling movement where 𝑞"	and 𝑞# would go in 
different directions without changing the length of the cable. The mathematical development is available at 
supplementary material [SM 2]. 



The single-cable system achieves equilibrium, but this equilibrium is not resistant to perturbations.  

We will therefore turn to a more complex model to see if a four-cable system, similar to the extensor muscles of 
the bird's joints, can achieve a stable equilibrium.  

 

 

Mathematical model with 4 cables 

Anatomical data (Fig. 4) 

Referring to the mean fibres of the muscles of the bird's leg (George & Berger 1966, Abourachid 1991), and 
considering the muscles involved in the extension of the leg corresponding to the previous cable, we observe that: 

1) At the level of the knee and starting from the post-acetabular part of the pelvis, muscles operate the knee : 

- 1- from the front by attaching to the patella. The patella is attached to the tibiotarsal crest by the patellar ligament. 
- 2- from behind by the tendon of the iliofibular muscle, which passes through a ligamentous loop (Ansa iliofibularis) 
that connects the femur and the tibiotarsus at the back of the knee.  

2) At the ankle, large heads of the muscle gastrocnemius join the tibiotarsus to the tarsometatarsus through the 
back of the ankle.   

3) The toe flexors connect the tibiotarsus to the toes along the back of the ankle and the plantar aspect of the 
metatarsophalangeal joint. The anterior position the centre of rotation of the pulley is achieved by the anterior 
projection of the toe III trochlea. 

Mathematical model (figure 4) 

By considering these different muscle groups, we arrive at the model shown in Figure 4. B.  

 

Figure 3 Two configurations of the system at equilibrium with the cable passing in front or behind the pulley 
of the toe joint. 

 



Hip: Two cables (C1 and C2) are 
modelled attached to the pelvis at 
the same level as the single cable 
and have the same effect on the 
hip.  

Knee: One cable (C1) passes 
through the front of the knee K by 
attaching to the patella, it is 
considered to be guided and 
attached by a pulley as in the 
previous model. Another cable (C2) 
passes K through a ligament loop 
(Ai) behind the knee. This ligament 
loop allows the cable to be held 
close to the joint and can be 
considered as a guided pulley. This 

loop is shown as  a free segment of length ll  connecting the lower cable to the knee joint  

At the ankle, a monoarticular cable (C3) passes the ankle only, and a biarticular cable (C4) passes the ankle and the 
foot joint. Cables 3 and 4 are assumed to be guided by the same pulley rA as in the previous model.  

 

The orientation of the segment representing the ligament loop is adjusted each time to minimise the length of the 
cable C2. This cable is attached to the tibiotarsus at a distance 2ll from the knee joint.  A refined simplified 
representation of our system is therefore presented in Figure 4. For simplicity (to limit the number of parameters 
in the model) it is assumed that the bi-articular finger-ankle tendon and the mono-articular ankle tendon are guided 
by the same pulley as in the previous model. 

 

Using the same approach as before, we write the lengths of the 4 cables according to the configuration of the bird: 

⎩
⎨

⎧
l"#(𝒒) = 𝑙!"# + 𝑠"𝑟"𝑞" −  𝑟#𝑞#

l#(𝒒) = 𝑙!# −  𝑟#𝑞#
l$%I(𝒒) = 𝑙!$%I + 𝑟$𝑞$ + 𝑙%(𝑞%)

l$%H(𝒒) = 	 l$%H(𝑞$ , 𝑞%)

 

 

Then, by writing the potential energy and considering the variations of the lengths of the cables as a function of the 
joint variables, we obtain 
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where FPA is the tension in the toe-ankle cable, FA is the tension in the ankle cable, FHK1 is the tension in the upper 
hip-knee cable and FHK2 is the tension in the lower hip-knee tendon. These forces are due to the elongation of the 
elastic cables under the effect of gravity, taking into account their chosen free length. 

When a cable does not pass through a pulley, the lever arm is defined by the minimum distance between the joint 
and the cable. To make interpretation easier, we will record these lever arms as radii of pulleys of varying sizes. For 

the contribution of the cable C1 around the hip, we write : 0 4!(6!)
0 6!

= −	𝑟%(𝑞%)with 𝑟%(𝑞%) > 0	as for the previous  

  

Figure 4 Model with four cables Anatomical features (A) used in the 
model with four cables (B)  (Drawing by Camille Degardin) 

 



model. This means that the C1 cable is going to provide a negative torque around the hip. The hip and knee angles 
determine the length of the C2 cable. 

We introduce the notations: : 0 N%!"(6%,6!)
0 6!

= −	𝑟%H(𝑞G , 𝑞%), with 𝑟%H(𝑞G , 𝑞%) > 0	and 0 N%!"(6%,6!)
0 6&

=

−	𝑟$H(𝑞G , 𝑞%)	avec	𝑟$H(𝑞G , 𝑞%) > 0.	This means that the C2 cable will provide negative torque around the hip and 
knee.  

If we write that each of the forces FPA , FA , FHK1 , FHK2 is proportional to a force F we obtain as equation : 
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We find the same equation as for the single-cable model (1), but with different geometric characteristics that 
represent the additions of the new model: the C2 cable that passes through the ligament loop and the C3 
monoarticular cable of the ankle  

In the single cable model only one force is applied. We maintain this assumption by applying the same force to all 
cables. 

?

𝑥()* − 𝑥"
𝑥()* − 𝑥#
𝑥()* − 𝑥$
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Compared to the single-cable model:  

1- It allows the position of the centre of mass to be 
constrained. As the radius of the ligament pulley of 
cable 2 is greater than the radius of the knee pulley, 
their sum is negative and moves the centre of mass 
forward to the knee in the balance position.  

2- The radius of the ankle pulley counted for each 
cable is larger overall, allowing the ankle to move 
backwards away from the CoM. The position of 
point P does not change since there is only one 
cable as in the previous model. 

 

If we choose 𝑙4 = 1.8	𝑟$, with the measured 
anatomical parameters and the measured CoM 
position and 𝑠" = 1, the configuration shown in 
Figure 5 is obtained. The ligament loop produces a 
guide for the tendon which is not the same as a 
pulley, since the radius of the equivalent pulley 
varies with the angle of the knee. Around the 
equilibrium positions we are studying, the 

 

Figure 5: Equilibrium configuration resulting from 
equation (6) parameterised with the measurements in 
Table 1. The numerical simulation shows that the forces 
in the different cables are identical and correspond to 
approximately twice the weight of the bird.  The 
stiffness matrix (equations (4), (5) and (7)) is used to 
check that this configuration is stable. 

 



variation in cable length as a function of variations in angle qK is smaller than for a pulley of size ll. The value of 
ll=1.8	𝑟$  was chosen by testing and simulation to obtain a CoM position at the front of the knee that corresponds 
globally to observations. As this value increases, the CoM will be further forward of the knee at equilibrium. The 
stiffness and the free length of the cables have been chosen in such a way that the forces in the cables are the 
same. 

The equilibrium configuration is closer to the configuration measured on the zebrafinch model and shown in 
figure 2  than the configuration obtained with only 1 cable. It is also shown that a stable equilibrium can be obtained 
in this case. Other configurations can be calculated using the Matlab code provided in SM 4.   

 

   

Postural stability  

The postural stability conditions are the same as before with the same 𝑲𝒈matrix, but 𝑲𝒄	is modified. For simplicity 
(to reduce the number of parameters), the stiffnesses of the cables C3 and C4, noted as K, are assumed to be 
identical, while the stiffness of the cables C1 and C2 is noted as k. The stiffness K of C3 and C4 must be sufficient to 
compensate for the destabilising effect of gravity on the ankle and toe joints. The resulting stiffness matrix is : 

 

 

𝑲𝒄 =

⎣
⎢
⎢
⎢
⎢
⎡ 𝐾𝑟$) −𝐾𝑟$𝑟% 0 0
−𝐾𝑟$𝑟% 2𝐾𝑟%) 0 0

0 0 𝑘 6𝑟&) + 𝑟𝐻1𝑞𝐻2
) +𝑁𝐿17 𝑘 @𝑟&𝑟𝐻1𝑞𝐻2 + 𝑟𝐾2 6𝑞𝑘, 𝑞𝐻7 𝑟𝐻2 6𝑞𝑘, 𝑞𝐻7A

0 0 𝑘 @𝑟&𝑟𝐻1𝑞𝐻2 + 𝑟𝐾2 6𝑞𝑘, 𝑞𝐻7 𝑟𝐻2 6𝑞𝑘, 𝑞𝐻7A 𝑘 @𝑟𝐻1𝑞𝐻2
) + 𝑟𝐾2 6𝑞𝑘, 𝑞𝐻7

)
+𝑁𝐿2A ⎦

⎥
⎥
⎥
⎥
⎤

   (7) 

 

With  𝑁𝐿1 =   04!%"
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It can be seen  that, compared to the single cable model, some off-diagonal terms have disappeared and that on 
the diagonal the 2e row - 2e column term is multiplied by 2. In this case it is possible to find a value of K that ensures 
stability.  

 

 

In summary, the 4-cable system achieves a balance with the centre of gravity in front of, or near the knee with the 
C1 cable passing through the front of the knee pulley via the patellar ligament and C2 at the back through the 
iliofibularis loop. This dual system allows the size of the knee pulley to be reduced. Stability is adjusted thanks to 
the two cables C3 and C4 that pass the ankle. Passing C4 anterior or posterior to the centre of rotation of P adjusts 
the obliquity of the tarsometatarsus. The stiffness of cables C3 and C4 must be sufficient to compensate for the 
destabilising effect of gravity. 

The mechanical stability of the equilibrium, i.e. the the non-tilting of the assembly around an edge of the ground 
contact zone is ensured by maintaining the CoM along the x axis in the support zone. This is ensured at equilibrium 
by choosing a much smaller pulley at the ground contact point rP than the support surface (see the first line of 



equation (6)). It will be useful to study the acceptable disturbances and the evolution of the CoM in the transient 
phase. This will be the subject of further studies. 

 

Discussion  

The result shows that a system of 5 rigid bodies, articulated like the pelvic skeleton of a bird, driven by a single cable 
passively tensioned by the action of gravity on the centre of mass, is able to extend the leg and reach equilibrium. 
The geometry of the knee joint (K), the ankle joint (A) and the metatarsophalangeal joint (P) therefore plays a crucial 
role in the system. If we think of them as pulleys, the radius of the pulleys determines the length of the joint lever 
arms and allows the cable to slide.  The radius of the pulleys in the K and A joints is crucial for achieving equilibrium 
with minimum effort. Balance requires the centre of gravity of the body to be close to the vertical of the foot joint 
P, slightly in front of or slightly behind the centre of the pulley.  

However, the single cable model, based on the proportions of the zebra finch at rest, only allows equilibrium when 
the CoM is placed behind the knee. However, the equilibrium is not stable and does not correspond to reality 
because the bird's CoM position is towards the centre of the trunk and in front of the knee. 

 

A tensegrity system 

One solution to achieve stability, i.e. the automatic return to equilibrium after a disturbance, is to have two extensor 
cables at the knee, one at the front of the pulley and one at the back, and two extensor cables at the ankle, one 
monoarticular and one pluriarticular. The latter also passes through the metatarsophalangeal joint to attach to the 
foot. The two cables that pass through the hip and knee allow the centre of mass to be moved forward. The ankle 
system provides stability to the system. The cable routing at the foot allows the degree of flexion of this joint to be 
adjusted. The four-cable solution is sufficient to have a stable posture if the radii of the pulleys are adjusted. There 
are other solutions that we have not described in detail. For example, a monoarticular cable at the front of the 
ankle and of the monoarticular cable at the knee will also provide stable posture. The mathematical explanation of 
this possibility is provided as supplementary material [SM2]. 

In this way, we have shown that the proposed four-cable model  is equivalent to a tensegrity system. It is the tension 
of the cables (muscles-tendons) applied to rigid elements (bones) that provides the posture and static equilibrium 
of the osteomuscular system. The force of gravity applied to the centre of mass of the body passively puts the 
system under tension and ensures its stability. 

 

Bipedal system unique to birds 

Analysis of the evolution of the osteomuscular system on the line to crown-group birds (Hutchinson 2002) shows 
that features associated with our model appeared in the line from dinosaurs to birds. During birds evolution, the 
dorsal vertebrae have fused into a long synsacrum to which the ilium attaches cranially and the ischium and pubis 
caudally. The three pelvic bones are fused together at the acetabulum, the hip socket. The caudal extension of the 
pelvis allows the post acetabular muscles to attach far behind the hip, increasing the moment arm of these hip 
extensor muscles. The position of the centre of mass very anterior to the hip, induces the clockwise tension around 
the hip whether bird is standing. These two features, which are characteristic of birds, allow the pelvic system to 
be tensed under the action of gravity. The knee pulley, formed by the distal trochlea of the femur in which the 
patella slides, also exists in mammals, it has appeared twice. It appeared late in the avian lineage (Hutchinson 2002). 
The tibial ridge shape to which the patellar ligament attaches are also typical. They are large and increase the 
forward moment arm. The caudal position of the short cruciate ligaments and menisci show that the centre of 
rotation is shifted backwards in the  knee joint, further increasing the lever arm and favouring the flexed position. 
The tendon loop that holds the tendon of the iliofibularis muscle plays a fundamental role for balance in our system 
as it combines with the patellar system to maintain posture with the centre of mass far anterior.  



The ankle is in fact an intertarsal joint that appears in the avian lineage (Baumel 1993). It is formed by the tarsi, one 
part of which is fused to the tibia and the other part fused to the metatarsi, which are themselves fused together. 
The condyles of the tibiotarsus are projected cranially and rotate on the cotyls situated cranially on the hypotarsal 
plateau. On the distal caudal side of the tibiotarsus, a trochlea accommodates the tibial cartilage encased in the 
gastrocnemius tendon which inserts onto the hypotarsus. The tendons of the finger flexors slide under this tendon 
and into the tibial cartilage. The plantar side of the hypotarsus of the tarsometatarsus has a highly variable shape, 
from two ridges on either side of a groove to a complex system of more or less posteriorly projected ridges and 
channels (Mayr 2016). This diversity could correspond to the adjustments that allow postural diversity. The 
intertarsal joint is more or less flexed in birds at rest. It is tense in waders, for example, and flexed in passerines 
such as the zebra finch.  The intertarsal joint also shows peculiarities on its anterior surface, with a system of 
retinaculum and bony bridges that allow the sliding of tendons. These tendons could also contribute to the stability 
of the system. 

Distally, the trochleae of the three metatarsals are not fused. Their orientation corresponds to the orientation of 
the toes (Abourachid et al, 2017; Leblanc 2023). The trochlea of metatarsal III may or may not be offset forwards. 
This morphological diversity must also participate in postural adjustments, by modifying the trajectory of the 
tendons in relation to the centre of rotation of the joint.  

 

Stiffness of the cables 

The wiring corresponds to the muscle system in the hind limbs. This is a very complex system with over 40 muscles. 
Many of these are multi-jointed and many have multiple heads (George & Berger 1966). This system allows 
adaptation to all situations encountered in the animal's life, far beyond the maintenance of posture. Locomotor 
constraints particularly affect the leg muscles. They are used in a variety of conditions in birds, both in movement, 
walking, running, swimming, take-off and landing, and in relation to substrates, water, soil and vegetation. The 
mechanical constraints are therefore very different depending on the ecology of the species. Our modelling ignores 
this complexity to keep only the elements necessary for postural stability. As the bipedal position is the resting 
posture of birds, stiffness should be ensured with a minimum of control and fatigue. There is a relay of aponeutic 
in the thigh musculature, which join distally to participate in the patellar tendon. There are also aponeutic-
tendinous relays in the flexor and gastrocnemius muscles. Together with the tendons, muscle fascia and 
extracellular matrix (Csapo & al 2020), these collagen-rich tissues could be involved in the stiffness of the cables, as 
collagen gives the tissues mechanical stability, strength and toughness (Fratzl 2008). Articular cartilage is also rich 
in collagen fibres (Bielajew et al 2021). The tibial cartilage, which is unique to birds , may therefore have a role in 
the tension of the intertarsal joint. In birds, some deep tendons in the leg and tarsus are calcified (Baumell 1993). 
Tendon calcification only occurs in the straight parts of the tendon, the parts that slide in the joints remain flexible. 
This tendency to calcify tendons is also unique to birds. It increases the Young's modulus and stiffness of calcified 
tendons, which is of interest in the case of economic tension (Bennet and Stafford 1998). These calcifications are 
found in our C3 and C4 cables, which need to be stiff to ensure stable posture 

 

Tensegrity and evolution 

Within evolutionary biology, some morphological characters are more important than others. These are 
evolutionary innovations, new characters that have been selected for by evolution and that are conserved and 
shared by the descendants of the same lineage (synapomorphy - Henig 1965). Synapomorphies are well identified 
in birds (Clarke and Middleton 2008). Some characteristics identified as necessary for postural stability in our study 
are synapomorphies. The plan of organisation of the body that allows balance to be achieved with a single-cable 
system is one (Gatesy & Middleton 1998, Abourachid & Hofling 2012). The iliofibular tendinous  loop, tibial ridges 
or hypotarsal canals required for postural stability in the 4-cable system are synapomorphies (Hutchinson 2002). 
We propose that tensegrity, which allows light and stable mechanical systems, is fundamental to the evolution of 
the avian body plan. Within this framework, joint shape and size would be critical for understanding functional 



adaptations in evolutionary biology The concept of tensegrity opens up a new paradigm for the functional 
interpretation of morphological features. It may also have applications in the modelling of the equilibrium of extinct 
species. 

Tensegrity and artificial selection  

Identifying the function of traits selected by natural evolution is also important in the context of artificial selection. 
Selection of individuals with morphological traits of commercial interest, such as pectoral muscle size in poultry, 
alters the overall balance of the system (Abourachid 1991, 1993, Stover 2018), leading to lameness and animal 
suffering. Awareness of the imbalances caused by artificial selection should improve the living conditions of 
domestic species. 

 

Interest of this study for robotics 

The vast majority of bipedal robot platforms are inspired by human models, and at rest bipedal robots are straight 
legged. However, these balance configurations are not stable and the standard model for walking (Kajita et al., 
2014) is an inherently unstable inverted pendulum model (the feet are reduced to points). This implies that the 
walking pattern consists of a sequence of instabilities that must be judiciously assembled to generate stable gaits 
(Chevallereau et al. 2003). The introduction of mechanically stable resting structures could provide a new 
perspective on the study of bipedal walking. Even the most bio-inspired structures currently available do not have 
these stable passive equilibrium configuration properties (Badri-Spröwitz et al. 2022). Another application directly 
inspired by birds is to equip legged drones to maintain a fixed posture for periods of observation or inspection 
without using energy (Doyle et al. 2011). Avian bipedalism in tension is very different from human bipedalism in 
compression. This result can also be used as an alternative for the design of human-like bipedal robots. 

 

Conclusion 

This work opens a new paradigm for the morpho-functional study of the evolution of the avian lineage by proposing 
tensegrity as a new biomechanical framework. The basis of postural stability in birds can be considered as 
tensegrity. The rigid bones can be held together by tensions in tendons and collagen tissues. Pelvic shape and joint 
geometry play a fundamental role in postural balance, while tendon pathways allow for economic stability. The 
parameters of this system could be adjusted, such as the size of the pulleys, the length of the cables or their 
stiffness, without losing the inherent postural stability. This system could have allowed the geometry of the 
osteomuscular system to be adjusted over the course of evolution to adapt to the diversity of living environments 
and behaviours of the 10,000 species of birds.  

This initial work does not answer all the questions and will need to be pursued.  This initial work relies on a single 
bird species. Bird morphological diversity needs to be measured, different parameter sets explored and limits 
tested.. This analysis is static and needs to be extended by studying the transient and dynamic behaviour of the 
system. An extension to a spatial model is also important. 
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