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Abstract

The ordinal invariants, i.e., maximal order type, height, and width,
are measures of a well quasi-ordering (wqo) based on the ordi-
nal rank of the trees of its bad sequences, strictly decreasing
sequences, and antichain sequences, respectively. Complex wqos are
often built from simpler wqos through basic constructions such
as disjoint sum, direct sum, cartesian product, and higher-order
constructions like powerset or sequences. One main challenge is
to compute the ordinal invariants of such wqos compositionally.
This article focuses on the width of the cartesian product of wqos,
for which no general formula is known. The particular case of the
cartesian product of two ordinals has already been solved (Abraham,
Order 4, 1987). We generalize this study and compute the width
of the cartesian product of finitely many ordinals. To this end, we
develop new tools for proving lower bounds on the width of wqos.
Finally, we leverage our main result to compute the width of a generic
family of elementary wqos that is closed under cartesian product.
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1 Introduction

For a finite poset, and more generally a finite quasi-order (qo), there are intu-
itive notions of dimension that play a paramount role in combinatorics and
algorithmics: the cardinal of the qo, but also its height (the cardinal of its
longest chain) and its width (the cardinal of its longest antichain, i.e., subset
of pairwise incomparable elements).

With some provisions, these invariants can be extended to infinite posets: If
a qo is well-founded (or WF), we define its ordinal height as the rank of the tree
of strictly decreasing sequences. If a qo is FAC (it only has finite antichains),
we define its ordinal width as the rank of the trees of antichain sequences, i.e,
sequences of pairwise incomparable elements. If a qo is both WF and FAC,
then it is called a well quasi-order(wqo)[1]. Equivalently, a wqo is a qo that
has no infinite bad sequence (a sequence (xi)i is bad if for all i < j, xi � xj).
A wqo has a height, a width, and also a maximal order type [2], defined as the
rank of the trees of bad sequences. Wqos can alternatively be defined as qos
that do not have infinite bad sequences.

There is a rich theory of wqos [3, 4], where these ordinal invariants are
used to measure complexity. De Jongh and Parikh [2] and Schmidt [5] initiated
the study of maximal order type, for use in proof theory. Kř́ıž and Thomas
[6] later introduced ordinal width for infinitary combinatorics. Abraham and
Bonnet [7] computed ordinal height and width for several constructions such
as cartesian and direct products. Blass and Gurevich [8] then contributed to
the study of ordinal invariants for program verification. Maximal order type
was also used in [9] for expressiveness results.

In the study of well-structured transition systems (WSTS), i.e., computa-
tional systems whose set of configurations is a wqo and whose transitions are
monotonic with respect to the order, some upper bound results on complex-
ity rely on the length of controlled bad sequences of configurations [10, 11]),
which in turn depends on the maximal order type of the underlying wqo.
Schmitz refined this technique with controlled antichains whose length depends
on width instead [12].

A recent survey article by Džamonja et al. [13] shows that we do not always
know how to compute the width of wqos, even in the apparently simple case
of a cartesian product. This gap is unfortunate since the cartesian product is
the most common and basic data structure in computer science. However, the
special case of the width of the cartesian product of two linear well-founded
orders, i.e., two ordinals, was solved by Abraham [14].



Springer Nature 2021 LATEX template

On the width of the cartesian product of ordinals 3

This article extends [14] by computing the width of the cartesian product of
n ordinals, for any n < ω. As explained in Section 2.6, the method of residuals
relies on specifics of the case n = 2, which are lost in case n = 3 and beyond.
Our method consequently develops new tools to provide refined lower bounds
on ordinal width.

1.1 Outline of the article

Section 2 introduces definitions, notations and recalls known results, mostly
following [13, 14]. Section 3 introduces the notion of quasi-incomparability
(Definition 3.1) and proves lower bound results for the ordinal width of wqos
(Lemmas 3.2 and 3.6, Corollary 3.10).

Section 4 gradually progresses toward our main result, computing the width
of the cartesian products of several ordinals: In Theorem 4.3 we give the width
of the product of indecomposable ordinals. With Theorem 4.6 we build from
this result to compute the width of the product of infinite ordinals. Section 4.3
extends this result by adding finite ordinals to the product. For completeness,
Section 4.4 recalls a classical result for the cartesian product of finite ordinals.

In Section 5 we leverage our main result to find a sufficient condition for
which the width of the cartesian product of ordinals reaches its maximal order
type (Theorem 5.2). We then use it to compute the width of the cartesian
product of a family of well-behaved wqos, obtained through basic operations
on ordinals, called elementary wqos (Definition 5.3).

2 Measuring well quasi-orders

2.1 Ordinal invariants

For any wqo (A,≤A) (we write just A when the ordering relation is under-
stood), Inco(A) (resp. Dec(A) and Bad(A)) is the tree of antichain sequences
(resp. strictly decreasing sequences, bad sequences) of A ordered by inverse
prefix order ([6]): the empty sequence is the root, and if s is the maximal strict
prefix of t, then t is a child of s.

Observe that, since A is a wqo (hence FAC and WF), the trees Inco(A),
Dec(A) and Bad(A) do not have infinite branches: they are well-founded.
However, they can be infinitely branching.

Classically, one ascribes an ordinal rank to any node of a well-founded tree

T from leaves to root. Let s ∈ T be a node: if s is maximal, then r(s)
def
= 0.

otherwise r(s)
def
= sup{r(t) + 1 | t is a child of s}. Since T can be infinitely

branching, r(s) is an ordinal. The rank of T is defined as the rank of its root.

Definition 2.1. The width w(A), the height h(A), and the maximal order type
o(A) of a wqo A are the ranks of Inco(A), Dec(A), and Bad(A), respectively.
Together, they are called the ordinal invariants of A.
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Example 2.2. For any ordinal α > 0, o(α) = h(α) = α, and w(α) = 1.

Example 2.3. For any n < ω, let Γn denote a set of n incomparable elements.
Then o(Γn) = w(Γn) = n, and h(Γn) = 1.

Since antichain sequences and strictly decreasing sequences are bad
sequences, Inco(A) and Dec(A) are substructures of Bad(A). Hence:

Lemma 2.4. For all wqo A, w(A) ≤ o(A) and h(A) ≤ o(A).

A linearisation of a quasi-order (A,≤) is a linear quasi-order (A,�) with
same support such that for any elements x, y ∈ A, x ≤ y =⇒ x � y, and
x < y =⇒ x ≺ y.

Remark 2.5. Maximal order type o(A) was historically defined as the order
type of a maximal linearisation of a wqo A ([2]). Height h(A) can similarly
be defined as the order type of a maximal chain of A [15]. However width
cannot be defined as the order type of a maximal antichain sequence. Fortu-
nately Definition 2.1 provides us with an homogeneous definition for all three
invariants.

2.2 On ordinal arithmetic

We suppose well-known the notions of sum and product on ordinals (see any
textbook like [16] for a fully detailed introduction). However, let us recall
succinctly some definitions and properties that might be less familiar to the
reader.

Definition 2.6 (Cantor normal form). Any ordinal α can be expressed in
Cantor normal form, or CNF, as α =

∑
i<n ω

αi , where α0 ≥ α1 ≥ · · · ≥ αn−1

are the exponents of α. This expression is unique.

Definition 2.7 (Ordinal operations). For any ordinals α, β with α =∑
i<n ω

αi and β =
∑

i<m ω
βi in CNF,

� The natural sum α⊕β is γ =
∑

i<n+m ω
γi with γ0 ≥ · · · ≥ γn+m−1 being

a reordering of α0, . . . , αn−1, β0, . . . , βm−1.
� The natural product α⊗ β is

⊕
i<n,j<m ω

αi⊕βj .
� If β ≤ α, then the subtraction α − β is the unique ordinal γ such that
β + γ = α.

Let us recall that an ordinal α is indecomposable when for all β, δ < α, we
have β+δ < α. Equivalently, indecomposable ordinals are ordinals of the form
ωβ with β any ordinal.

Proposition 2.8 (Properties of ordinal operations). For any ordinals
α, α′, β, β′ with CNF α =

∑
i<n ω

αi > 0 and β =
∑

i<m ω
βi > 0,
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1. β + α = α iff α0 > β0. In particular, 1 + α = α iff α is infinite.
2. If α ≥ β then α − β = α iff α0 > β0. In particular, α − 1 = α iff α is

infinite.
3. α+ β ≤ α⊕ β.
4. α+ β = α⊕ β iff αn ≥ β0. In particular, α+ n = α⊕ n for any n < ω.
5. α · β ≤ α⊗ β.
6. If α is indecomposable and β < ωω, then α · β = α⊗ β.
7. α⊕ β < α′ ⊕ β′ if (α, β) < (α′, β′) component-wise.
8. α⊗ β < α′ ⊗ β′ if (α, β) < (α′, β′) component-wise.
9. If β ≤ α < α′ then α− β < α′ − β.

2.3 Combining wqos

Wqos are often obtained through operations on smaller wqos.
For any wqos A,B, the disjoint sum, denoted with A t B, is defined as

the order ≤t on the disjoint union of A and B such that for all x, y ∈ A ∪B,
x ≤t y iff x ≤A y or x ≤B y.

The direct sum Σi<αAi along an ordinal α is the order ≤+ on the disjoint
union of a family of wqos (Ai)i<α such that for any i, j < α for any x ∈ Ai, y ∈
Aj , x ≤+ y iff i < j or i = j ∧ x ≤Ai y. If α = 2 then Σi<αAi can be written
A0 +A1.

The cartesian product A×B is ordered component-wise: for all xA, yA ∈ A
and xB , yB ∈ B, (xA, xB) ≤× (yA, yB) iff xA ≤A yA and xB ≤B yB .

Finally, A∗ denotes the star operation, i.e., the set of finite sequences of
A ordered with the embedding order: For any finite words u = u1 . . . un and
v = v1, . . . vm, u ≤A∗ v iff there is an injective function f : [1, n]→ [1,m] such
that for all i ∈ [1, n], ui ≤A vf(i).

It is useful to be able to compute ordinal invariants compositionally. The
state of the art on such invariants computation can be found in [13]: we recall
in Table 1 the results that will be useful for us, using abbreviated notations
defined in Fig. 1.

Table 1 How to compute ordinal invariants compositionally, [13].

Space X M.O.T. o(X) Height h(X) Width w(X)

A tB o(A)⊕ o(B) max(h(A),h(B)) w(A)⊕w(B)

A+B o(A) + o(B) h(A) + h(B) max(w(A),w(B))

A×B o(A)⊗ o(B) h(A) ⊕̂ h(B) (Not functional)

A∗, A 6= ∅ ωω(o(A)±)
h∗(A) o(A∗) if o(A) > 2

Observe that in Table 1 the ordinal invariants of a wqo are given as a func-
tion of the invariants of its sub-expressions. However, the width of a cartesian
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Fig. 1 Definition of the notations used in Table 1.

α ⊕̂ β def
= sup{ α′ ⊕ β′ | α′ < α, β′ < β }

α±
def
=


α− 1 if α is finite,

α+ 1 if α = ε+ n with ωε = ε and n < ω,

α otherwise.

h∗(A)
def
=

{
h(A) if h(A) ≥ ω and h(A) is indecomposable,

h(A) · ω otherwise.

product A × B cannot be expressed as a function of the invariants of A and
B, as embodied by the following example.

Example 2.9. Let H
def
=
∑

n<ω Γn, A1
def
= H +ω and A2

def
= H +H. Thus A1

and A2 have the same ordinal invariants. However w(A1 × ω) 6= w(A2 × ω).

We will come back on this example at the end of Section 3 as we do not
have the tools yet to efficiently compute ordinal invariants.

2.4 Comparing wqos

When computing ordinal invariants, we frequently want to compare a wqo
with a simpler one. There are standard notions that we can use:

Definition 2.10. Let (A,≤A), (B,≤B) be two wqos.
A is an augmentation of B if the carrier sets A,B are equal and ≤B⊆≤A.

We denote this by A ≥aug B.
A is a substructure of B if the carrier set A is a subset of B and ≤A is ≤B

restricted to A. We denote this by A ≤st B.

We use the notation A ≡ B when (A,≤A) is isomorphic to (B,≤ B), i.e.,
when there is a bijection between A and B that preserves the order. We often
abuse terminology and say that A is a substructure (resp. an augmentation)
when A is isomorphic to a substructure (resp. an augmentation).

Example 2.11. For any ordinals α ≤ β, α ≤st β.

Example 2.12. For any ordinal n < ω, Γn ≤aug n.

Example 2.13. For any wqos A,B, A tB ≤aug A+B.

The following lemma is a direct consequence of Remark 2.5:
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Lemma 2.14. For any wpo A, the height and m.o.t. of A are the largest
ordinals α, β such that such that α ≤st A and β ≥aug A.

These notions are very useful in order to find bounds on ordinal invariants:

Lemma 2.15. For all wqos A,B,
� If A ≤st B, then f(A) ≤ f(B) for f = w,o,h.
� If A ≥aug B, then f(A) ≤ f(B) for f = w,o.

Proof If A ≤st B, then Inco(A),Dec(A), and Bad(A) are subtrees of Inco(B),Dec(B),
and Bad(B),respectively. Similarly, if A ≥aug B, then all antichains or bad sequences
of A are antichains or bad sequences of B. �

Notice that the disjoint and direct sums, the cartesian and direct products,
and the star operation are monotonic with respect to both substructures and
augmentations.

2.5 Residual Characterization

For any quasi-order A, x ∈ A, and a relation symbol ∗ ∈ {⊥, <,>, 6≤, 6≥}, we
define the ∗-residual of A at x as

A∗x
def
= {y ∈ A : y ∗ x} ,

seen as a substructure or a subset of A depending on context. We generalize
this notion to subsets Y ⊆ A:

A∗Y
def
=
⋂
x∈Y

A∗x .

If Y = ∅, let A∗Y
def
= A.

If A is a wqo, then its residuals are wqos too. Their ordinal invariants are
smaller than or equal to the invariants of A (see Lemma 2.15).

Residuals are essential in the computation of ordinal invariants, given:

o(X) = sup
x∈X

(o(X6≥x) + 1) (Res-o)

h(X) = sup
x∈X

(h(X<x) + 1) (Res-h)

w(X) = sup
x∈X

(w(X⊥x) + 1) (Res-w)

These formulas can be seen as a reformulation of Definition 2.1. We can
use them to inductively compute the ordinal invariants of A: this is called the
method of residuals.
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2.6 Cartesian product of two ordinals

Abraham ([14]) used the method of residuals to compute the width of the
cartesian product of two ordinals. Extending this result is what motivated this
article. Let us recall the main steps of his proof:

Let α, β be two ordinals. According to Eq. (Res-w),

w(α× β) = sup
(x1,x2)∈α×β

(
w((α× β)⊥(x1,x2)) + 1

)
. (1)

Fix (x1, x2) ∈ α×β. Then for any (y1, y2) ∈ α×β, (x1, x2) ⊥ (y1, y2) if and
only if x1 < y1 and x2 > y2, or x1 > y1 and x2 < y2. In Fig. 2, the ordinals
α and β are represented through vertical lines, and an element (x1, x2) of the
cartesian product as a segment from x1 to x2. Thus, elements incomparable
to (x1, x2) correspond to segments intersecting (x1, x2).

Thus the residual (α× β)⊥(x1,x2) is a disjoint union:

(α× β)⊥(x1,x2) ≡ α<x1
× β>x2

t α>x1
× β<x2

.

α β

x1

x2

(> x1)

(< x1)

(> x2)

(< x2)

Fig. 2 Residual of α× β at (x1, x2) as a disjoint union.

Observe that α<x1
is isomorphic to x1, and α>x1

to α− (x1 +1). The same
reasoning applies to β<x2

and β>x2
. Using Table 1 we rewrite Eq. (1) as:

w(α× β) = sup
x1<α
x2<β

((
w(x1 × (β − x2))⊕w((α− x1)× x2)

)
+ 1
)
.

This equality leads us by induction to the main result of [14] (slightly
transformed here as to express in one formula what was given as separate
results for different cases):

Theorem 2.16 (Lemma 3.2 and Theorem 3.4 of [14]). For any infinite ordi-
nals α = ωα0 · a+ ρ and β = ωβ0 · b+ σ , where α0, ρ, β0, σ are ordinals such
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that ρ < ωα0 and σ < ωβ0 , and 0 < a, b < ω, the width of α × β is computed
inductively as:

w(α× β) = ωη · (a+ b− 1) + [w(ωα0 × σ)⊕w(ωβ0 × ρ)] ,

with η = 1 + ((α0 − 1)⊕ (β0 − 1)).

To illustrate how computing the width of the product of n ordinals is
substantially more complex than the case n = 2, let us show why the same
proof structure as in [14] does not allow us to conclude for the product of n = 3
ordinals. Let X = α1 × α2 × α3 and x = (x1, x2, x3) ∈ X. We can express the
residual X⊥x as an union of subsets.

However, unlike the case n = 2, this union of disjoint subsets cannot be seen
as a disjoint sum of wqos. For instance, observe that the subsets (> x1)× (>
x2) × (< x3) and (> x1) × (< x2) × (< x3) have comparable elements (see
Fig. 3). One can see the residual as an augmentation of a disjoint union, but
this only gives us an upper bound on w(X), without a matching lower bound.

α1 α2 α3

x1
x2

x3

(> x1) × (> x2)× (< x3)

(> x1) × (< x2)× (< x3)

Fig. 3 Two parts of the residual of α1 × α2 × α3 at (x1, x2, x3) that have comparable
elements.

This observation motivated the development of tools to prove refined lower
bounds on the width of the cartesian product.

3 Lower bound toolbox

3.1 Quasi-incomparability

We write B ⊥ C with B and C two subsets of a wqo A when b ⊥A c for any
b ∈ B, c ∈ C. We say A1, . . . , Am is an incomparable family of subsets of A
when Ai ⊥ Aj in A for any i 6= j. Observe that, for an incomparable family,
we have A ≥st

⊔
iAi thus w(A) ≥

⊕
iw(Ai). What we would like is to obtain

a similar result with a weaker condition on the Ais: Quasi-incomparability.
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Definition 3.1 (Quasi-incomparability.). Let A be a wqo, and A1, . . . , Am
be subsets of A. Then A1, . . . , Am is a quasi-incomparable family of subsets of
A if for any i ∈ [1,m], for every finite set Y ⊆ A1 ∪ · · · ∪ Ai−1, there exists
A′i ⊆ Ai such that A′i ⊥ Y and w(A′i) = w(Ai).

Note that the notion of quasi-incomparable family is sensitive to the way
we number the Ais: A1, . . . , Am being a quasi-incomparable family of subsets
of A does not mean that Am, . . . , A1 is one too.

Since A is FAC, it implies that the Ais are disjoint: Imagine a quasi-
incomparable family of subsets A1, A2 such that there is some x ∈ A1 ∩ A2.
Then w(A2) ≥ 1 + w(A2⊥x) through Eq. (Res-w). Following the definition
of quasi-incomparability, there exists A′2 ⊆ A2 such that A′2 ⊥ {x} and
w(A′2) = w(A2). Hence w(A2) ≥ 1 + w(A2), we reach a contradiction.

Lemma 3.2 (Width lower bound for quasi-incomparable families).
Let A1, . . . , Am be a quasi-incomparable family of subsets of A. Then w(A) ≥
w(Am) + · · ·+ w(A1).

Proof By induction on m. If m = 1, w(A) ≥ w(A1) because A1 ≤st A. Assume now
m > 1. Let Y be a finite subset of A1. By definition, for all i ∈ [2,m], there exists
A′i ⊆ Ai∩A⊥Y such that w(A′i) = w(Ai). Since A′i ≤st Ai∩A⊥Y ≤st Ai, we deduce
that w(Ai ∩A⊥Y ) = w(Ai).

We claim that (Ai ∩ A⊥Y )i∈[2,m] is a quasi-incomparable family of A⊥Y : Since
(Ai)i∈[1,m] is a quasi-incomparable family of subsets of A, for any i ∈ [2,m], for

every finite set Y ′ ⊆ (A2 ∪ · · · ∪ Ai−1) ∩ A⊥Y , there exists A′′i ⊆ Ai such that
A′′i ⊥ (Y ∪ Y ′) and w(A′′i ) = w(Ai) = w(Ai ∩ A⊥Y ). Therefore by induction
hypothesis, w(A⊥Y ) ≥ w(Am) + · · ·+ w(A2).

Let rA and rA1
be the rank functions of Inco(A) and Inco(A1) respectively. Note

that Inco(A1) is a subtree of Inco(A). For any antichain Y ∈ Inco(A1), rA(Y ) =
w(A⊥Y ) ≥ w(Am) + · · · + w(A2). This means that every antichain of rank 0 in
Inco(A1) has rank w(A⊥Y ) ≥ w(Am) + · · ·+ w(A2) in Inco(A) at least. Hence for
any antichain Y in Inco(A1), by induction on rA1

(Y ), we have rA(Y ) = w(A⊥Y ) ≥
w(Am) + · · ·+w(A2) + rA1

(Y ). Therefore w(A) = rA(∅) ≥ w(Am) + · · ·+w(A2) +
rA1

(∅) = w(Am) + · · ·+ w(A1).
�

This result will be a cornerstone for Sections 4.2 and 4.3, but we can already
use it to prove a nifty lower bound in the case of self-residual wqos.

3.2 Lower bound for self-residual wqos

Definition 3.3 (Self-residual). Let A be a quasi-order. Then A is self-residual
if for any x ∈ A, A 6≤x contains an isomorphic copy of A.

Remark 3.4. If A is self-residual, then for all finite Y ⊆ A, A 6≤Y contains an
isomorphic copy of A (by induction on the size of Y ).
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The notion of self-residual is compatible with the cartesian product: if A
and B are self-residual wqos, then A×B is self-residual.

Example 3.5. Any infinite indecomposable ordinal α is self-residual: for any
x < α, α6≤x ≡ α− (x+ 1) = α , because x+ 1 < α. Furthermore, the cartesian
product of n infinite indecomposable ordinals is self-residual.

Here is an application of Lemma 3.2 that will be useful in Section 4.1. Let
us write B · k for the direct sum of k copies of B.

Lemma 3.6. Let A,B be two wqos such that A is self-residual. Then w(A×
(B · k)) ≥ w(A×B) · k.

Proof Let B1, . . . , Bk be disjoint copies of B, and B · k = Bk + · · ·+ B1. We claim
that (A×Bi)i∈[1,k] is a quasi-incomparable family of subsets of A× (B · k):

Fix j ∈ [1, k−1] and Y ⊂ (A×B1)∪· · ·∪(A×Bj) finite (Fig. 4 illustrates the case
j = 2). We want to find a subset C of A× Bj+1 isomorphic to A× Bj+1 such that

C ⊥ Y . Let projA(Y )
def
= {a ∈ A | (a, b) ∈ Y for some b ∈ B1 ∪ · · · ∪ Bj}. Since A is

self-residual, A6≤projA(Y ) contains an isomorphic copy of A, hence w(A6≤projA(Y ) ×
Bj+1) = w(A×Bj+1). For any (a, b) ∈ A6≤projA(Y )×Bj+1 and (a′, b′) ∈ Y , we know

that a 6≤A a′ and b <B·k b
′, thus (a, b) ⊥ (a′, b′). Hence A6≤projA(Y ) ×Bj+1 ⊥ Y .

A ⊆ A 6≤projA(Y )

A

B1

B2

B3

Bk

Y

...

a

b

Fig. 4 All elements (a, b) of A 6≤projA(Y ) × (Bk + · · · + B3) are incomparable with Y ⊆
A× (B2 +B1).

Therefore (A×Bi)i∈[1,n] is a quasi-incomparable family in A×(B·k), so according
to Lemma 3.2,
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w

(
A×

(
1∑
i=k

Bi

))
≥

1∑
i=k

w(A×Bi) = w(A×B) · k .

�

Remark 3.7. When w(A×B) is indecomposable, this lower bound is tight:
A× (B ·k) ≥aug A×B×Γk, so w(A× (B ·k)) ≤ w(A×B)⊗k = w(A×B) ·k
through 2.8.6.

3.3 Lower bound for transferable wqos

[13] introduces a notion less restrictive than self-residuality : transferability.

Definition 3.8. A wqo A is transferable if w(A 6≤Y ) = w(A) for any finite
Y ∈ A.

Theorem 3.9 (Theorem 4.16 of [13]). Suppose that A is a transferable wqo
and β is an ordinal. Then w(A× β) ≥ w(A) · β.

From this lemma, we deduce a more general result which we will use in
Section 4.1.

Corollary 3.10. Suppose that A is a transferable wqo and B any wqo. Then
w(A×B) ≥ w(A) · o(B).

Proof According to Lemma 2.14, B ≤aug o(B). Therefore w(A × B) ≥ w(A ×
o(B)) ≥ w(A) · o(B). �

Let us show how Corollary 3.10 can be combined with the method of
residuals or Lemma 2.4 to compute the width of simple examples:

We note A×n
def
= A× · · · ×A the cartesian product of n copies of a wqo A.

Proposition 3.11. w(ω×n) = ωn−1 for n ≥ 1.

Proof Case n = 1: w(ω) = 1.
If n > 1, then ω×n is a cartesian product of n indecomposable ordinals so it is

self-residual hence transferable. Thus according to Corollary 3.10 w(ω×n) ≥ w(ω) ·
o(ω×(n−1)) = ωn−1.

Let us prove the upper bound by induction on n, initialized in n = 1: Assume
w(ω×n) = ωn−1 for some n. Let m = (m0, . . . ,mn) be any element of ω×(n+1),
m′ = (m1, . . . ,mn). We know (ω×n)<m′ is finite, so there exists k < ω such that
k ≥aug (ω×n)<m′ . Then:

(ω×(n+1))⊥m ≥aug (< m0)× (ω×n)>m′ t (> m0)× (ω×n)<m′ t {m0} × (ω×n)⊥m′

≥aug Γm0 × ω
×n t ω × Γk t (ω×n)⊥m′ .
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Therefore by induction hypothesis w
(
ω
×(n+1)
⊥m

)
≤ ωn−1 ·m0 ⊕ k ⊕ γ with

γ < ωn−1, hence w
(
ω
×(n+1)
⊥m

)
< ωn.

Thus following Eq. (Res-w): w
(
ω×(n+1)

)
= sup

m

{
w(ω

×(n+1)
⊥m ) + 1

}
≤ ωn.

�

Proposition 3.12. w((ωω)×n) = ωω·n for n ≥ 2.

Proof Observe that, as a cartesian product of n indecomposable ordinals, (ωω)×n is
self-residual hence transferable.

The case n = 2 is an application of Theorem 2.16. If n > 2:

w((ωω)×n) ≤ o((ωω)×n) = ωω·n according to Lemma 2.4,

w((ωω)×n) ≥ w(ωω × ωω) · o((ωω)×(n−2)) = ωω·2 · ωω·(n−2) = ωω·n

according to Corollary 3.10 and Table 1. �

Let us revisit Example 2.9:

Example 2.9. Let H
def
=
∑

n<ω Γn, A1
def
= H +ω and A2

def
= H +H. Thus A1

and A2 have the same ordinal invariants. However w(A1 × ω) 6= w(A2 × ω).

Proof Observe that H is self-residual thus transferable and w(H) = o(H) = h(H) =
ω. Therefore according to Table 1, w(Ai) = ω and o(Ai) = h(Ai) = ω·2 for i ∈ {1, 2}.

According to Proposition 3.11, w(ω × ω) = ω. And w(H × ω) = ω2, thanks to
Lemma 2.4 and Corollary 3.10.

Since A1 ≥aug (H t ω), w(A1 × ω) ≤ w(H × ω) ⊕ w(ω × ω) = ω2 ⊕ ω.
Furthermore, (ω × ω,H × ω) is a quasi-incomparable family of subsets of A1 ×
ω: For any finite subset Y of ω × ω, let k = max{ n | (m,n) ∈ Y }. Then H ×
{ n ∈ ω | n > k } is isomorphic to H × ω and incomparable to Y . Hence according
to Lemma 3.2, w(A1 × ω) = ω2 + ω. Similarly, w(A2 × ω) = ω2 · 2 6= w(A1 × ω).

�

4 Width of the cartesian product of ordinals

The next three subsections build on each other, and culminate with
Theorem 4.14 which computes the width of the product of several ordinals
when at least two are infinite. The fourth subsection is independent and recalls
a result which solves the width of the product of finite ordinals.

4.1 Product of indecomposable ordinals

This section computes the width of the product of n indecomposable ordinals,
for any 2 ≤ n < ω. Recall the case n = 2 from Theorem 2.16:

w(ωα1 × ωα2) = ωη with η = 1 + ((α1 − 1)⊕ (α2 − 1)) for any ordinals
α1, α2 > 0.
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Remark 4.1. For any ordinals α ≥ β, according to Propositions 2.8.1 and
2.8.2, 1 +

(
(α− 1)⊕ (β − 1)

)
= α⊕ (β − 1).

Lemma 4.2. Let X = ωα1×· · ·×ωαn , with 2 ≤ n ≤ ω and α1, . . . , αn infinite
ordinals. Then w(X) = ωα1⊕···⊕αn .

Proof We know from Lemma 2.4 and Table 1 that w(X) ≤ o(X) = ωα1⊕···⊕αn .
Observe that X ≤aug ω

α1×o(ωα2×· · ·×ωαn) = ωα1×ωα2⊕···⊕αn . Therefore accord-
ing to Theorem 2.16, w(X) ≥ ωη with η = 1 + ((α1 − 1)⊕ ((α2 ⊕ · · · ⊕ αn)− 1)) =
α1 ⊕ · · · ⊕ αn through Propositions 2.8.1 and 2.8.2. �

Theorem 4.3. Let X = ωα1 × · · · × ωαn , with 2 ≤ n < ω and α1 ≥ · · · ≥ αn
ordinals. Then w(X) = ωη with η = 0 if α2 = · · · = αn = 0, otherwise
η = α1 ⊕

(
(α2 ⊕ · · · ⊕ αn)− 1

)
.

Proof Let k ≤ n be the integer such that α1 ≥ · · · ≥ αk > 0 = αk+1 = · · · = αn.
If k ≤ 1, then X ≡ ωα1 so w(X) = 1. Otherwise k ≥ 2, and X ≡ ωα1 × · · · × ωαk .
Observe that α1 ⊕ ((α2 ⊕ · · · ⊕ αk) − 1) = α1 ⊕ ((α2 ⊕ · · · ⊕ αn) − 1). Hence we
assume without loss of generality that k = n

Case n = 2 is given by Theorem 2.16 and Remark 4.1.
If α1, . . . , αn are infinite, then according to Lemma 4.2, w(X) = ωα1⊕···⊕αn =

ωα1⊕
(
(α2⊕···⊕αn)−1

)
through Proposition 2.8.2.

Otherwise remember that ωα1 × · · · × ωαj is self-residual for all j ≤ n hence
transferable.

If α2, . . . , αn are finite, then according to Corollary 3.10

w(X) ≥ w(ωα1 × ωα2) · o(ωα3 × · · · × ωαn)

= ω(α1⊕(α2−1))+(α3⊕···⊕αn) (Theorem 2.16 and Table 1),

= ωα1⊕((α2⊕···⊕αn)−1) (Proposition 2.8.4.).

Similarly if α1, . . . , αk are infinite and αk+1, . . . , αn finite for 2 ≤ k < n, then
according to Corollary 3.10 and Lemma 4.2:

w(X) ≥ w(ωα1×· · ·×ωαk )·o(ωαk+1×· · ·×ωαn) = ωα1⊕···⊕αn = ωα1⊕((α2⊕···⊕αn)−1) .

Thus w(X) ≥ ωη.
Now we prove the upper bound by induction on (α1, . . . , αn) with the cartesian

product ordering:
The induction is initialized with w(ω×n) = ωn−1 from Proposition 3.11.
Let x = (x1, . . . , xn) be an element of X. For all i ∈ [1, n] there exists 0 ≤ α′i < αi

and mi ∈ ω such that xi ≤ ωα
′
i ·mi < ωαi . The residual X⊥x is a substructure of

an augmentation of a disjoint sum of terms of the form

(
×
i∈I

(< xi)

)
×

(
×
i 6∈I

(≥ xi)

)
with I ( [1, n], I 6= ∅. Observe that:

(
×
i∈I

(< xi)

)
×

(
×
i6∈I

(≥ xi)

)
≤st

(
×
i∈I

ωα
′
i ·mi

)
×

(
×
i6∈I

ωαi

)
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≥aug

(
×
i∈I

ωα
′
i × Γmi

)
×

(
×
i 6∈I

ωαi

)
,

therefore

w(X⊥x) ≤
⊕

I([1,n],I 6=∅
w

((
×
i∈I

ωα
′
i

)
×

(
×
i 6∈I

ωαi

))
·
∏
i∈I

mi .

By induction hypothesis, w

((
×
i∈I

ωα
′
i

)
×

(
×
i6∈I

ωαi

))
= ωη

′
, with η′ < α1 ⊕

(α2 ⊕ · · · ⊕ αn − 1) according to Remark 4.4.

Therefore w(X) ≤ ωα1⊕(α2⊕···⊕αn−1) through Eq. (Res-w). �

Remark 4.4. According to Propositions 2.8.7 and 2.8.9, for any ordi-
nals α1, . . . , αn, β1, . . . , βn with 2 ≤ n < ω, if (α1, . . . , αn) < (β1, . . . , βn)
component-wise then α1 ⊕ ((α2 ⊕ · · · ⊕ αn)− 1) < β1 ⊕ ((β2 ⊕ · · · ⊕ βn)− 1).

Corollary 4.5. If α1 and α2 are infinite, then α1⊕((α2⊕· · ·⊕αn)−1) = α1⊕
· · · ⊕αn, hence w(X) = o(X) according to Table 1. Otherwise w(X) < o(X).

4.2 Product of infinite ordinals

This section extends our result on the width of the product of indecompos-
able ordinals (Theorem 4.3) to the width of the product of infinite ordinals
(Theorem 4.6).

LetX = α1×· · ·×αn be a cartesian product of n infinite ordinals (αi)1≤i≤n.
For any i ∈ [1, n], αi is written as

∑
j<li

ωαi,j in CNF, i.e. αi,0 ≥ · · · ≥ αi,li−1.

We partition X into disjoint subsets we call slices: let Sl(X)
def
= l1×· · ·× ln

be the set of slice indices. For any s = (s(1), . . . , s(n)) ∈ Sl(X), we define the
slice Xs as

Xs
def
= ×

i∈[1,n]
Xs,i

where Xs,i is the interval of αi whose elements are bigger than or equal to∑
j≤s(i)−1 ω

αi,j (or 0 if s(i) = 0) and strictly smaller than
∑

j≤s(i) ω
αi,j .

Observe that Xs is isomorphic to ×
i∈[1,n]

ωαi,s(i) . Therefore we know w(Xs)

through Theorem 4.3.
We say s ∈ Sl(X) is grounded if there exists k ∈ [1, n] such that s(k) = 0.

Let Gr(X)
def
= {s ∈ Sl(X) | ∃k ∈ [1, n], s(k) = 0} the set of grounded slice

indices. We denote the cardinal of Gr(X) with L =
∏
li −

∏
(li − 1).

Theorem 4.6. Let X = α1 × · · · × αn be a cartesian product of n infinite
ordinals. Then

w(X) =
⊕

s∈Gr(X)

w( ×
i∈[1,n]

ωαi,s(i)) . (2)
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ωω + ω ω · 3 ω3 + ω2 + 1

Xs

Xtωω

ω

ω

ω

ω

ω3

ω2

Fig. 5 Slices and grounded slices: X = (ωω + ω)× (ω · 3)× (ω3 + ω2 + 1), Xs and Xt for
s = (1, 0, 2), t = (1, 2, 0) are both grounded.

We will first prove the upper bound w(X) ≤
⊕

s∈Gr(X) w(Xs), then the

lower bound w(X) ≥
⊕

s∈Gr(X) w(Xs).

Proof of the upper bound of Theorem 4.6

For any slices s, t ∈ Sl(X), we write s ≺ t if and only if for all i ∈ [1, n], s(i) < t(i).
Observe that, for any s, t such that s ≺ t:

• for any x ∈ Xs, x′ ∈ Xt, we have x <X x′.

• for any i ∈ [1, n], αi,s(i) ≥ αi,t(i), therefore w(Xs) ≥ w(Xt) according to
Theorem 4.3 and Remark 4.4.

We define a surjective function g : Sl(X) → Gr(X) which maps any slice index
to a grounded slice index:

g(s)(i)
def
= s(i)− k with k = min

i∈[1,n]
s(i) .

This surjection has interesting properties:
If s is grounded then g(s) = s, otherwise g(s) ≺ s. Thus w(Xs) ≤ w(Xg(s)).
For any distinct s, t ∈ Sl(X), such that g(s) = g(t), s ≺ t or s � t.
Thus X is an augmentation of the disjoint sum of direct sums of slices grouped

by image through g, as illustrated in Fig. 6:

X ≥aug

⊔
s∈Gr(X)

∑
s′∈g−1(s)

Xs′ .

Therefore, according to Table 1,

w(X) ≤
⊕

s∈Gr(X)

max
s′∈g−1(s)

w(Xs′) =
⊕

s∈Gr(X)

w(Xs) .

�
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X ≥aug X(0,0)

X(1,1)

X(2,2)

X(0,1)

X(1,2)

X(1,0)

X(2,1)

X(0,2) X(2,0)

+

+

+ +⊔ ⊔ ⊔ ⊔
-1
g = (0, 0)

-1
g = (0, 1)

-1
g = (1, 0)

-1
g = (0, 2)

-1
g = (2, 0)

Fig. 6 Relations between slices when Sl(X) = 3× 3.

We need to introduce a few notations before proving the lower bound of
Theorem 4.6.

For any finite subset Y of X, we define ξ(Y, i) as the maximum of the i-th
components of elements of Y which are less than ωαi,0 :

ξ(Y, i)
def
= max {y(i) + 1 | y ∈ Y, y(i) < ωαi,0} .

We define a function trim which given a slice Xs and a finite subset of X
outputs a subset of Xs:

trim(Xs, Y )
def
= ×

i∈[1,n]
trim(Xs,i, Y ) ,

where

trim(Xs,i, Y )
def
=

{{
δ ∈ Xs,i | ξ(Y, i) ≤ δ

}
if s(i) = 0,

Xs,i otherwise.

Lemma 4.7. For any finite set Y ∈ X, and any slice index s ∈ Sl(X),
trim(Xs, Y ) is isomorphic to Xs.

Proof For any i ∈ [1, n], trim(Xs,i, Y ) is isomorphic to Xs,i: If s(i) > 0 then
trim(Xs,i, Y ) = Xs,i. Otherwise s(i) = 0 and trim(Xs,i, Y ) = {δ ∈ Xs,i | ξ(Y, i) ≤
δ} ≡ ωαi,0−ξ(Y, i). Since αi is infinite, ωαi,0 is infinite indecomposable, and ξ(Y, i) <
ωαi,0 since Y is finite and ωαi,0 limit. Therefore ωαi,0−ξ(Y, i) = ωαi,0 ≡ Xs,i. �

Lemma 4.8. Let s1, . . . , sL be a linearisation of (Gr(X),≤×) (i.e., a reorder-
ing such that s1 6≥ · · · 6≥ sL component-wise). Then (Xsi)1≤i≤L is a
quasi-incomparable family of subsets of X.
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ωω + ω ω · 3 ω3 + ω2 + 1

Y

trim(Xs, Y )

ξ(Y, 3)

Fig. 7 trim(Xs, Y ), for s = (1, 1, 0), is incomparable to Y

Proof Fix k ∈ [2, L] and Y a finite subset of Xs1 ∪ · · · ∪ Xsk−1 . Then we define
X ′sk ⊆ Xsk as trim(Xsk , Y ). According to Lemma 4.7, X ′sk is isomorphic to Xsk
hence w(X ′sk ) = w(Xsk ).

Let us show X ′sk ⊥ Y : We pick x ∈ X ′sk , y ∈ Y two elements of X. There exists
j < k such that y ∈ Xsj . Since s1, . . . , sL is a linearisation of Gr(X), sj 6≤ sk.
Therefore there exists i1 ∈ [1, n] such that sj(i1) > sk(i1), hence y(i1) > x(i1).
Since sj is grounded, there exists i2 ∈ [1, n] such that sj(i2) = 0. If sk(i2) > 0 then
x(i2) ≥ ωαi1,0 > y(i2). otherwise x(i2) ≥ ξ(Y, i2) > y(i2). Therefore x ⊥ y.

�

Lemma 4.9. There exists a linearisation s1, . . . , sL of (Gr(X),≤×) such that
w(XsL) + · · ·+ w(Xs1) =

⊕
s∈Gr(X) w(Xs).

Proof According to Theorem 4.3, w(Xs) can be written under the form w(Xs) = ωηs

for some ordinal ηs. Observe that for any distinct grounded slices s, s′, ηs < ηs′

implies that si 6≤ sj according to Remark 4.4. Therefore there exists a linearisation
s1, . . . , sL such that ηs1 ≤ · · · ≤ ηsL , which means that w(XsL) + · · · + w(Xs1) =⊕
s∈Gr(X) w(Xs).

�

Proof of the lower bound of Theorem 4.6
Let s1, . . . , sL be a linearisation of (Gr(X),≤×) such that w(XsL)+ · · ·+w(Xs1) =⊕
s∈Gr(X) w(Xs). Such an ordering exists according to Lemma 4.9. According

to Lemma 4.8, (Xsj )j∈[1,L] is a quasi-incomparable family, hence according to
Lemma 3.2,

w(X) ≥ w(XsL) + · · ·+ w(Xs1) =
⊕

s∈Gr(X)

w(Xs) .

�
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We can rewrite Eq. (2) from Theorem 4.6 in a way that makes our result
easier to compare with Theorem 2.16.

Theorem 4.10 (Inductive expression of w(X)). Let X = α1 × · · · × αn be a
cartesian product of n infinite ordinals. For i ∈ [1, n], let αi = ωαi,0 · ai + σi
where αi,0 and σi are ordinals such that σi < ωαi,0 , and 0 < ai < ω. Then

w(X) =
⊕

∅6=I⊆[1,n]

w(XI)⊗

(∏
i∈I

ai −
∏
i∈I

(ai − 1)

)
,

where XI
def
=

(
×
i∈I
ωαi,0

)
×
(
×σi
i 6∈I

)
for all I ⊆ [1, n], I 6= ∅.

As expected, when n = 2 this is exactly Abraham’s formula
(Theorem 2.16).

Proof For all i ∈ [1, n], each αi can be written uniquely as
∑
j<l′i

ωα
′
i,j · ai,j with

α′i,0 > · · · > α′i,l′i−1. Let Sl′(X)
def
= l′1 × · · · × l′n and let Gr′(X) be the grounded

slices of Sl′(X). For any s ∈ Gr′(X) there are exactly ks slices t in Gr(X) such that
αi,t(i) = α′i,s(i) for every i ∈ [1, n], with

ks
def
=

 ∏
s(i)=0

ai,0 −
∏

s(i)=0

(ai,0 − 1)

 · ∏
s(i)>0

ai,s(i) .

Let X ′s = ×i∈[1,n]ω
α′i,s(i) for any s ∈ Sl′(X). Then⊕
s∈Gr(X)

w(Xs) =
⊕

s∈Gr′(X)

w(X ′s)⊗ ks ,

Similarly, for any I ∈ [1, n], I 6= ∅,

w(XI) =
⊕

s∈Gr′(X),s(i)=0 iff i∈I
w(X ′s)⊗

∏
i 6∈I

ai,s(i) .

Hence

w(X) =
⊕

∅6=I⊆[1,n]

w(XI)⊗

∏
i∈I

ai −
∏
i∈I

(ai − 1)

 as claimed.

�

4.3 Product of ordinals where at least one is infinite

This section extends our result on the width of the product of infinite ordi-
nals (Theorem 4.6) to the width of the product of finite and infinite ordinals
(Theorem 4.14).

Lemma 4.11. Let A be a wqo, and n < ω. Then w(A× Γn) = w(A)⊗ n.
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Proof Observe that A×Γn ≡ At· · ·tA the disjoint sum of n copies of A. Therefore
w(A× Γn) = w(A)⊕ · · · ⊕w(A) = w(A)⊗ n. �

Lemma 4.12. For X a cartesian product of finitely many indecomposable
ordinals, and k < ω, w(X × k) = w(X)⊗ k

Proof Since X × k ≥aug X × Γk, according to Lemma 4.11 w(X × k) ≤ w(X)⊗ k.
On the other hand, X is transferable hence w(X×k) ≥ w(X) ·k with Corollary 3.10.
According to Theorem 4.3 w(X) is indecomposable, therefore w(X) · k = w(X)⊗ k
through Proposition 2.8.6.

�

Lemma 4.13. Let X be a cartesian product of finitely many infinite ordinals,
and k < ω. There exists a linearisation s1, . . . , sL of (Gr(X),≤×) such that
(Xsi×k)i∈[1,L] is a quasi-incomparable family of subsets of X×k, and w(XsL×
k) + · · ·+ w(Xs1 × k) = w(X)⊗ k.

Proof According to Lemma 4.9, there exists a linearisation s1, . . . , sL of (Gr(X),≤×)

such that w(XsL) + · · ·+w(Xs1) =
⊕
s∈Gr(X) w(Xs). We claim that (Zi)i∈[1,L]

def
=

(Xsi×k)i∈[1,L] is a quasi-incomparable family of subsets of X×k: For any i ∈ [2, L],

for any finite Y ∈ Z1∪· · ·∪Zi−1, we define Y ′ as the projection of Y on X. According
to Lemmas 4.7 and 4.8, (Xsi)i∈[1,L] is a quasi-incomparable family, and there exists

X ′si ⊆ Xsi such that X ′si ⊥ Y
′ and X ′si ≡ Xsi . Let Z′i = X ′si×k ⊆ Zi. Then Z′i ⊥ Y

and Z′i ≡ Zi so w(Z′i) = w(Zi).
For all s ∈ Gr(X), w(Xs × k) = w(Xs)⊗ k according to Lemma 4.12. Thus,

w(ZL) + · · ·+ w(Z1) =

 ⊕
s∈Gr(X)

w(Xs)

⊗ k = w(X)⊗ k ,

according to Theorem 4.6. �

Theorem 4.14. For X an infinite ordinal or a cartesian product of finitely
many infinite ordinals, and k1, . . . , km < ω,

w(X × k1 × · · · × km) = w(X)⊗
∏
i≤n

ki

Proof Let k =
∏
i≤n ki. We know that X × k1 × · · · × km ≥aug X × Γk so by

Lemma 4.11 we know that w(X × k1 × · · · × km) ≤ w(X)⊗ k.
If X is an infinite ordinal, then X ≥st ω × k1 × · · · × kn and ω is transferable,

hence according to Corollary 3.10 w(X) ≥ w(ω) · o(k1 × · · · × kn) = k.
If X is a cartesian product of infinite ordinals, then observe that X × k1 × · · · ×

km ≤aug X × (
∏
i≤n ki). Therefore w(X × k1 × · · · × km) ≥ w(X × (

∏
i≤n ki)) ≥

w(X)⊗ (
∏
i≤n ki) according to Lemmas 3.2 and 4.13.

�
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4.4 Product of finite ordinals

The case of the cartesian product of finite ordinals is a finite poset, thus
its width coincides with the length of its largest antichain. For the sake of
completeness, we recall a classical result that characterizes its width.

Let k1, . . . , kn > 0 be n finite ordinals, and p1, . . . , pn some distinct prime

numbers. Observe that X
def
= k1×· · ·×kn is isomorphic to the poset of the divi-

sors of pk1−1
1 · · · pkn−1

n ordered by divisibility. Therefore, according to Theorem
1 of [17]:

Theorem 4.15. Let X
def
= k1×· · ·×kn be a cartesian product of finite ordinals.

Then w(X) = |A|, with

A =

{
(m1, . . . ,mn) ∈ X

∣∣∣∣ ∑mi =

⌊
1

2

∑
(ki − 1)

⌋}
a maximal antichain of X.

5 Application to the cartesian product of wqos

We computed the width of the cartesian product of any number of ordinals. Let
us now demonstrate how this result can be extended to the cartesian product
of more complex wqos.

5.1 When width coincides with maximal order type

In view of w((ωω)×n) = o((ωω)×n) (Proposition 3.12), one wonders if more
generally w(X) reaches o(X) when X is a cartesian product of ordinals, for
instance when the ordinals are large enough? It turns out that we can exactly
characterize the cartesian products of ordinals such that width and m.o.t.
coincide:

Theorem 5.1. Let Z = α1 × · · · × αn × k1 × · · · × km with n,m < ω and
n > 0, such that α1, . . . , αn are infinite ordinals, and 0 < k1, . . . , km < ω. Now
w(Z) = o(Z) if and only if there exist:

� i ∈ [1, n] such that αi is infinite indecomposable, and
� j1 6= j2 ∈ [1, n] such that the Cantor normal forms of αj1 and αj2 only

have infinite exponents (i.e., can be written as ωω ·β with β any ordinal).

Note that i can be equal to j1 or j2.

Proof Let X = α1 × · · · × αn with αi written
∑
j<li

ωαi,j in CNF for any i ∈ [1, n].
We will reuse the notations Sl(X) and Gr(X).

According to Theorem 4.14, w(Z) = w(X)⊗k1⊗· · ·⊗km, and o(Z) = o(X)⊗k1⊗
· · ·⊗ km according to Table 1. Therefore w(Z) = o(Z) if and only if w(X) = o(X).
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We express o(X) in a form that allow us to compare it easily to w(X):

o(X) =
⊗
i∈[1,n]

αi according to Table 1

=
⊕

s∈Sl(X)

 ⊗
i∈[1,n]

ωαi,s(i)

 by distributivity

=
⊕

s∈Sl(X)

o(Xs) ,

and

w(X) =
⊕

s∈Gr(X)

w(Xs) according to Theorem 4.6.

According to Lemma 2.4, for every slice s ∈ Sl(X), 0 < w(Xs) ≤ o(Xs). More-
over Gr(X) ⊆ Sl(X). Therefore w(X) = o(X) if and only if Gr(X) = Sl(X) and
w(Xs) = o(Xs) for any s ∈ Sl(X).

• Gr(X) = Sl(X) iff there are no ungrounded slices, i.e., there exists i ∈ [1, n]
such that li = 1. Thus there exists i such that αi is indecomposable.

• According to Corollary 4.5, w(Xs) = o(Xs) is true if and only if there exist
j1 6= j2 such that αj1,s(j1) and αj2,s(j2) are both infinite. In particular, for the
top slice s : j 7→ lj − 1, there exist j1 6= j2 such that αj1,lj1−1 and αj2,lj2−1

are both infinite, and therefore all exponents of αj1 and αj2 are infinite.
�

What is interesting with this result is that it can be extended to the
cartesian product of any wqos:

Theorem 5.2. Let A1, . . . , An be a family of wqos. If there exist i, j1 6= j2 ∈
[1, n] such that o(Ai) is infinite indecomposable, and o(Aj1) and o(Aj2) only
have infinite exponents, then w(A1 × · · · ×An) = o(A1)⊗ · · · ⊗ o(An).

Proof According to Lemma 2.4,

w(A1 × · · · ×An) ≤ o(A1)⊗ · · · ⊗ o(An) .

On the other hand A1×· · ·×An ≤aug o(A1)×· · ·×o(An) through Lemma 2.14,
thus:

w(A1 × · · · ×An) ≥ w(o(A1)× · · · × o(An))

= o(o(A1)× · · · × o(An)) according to Theorem 5.1,

= o(A1)⊗ · · · ⊗ o(An) .

�

5.2 A family of well-behaved wqos

Definition 5.3. The family of elementary wqos is the smallest family of
wqos that contains ∅ and is closed by disjoint sum, cartesian product and star
operation.
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Remark 5.4. This family contains ∅∗ which is isomorphic to the singleton
Γ1, and (∅∗)∗ which is isomorphic to ω. Since it is closed by disjoint sum, it
contains also Γk modulo isomorphism for all k < ω.

The maximal order type and height of any elementary wqo are already
well-known (see Table 1). To show how powerful a tool Theorem 5.2 is, we will
apply it to compute their width.

We can easily compute the width of a wqo under the star operation, or
of a disjoint sum of wqos (see Table 1). Moreover, observe that the cartesian
product distributes over the disjoint sum: A× (B t C) = (A×B) t (A× C).
Therefore we can restrict our study to elementary wqos of the form A∗1×· · ·×A∗n
with A1, . . . , An elementary wqos.

Lemma 5.5. If A 6= ∅ then A∗ is transferable.

Proof For any u ∈ A∗, for any a ∈ A, A∗6≤u contains {uav|v ∈ A∗}, which is isomor-
phic to A∗. Therefore A∗ is self-residual, hence transferable. �

Remark 5.6. By Table 1, if o(A) > 1, then o(A∗) verifies the conditions
described in Theorem 5.2: o(A∗) is infinite indecomposable, and its normal
form only have infinite exponents.

This property of A∗ will prove useful thanks to the following theorem,
which generalises Theorem 5.1 to the cartesian products of n wqos:

Let X = A∗1 × · · · × A∗n with n ≥ 2 and Ai 6= ∅ elementary for all i ≤ n.
W.l.o.g we assume that o(A1) ≥ · · · ≥ o(An). Let us compute w(X):

� If o(A1) > 1 and o(A2) > 1, then the conditions of Theorem 5.2 are
fulfilled, and w(X) = o(X).

� If o(A1) > 1 and for all i > 1, o(Aj) = 1 then Ai ≡ Γ1 and A∗i ≡ ω. Thus
X ≡ A∗1 × ω×(n−1). According to Lemma 2.4, w(X) ≤ o(X), and since
A∗i is transferable:

w(A∗1 × ω×n) ≥ w(A∗1) · o(ω×n) according to Corollary 3.10,

= o(A∗1) · ωn according to Table 1,

= o(A∗1)⊗ ωn according to Proposition 2.8.6,

= o(A∗1 × ω×n) ,

which we know how to compute with Table 1.
� Otherwise, Ai ≡ Γ1 for all i ∈ [1, n], hence X ≡ ω×n. According to

Proposition 3.11, w(ω×n) = ωn−1 for all n ≥ 1.
Therefore we know how to measure the width of any elementary wqos.
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6 Conclusion

We successfully computed the width of the cartesian product of finitely many
ordinals (see Theorems 4.3, 4.6, 4.14 and 4.15).

Furthermore, we provide a sufficient condition on a cartesian product of
wqos for when width equals maximal order type (see Theorem 5.2). We use
this result to compute the width of a generic family of elementary wqos.

The techniques developed here, such as the notion of quasi-incomparability,
can help target other open questions on wqo width, for instance, how to com-
pute the width of the finite powerset or the set of multisets over known wqos.
Extending the definition of elementary wqos with other classical operations
would go a long way toward computing the ordinal invariants of most wqos
met in real problems.
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