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Abstract5

Well-partial orders, and the ordinal invariants used to measure them, are relevant in set theory,6

program verification, proof theory and many other areas of computer science and mathematics. In7

this article we focus on a common data structure in programming, finite multisets of some well8

partial order. There are two natural orders one can define on the set of finite multisets of a partial9

order: the multiset embedding and the multiset ordering. Though the maximal order type of these10

orders is already known, other ordinal invariants remain mostly unknown. Our main contributions11

are expressions to compute compositionally the width of the multiset embedding and the height of12

the multiset ordering. Furthermore, we provide a new ordinal invariant useful for characterizing the13

width of the multiset ordering.14
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Introduction21

Measuring partial orders is useful in many domains, from set theory to proof theory,22

including infinitary combinatorics, program verification, rewriting theory, proof automation23

and many more.24

There are intuitive notions of measure for a partial order when it is finite: its cardinal25

obviously, but also its height (the length of a maximal chain) or its width (the length of26

a maximal antichain). Similar notions exist for infinite partial orders, as long as they are27

well partial orders (wpo), i.e., well-founded partial orders with no infinite antichains [10, 12].28

Two such notions are the ordinal height, which is the order type of a maximal chain, and29

the maximal order type (mot), which is the order type of a maximal linearisation, a notion30

introduced by De Jongh and Parikh in order to measure hierarchies of functions [6]. These31

are transfinite measures, hence we call them ordinal invariants. Kříž and Thomas introduced32

alternative characterizations for mot and ordinal height, which naturally led to the definition33

of a third ordinal invariant, ordinal width [11]. Less studied than its counterparts, the width34

of a wpo relates to its antichains, even though it cannot be defined as the order type of a35

maximal antichain. While exploring techniques for program termination, Blass and Gurevich36

rediscovered these characterizations with a game-theoretical point of view [4].37

Ordinal invariants of wpos have also been used to prove complexity bounds. In the last38

decade there has been a flurry of complexity results for the verification of well-structured39

transition systems (wsts), i.e., transition systems whose set of configurations is a wpo and40

whose transitions respect this ordering [5]. When a wsts is based on a wpo X of maximal41

order type ωα, one can expect the complexity of coverability to be in Hωα in the Hardy42

hierarchy, or in Fα in the fast-growing hierarchy [9]. This bound can be refined by looking43

at controlled antichains instead of controlled bad sequences [14], thus bounding complexity44

with width instead of maximal order type.45
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Computing ordinal invariants compositionally. Many wpos underlying wsts are46

built from classical operations on simpler wpos whose invariants are known. This has spurred47

new interest in measuring the ordinal invariants of various well-ordered data structures: De48

Jongh and Parikh computed the mot of the disjoint sum and the Cartesian product of wpos49

[6]. Schmidt then computed the mot of word embedding and homeomorphic tree embedding50

on a wpo [13]. Abraham and Bonnet pursued this line of study by computing the height of51

Cartesian product, but also the width of disjoint sum and lexicographic product [1]. For52

a complete survey of these results see [8], where Džamonja et al. computed the ordinal53

invariants of the lexicographic product, but also the height of the multiset word and tree54

embeddings.55

Finite multisets: In this article, we study the ordinal invariants of the set of finite56

multisets. Multisets, also called “bags”, a common data structure in computer science.57

Informally, a finite multiset over a set X is a finite subset of X where an element can appear58

finitely many times. For instance, 〈a, a, b〉 denote the multiset where a appears twice and b59

once. One can see the set of finite multisets on a wpo as the set of finite words quotiented by60

the equivalence relation “equality up to some permutation”. It comes down to describing a61

multiset as a word where the order of terms is irrelevant. A finite multiset can be represented62

by a function from X to N with finite support, which associates its multiplicity with each63

element.64

Two orderings are classically defined on the finite multisets of any ordered set. The first65

one is the multiset ordering, which often appears in rewriting theory and automation of66

termination proofs [7]. The other, less-known, ordering is the multiset embedding, or term67

ordering as it is called in [15]. It was presented by Aschenbrenner and Pong as a natural68

extension of the embedding order over finite words [3].69

Some invariants of these two orderings have already been measured: Van der Meeren,70

Rathjen, and Weiermann [15] built on [17] to compute the mot of the set of finite multisets71

on a wpo X ordered with the multiset ordering, and provided a new proof for the expression72

of the mot of the multiset embedding computed in [18]. Džamonja et al. [8] proved that73

the height of the multiset embedding is equal to the height of the set of finite words ordered74

with word embedding. It is noteworthy that these three results give expressions that are75

functional in (i.e., can be expressed as a function of) the mot and height of X. However, the76

height of the multiset ordering still needs to be determined, and the width remains unstudied77

for both orderings.78

Our contributions: In this article, we provide functional expressions for the width of79

the multiset embedding (Theorem 2.1) and the height of the multiset ordering (Theorem 3.1).80

We further show that the width of the multiset ordering cannot be expressed as a function81

of the three ordinal invariants (Example 3.2). Nonetheless, we get around this issue by82

introducing a fourth ordinal invariant, the friendly order type (Definition 3.3), in which the83

width of the multiset ordering is functional (Theorem 3.4). We then proceed to investigate84

and compute this new ordinal invariant.85

1 Definitions and state of the art86

1.1 Width, height and maximal order type87

A sequence x1, . . . , xn, . . . on a partial order (X,≤X) is good when there exist i < j such88

that xi ≤X xj , otherwise it is a bad sequence. An antichain is a sequence whose elements89

are pairwise incomparable.90
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A well partial order (wpo) is a partial order that has no infinite bad sequences. Equival-91

ently, a wpo is a partial order that is both well-founded (i.e. no infinite strictly decreasing92

sequences) and has no infinite antichains.93

Let (X,≤X) be a wpo. We often write just X when ≤X is understood. The trees Bad(X),94

Dec(X) and Ant(X) are defined as the sets of bad sequences, strictly decreasing sequences,95

and antichains of X, respectively, ordered by inverse prefix order (a sequence is smaller than96

its prefixes) ([11, 8]). The finiteness of bad sequences, strictly decreasing sequences and97

antichains in a wpo implies that these trees are well-founded. Therefore, one can define a98

notion of rank on these trees: a sequence has rank 0 when it cannot be extended; otherwise99

its rank is the smallest ordinal strictly larger than the ranks of its extensions. The rank of a100

tree is the rank of the empty sequence (which is the root of the tree).101

The maximal order type (or mot) of X, denoted by o(X), is defined as the rank of Bad(X).102

Similarly, the height h(X) and the width w(X) of X are defined as the ranks of Dec(X) and103

Ant(X), respectively. Together, o(X), h(X) and w(X) are called the ordinal invariants of104

X.105

For any wpo X, Dec(X) and Ant(X) are subtrees of Bad(X). Thus h(X) ≤ o(X) and106

w(X) ≤ o(X).107

Let x ⊥ y denote that x and y are incomparable. For a relation ∗ among { 6≥, <,⊥ }, we108

define the residual X∗x as { y ∈ X : y ∗ x }. This definition can be extended to subsets109

S ⊆ X: X∗S
def= { y ∈ X : ∀x ∈ S, y ∗ x }.110

I Example 1.1. In Figure 1, you can see the residuals at x = (4, 6) of N × N ordered111

component-wise.112
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Figure 1 Residuals of N2 at (4, 6).

Since the rank of the empty sequence is the smallest ordinal strictly larger than the ranks113

of the sequences of length 1, the definitions of mot, height and width can be reformulated114

inductively through the following residual equations:115

o(X) = sup
x∈X

(o(X6≥x) + 1) (Res-o)116

h(X) = sup
x∈X

(h(X<x) + 1) (Res-h)117

w(X) = sup
x∈X

(w(X⊥x) + 1) (Res-w)118

119

With these equations we can compute easily the ordinal invariants of N2. For instance,120

observe that (N2
<x) is finite for any x ∈ N2, so its height is finite but can be arbitrarily big.121

Hence h(N2) = ω.122
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1.2 Ordinal arithmetic123

We suppose well-known the notions of sum, product, subtraction, natural sum, natural124

product on ordinals, denoted with +, ·, −, ⊕, ⊗ [2]. However, let us recall some definitions125

and notations that might be less familiar to the reader.126

An ordinal α is indecomposable iff for any δ, γ < α, we have δ ⊕ γ < α. Equivalently, α127

is indecomposable when there is an ordinal β such that α = ωβ . α is an ε-number when128

α = ωα.129

The Hessenberg-based product α� β is defined inductively as follows [1]:130

α� 0 = 0 , α� (β + 1) = (α� β)⊕ α , α� β = sup{ α� γ : γ < β } for limit β.131
132

This definition ensures that α · β ≤ α� β ≤ α⊗ β.133

For any ordinal α = ωα1 + · · ·+ ωαn , let α̂ def= ωα
′
1 + · · ·+ ωα

′
n , where α′i is αi + 1 when134

αi is the sum of an ε-number and a finite ordinal, otherwise α′i = αi.135

For any ordinals α, β, let α ⊕̂ β def= sup{ α′ ⊕ β′ : α′ < α, β′ < β }.136

1.3 Ordinal invariants of basic data structures137

For any wpos P,Q, the disjoint sum P tQ is the disjoint union of P and Q ordered such138

that elements of P and Q cannot be compared together, whereas the direct sum P +Q is139

the disjoint union of P and Q ordered such that for all p ∈ P, q ∈ Q, p ≤ q. For a family of140

wpos (Ai)i<α, let Σi<αAi denote the direct sum of the Ais along the ordinal α.141

The Cartesian product P×Q is the set of pairs (p, q) ∈ P×Q where elements are compared142

component-wise. The lexicographic product of P along Q, written P ·Q, has the same support143

as P ×Q, with a different ordering: (p, q) ≤P ·Q (p′, q′) iff q <Q q′ , or q = q′ and p ≤P p′.144

Sums and products are the most basic operations on wpos one can find. Their ordinal145

invariants are easy to compute compositionally (see Table 1), with the notable exception of146

the width of the Cartesian product which cannot be expressed as a function of the ordinal147

invariants its factors [16].148

Table 1 How to compute ordinal invariants compositionally, [8]. See Section 1.2 for definitions of
⊕̂ and �

Space X M.O.T. o(X) Height h(X) Width w(X)

A tB o(A)⊕ o(B) max(h(A),h(B)) w(A)⊕w(B)

A+B o(A) + o(B) h(A) + h(B) max(w(A),w(B))

A×B o(A)⊗ o(B) h(A) ⊕̂ h(B) (Not functional)

A ·B o(A) · o(B) h(A) · h(B) w(A)�w(B)

1.4 Comparing wpos149

A widely-used and intuitive relation between wpos is the reflection relation. A mapping150

between wpos f : (A,≤A)→ (B,≤B) is a reflection if f(x) ≤B f(y) implies x ≤A y, i.e. it is151
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a morphism from (A, 6≤A) to (B, 6≤B) Let A↪→B denote that there is a reflection from A to152

B.153

However, in this article, we prefer to use the stronger notions of augmentations and154

substructures.155

I Definition 1.2 (Substructure, augmentation). A wpo (A,≤A) is a substructure of a wpo156

(B,≤B) whenever A ⊆ B and ≤A is the restriction of ≤B to A. This relation is written157

A ≤st B. Similarly (A,≤A) is an augmentation of (B,≤B) whenever A = B and ≤B ⊆ ≤A.158

We write this relation A ≥aug B.159

Obviously, A ≤st B or A ≥aug B imply A↪→B.160

We often abuse these notations and write A ≤st B (resp. B ≤aug A) to mean that A is161

isomorphic to a substructure (resp. an augmentation) of B.162

We denote by A ≡ B that (A,≤A) is isomorphic to (B,≤B).163

In this article, when we consider a subset Y of a wpo X, it is understood that Y ≤st X,164

i.e. Y is ordered with ≤X restricted to the subset.165

These notions of augmentations and substructures allow us to compare the ordinal166

invariants of wpos.167

I Lemma 1.3. Let A and B be wpos.168

If A ≤st B then i(A) ≤ i(B) for i ∈ { o,h,w }.169

If A ≥aug B then o(A) ≤ o(B) and w(A) ≤ w(B). However h(A) ≥ h(B).170

The substructure and augmentation relations are monotonous through most operations171

on wpos. For instance, if A ≤st A
′, then A×B ≤st A

′ ×B.172

An ordinal, as defined by Von Neumann, is the linear wpo that contains all smaller173

ordinals. Thus augmentations and substructures relations can also be used to compare174

directly ordinals to wpos. The following result is well-known:175

I Proposition 1.4. For any wpo X, h(X) and o(X) are the largest ordinals such that176

h(X) ≤st X and o(X) ≥aug X.177

1.5 Orderings on the set of finite multisets178

We assume familiarity with finite multisets and the associated operations as used in [17]:179

union, intersection and subtraction, denoted by ∪,∩ and \, respectively. Let 〈x1, . . . , xn〉180

denote the finite multiset that contains the elements x1, . . . , xn (they do not have to be181

distinct). For any k ∈ N, m×k means the union of k copies of m. Let |m| denote the number182

of elements of a multiset m.183

There are two main orderings classically defined on the set of finite multisets M(X) of a184

partial order X:185

I Definition 1.5 (Multiset embedding [18]). The multiset embedding on M(X), also known186

as the term ordering, is defined as:187

m ≤� m′ iff there exists f : m→ m′ injective such that for any x ∈ m, x ≤ f(x).188

I Definition 1.6 (Multiset ordering [17]). The multiset ordering on M(X) is defined as:

m ≤r m′ ⇐⇒ m = m′ or ∀x ∈ m \ (m ∩m′),∃y ∈ m′ \ (m ∩m′), x < y .

We write M�(X) for (M(X),≤�) and Mr(X) for (M(X),≤r).189

The multiset ordering and the multiset embedding are both augmentations of the word190

embedding on X∗ the set of finite words on X. Therefore, according to Higman’s lemma [10],191
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M�(X) and Mr(X) are wpos when X is. Moreover M�(X) ≤aug M
r(X), as was observed192

by Aschenbrenner and Pong [3].193

Observe that if X is a linear ordering, then Mr(X) is linear, while M�(X) is not as long194

as X has more than two elements.195

I Proposition 1.7 (Transformation equations). For any wpos A and B,196

M∗(A tB) ≡M∗(A)×M∗(B) for ∗ ∈ {�, r} , (Trans-1)197

Mr(A+B) ≡Mr(A) ·Mr(B) , (Trans-2)198

M�(A+B) ≤aug M
�(A) ·M�(B) . (Trans-3)199

200

I Lemma 1.8 (Width of M(X) on Γk). For any k < ω, we denote by Γk the wpo that201

contains k incomparable elements. Then w(M�(Γk)) = w(Mr(Γk)) = ωk−1.202

Proof. Since M�(Γ1) ≡Mr(Γ1) ≡ ω, Equation (Trans-1) tells us that M�(Γk) and Mr(Γk)203

are both isomorphic to the k-fold Cartesian product ω × · · · × ω. This special case of the204

width of a Cartesian product is known [16]: w(ω × · · · × ω) = ωk−1 . J205

The augmentation and substructure relations are monotone with respect to the multiset206

ordering and multiset embedding:207

I Proposition 1.9. Let A,B be two wpos. Then A ≤st B implies M�(A) ≤st M
�(B) and208

Mr(A) ≤st M
r(B). Moreover, A ≥aug B implies that M�(A) ≥aug M

�(B) and Mr(A) ≥aug209

Mr(B).210

Ordinal invariants of the set of finite multisets211

Van der Meeren, Rathjen and Weiermann computed the mot of M�(X) and Mr(X).212

I Theorem 1.10 (Mot of multiset embedding [15, 18]). For any wpo X, o(M�(X)) = ωô(X).213

I Theorem 1.11 (Mot of multiset ordering [15, 17]). For any wpo X, o(Mr(X)) = ωo(X).214

Observe that ωo(X) ≤ ωô(X), as one would expect since Mr(X) ≥aug M
�(X). Further-215

more, we expect that w(Mr(X)) ≤ w(M�(X)), while h(Mr(X)) ≥ h(M�(X)).216

I Theorem 1.12 (Height of the multiset embedding [8]). Let X be a wpo.217

Then h(M�(X)) = h∗(X), where218

h∗(X) def=
{

h(X) if h(X) is infinite and indecomposable,
h(X) · ω otherwise.

219

1.6 A tool to compute the width: Quasi-incomparable subsets220

Of all three ordinal invariants, the width is the less studied, since it has been introduced221

more recently, and also the hardest invariant to study for lack of tools.222

A powerful tool to analyse the width of a wpo is the notion of quasi-incomparable subsets223

of a wpo, which was first introduced in [16] for the Cartesian product of several ordinals.224

For any subsets Y, Z of X, let Y ⊥ Z denote that for every y ∈ Y, z ∈ Z, y ⊥ z.225

I Definition 1.13. Let A be a wpo, and A1, . . . , An be n subsets of A. Then (Ai)1≤i≤n is a226

quasi-incomparable family of subsets of A iff for any i < n, for any finite Y ⊆ A1 ∪ · · · ∪Ai,227

there exists A′i+1 ⊆ Ai+1 such that A′i+1 ⊥ Y and A′i+1 ≡ Ai+1.228
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This definition is slightly more restrictive than the one in [16], which only required that229

w(A′i+1) = w(Ai+1).230

The idea behind these quasi-incomparable subsets is that sometimes one can slice a wpo231

A into simpler subsets A1, . . . , An whose width is known, such that Ant(An) + · · ·+ Ant(A1)232

is embedded in Ant(A). Intuitively, it means that one can combine antichains of A1, . . . , An233

into one antichain of A.234

This entails a practical relation between the widths of A and its subsets:235

I Lemma 1.14 ([16]). Let (Ai)i≤n be a quasi-incomparable family of subsets of A. Then236

w(A) ≥ w(An) + · · ·+ w(A1).237

2 Ordinal width of the multiset embedding238

In this section we compute the width of M�(X) for any wpo X, which happens to be239

functional in the width of X:240

I Theorem 2.1 (Width of the multiset embedding). For any wpo X, w(M�(X)) = ωô(X)−1.241

(See Section 1.2 for the definition of α̂.)242

It is already known that, in some cases, the width of the multiset embedding reaches its243

mot.244

I Lemma 2.2 ([8]). If o(X) is infinite and indecomposable, w(M�(X)) = o(M�(X)).245

We focus for now on the set of finite multisets on a linear wpo, i.e., an ordinal. Let us246

treat first the case of successor ordinals.247

I Lemma 2.3. For any successor ordinal α = β + 1, w(M�(α)) ≥ w(M�(β)) · ω.248

Proof. We denote with M�>k(X) the subset { m ∈ M�(X) : |m| > k } for any k ∈ N of249

M�(X) for any wpo X, for any k < ω.250

Let mn
def= 〈β〉 × n for any n ∈ N. According to Equation (Res-w),251

w(M�(α)) = sup{ w(M�(α)⊥m) + 1 : m ∈M�(α) }252

≥ sup{ w(M�(α)⊥mn) + 1 : n ∈ N } .253
254

Let Mk
def= { 〈β〉 × (n− k) ∪m : m ∈M�>k(β) } for k ∈ [1, n]. These subsets of M�(α) are255

actually subsets of M�(α)⊥mn : for all m ∈ Mk, m ⊥ mn since |m| > |mn|. Observe also that256

for any k ∈ [1, n], Mk ≡M�(β).257

Moreover, (Mk)k∈[1,n] is a quasi-incomparable family of subsets of M�(α)⊥mn : for any258

i < n, for any finite Y ⊂ M1 ∪ · · · ∪Mi, let s(Y ) = max{|m|,m ∈ Y }. Observe that Mi+1259

contains Mi+1 ∩M�>s(Y )(β) which is incomparable to Y , and isomorphic to Mi+1.260

Therefore, w(M�(α)⊥mn) ≥ w(Mn) + · · · + w(M1) = w(M�(β)) · n according to261

Lemma 1.14. Thus w(M�(α)) ≥ sup{ w(M�(β) · n+ 1 : n ∈ N } = w(M�(β)) · ω. J262

I Lemma 2.4. For any infinite ordinal α, w(M�(α)) = o(M�(α)).263

Proof. We already know that w(M�(α)) ≤ o(M�(α)). We prove the lower bound by264

induction on α:265

If α is indecomposable, see Lemma 2.2.266
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If α = β + 1 , then according to Lemma 2.3,267

w(M�(α)) ≥ w(M�(β)) · ω268

= o(M�(β)) · ω by induction hypothesis,269

= ωβ̂+1 = ωβ̂+1 = o(M�(α)) according to Theorem 1.10.270
271

If α = β + ωρ with β, ωρ < α and ρ > 0, then according to the transformation equation272

Trans-3, M�(α) ≤aug M
�(β) ·M�(ωρ). Hence according to Lemma 1.3 and Table 1,273

w(M�(α)) ≥ w(M�(β))�w(M�(ωρ))274

= o(M�(β))� o(M�(ωρ)) by induction hypothesis,275

= ωβ̂ � ωω̂ρ = ωα̂276

= o(M�(α)) according to Theorem 1.10.J277
278

We can now prove that Lemma 2.4 generalizes to non-linear wpos.279

I Lemma 2.5. If o(X) is infinite then w(M�(X)) = o(M�(X)).280

Proof. Let α = o(X). Then X ≤aug α from Proposition 1.4, hence M�(X) ≤aug M
�(α)

according to Lemma 1.3 and Proposition 1.9. Thus

w(M�(α)) ≤ w(M�(X)) ≤ o(M�(X)) .

Now o(M�(X)) = ωα̂ = o(M�(α)) according to Theorem 1.10. Now with Lemma 2.4281

w(M�(α)) = o(M�(α)), hence w(M�(X)) = o(M�(X)). J282

We can also compute the width of M�(X) when X is a finite wpo:283

I Lemma 2.6. If o(X) is finite, then w(M�(X)) = ωo(X)−1.284

Proof. Let k = o(X). Then Γk ≤aug X ≤aug k, hence w(M�(Γk)) ≥ w(M�(X)) ≥285

w(M�(k)) thanks to Lemma 1.3. According to Lemma 1.8, w(M�(Γk)) = ωk−1, and286

according to Lemma 2.3 applied (k − 1) times, w(M�(k)) ≥ w(M�(1)) · ωk−1 = ωk−1.287

Therefore w(M�(X)) = ωk−1 = ωo(X)−1. J288

This section’s main result follows directly from Lemmas 2.5 and 2.6.289

Proof of Theorem 2.1. If o(X) is finite, then ô(X)− 1 = o(X)− 1. On the other hand, if290

o(X) is infinite, then ô(X)− 1 = ô(X). J291

3 Ordinal height and width of the multiset ordering292

For the height of Mr(X), we obtain a result similar to Theorem 1.11.293

I Theorem 3.1 (Height of the multiset ordering). Let X be a wpo.294

Then h(Mr(X)) = ωh(X).295

Proof. Observe that the multiset ordering of any linear ordering is also linear. Thus, for296

any ordinal α, Mr(α) is isomorphic to ωα (the function 〈x1, . . . , xn〉 7→ ωx1 ⊕ · · · ⊕ ωxn is297

an isomorphism).298

According to Proposition 1.4, X ≥st h(X), and thus Mr(X) ≥st M
r(h(X)) ≡ ωh(X)

299

(Proposition 1.9). Therefore h(Mr(X)) ≥ ωh(X) according to Lemma 1.3. See the proof of300

the upper bound in Appendix A. J301
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The width of the multiset ordering is harder to compute, as w(Mr(X)) is not functional302

in the ordinal invariants of X. The following example exhibits two wpos X1 and X2, with303

identical ordinal invariants, such that w(Mr(X1)) 6= w(Mr(X2)).304

I Example 3.2. Let H def= Σn<ωΓn. An interesting property of H is that w(H) = h(H) =305

o(H) = ω. Since Mr(H) ≥st M
r(Γn), then ωn−1 ≤ w(Mr(H)) ≤ o(Mr(H)) = ωω for all306

n < ω according to Lemma 1.8 and Theorem 1.11. Hence w(Mr(H)) = ωω.307

Consider X1 = H + H and X2 = H + ω, two wpos with the same ordinal invariants:308

o(Xi) = h(Xi) = ω · 2 and w(Xi) = ω for i ∈ { 1, 2 }. According to Equation (Trans-2)309

and Table 1, w(Mr(X1)) = w(Mr(H))�w(Mr(H)) = ωω � ωω = ωω·2 and w(Mr(X2)) =310

w(Mr(H))�w(Mr(ω)) = ωω � 1 = ωω.311

Fortunately, we uncovered a new ordinal invariant, defined similarly to the usual invariants,312

in which the width of the multiset ordering is functional.313

I Definition 3.3 (Friendly order type). A bad sequence is open-ended if it is empty or of the314

form sx where s is an open-ended sequence and x has a “friend” 1 in the residual X6≥s, i.e.,315

an element incomparable to x. For any wpo X, let Bad⊥(X) be the subtree of Bad(X) which316

contains all open-ended bad sequences. As Bad⊥(X) is a substructure of Bad(X), it has a317

rank that we denote by o⊥(X) the friendly order type of X (or fot).318

This definition can be expressed as the following residual equation:319

o⊥(X) = sup
x∈X,X⊥x 6=∅

(o⊥(X6≥x) + 1) (Res-f)320

321

I Theorem 3.4. For any wpo X, w(Mr(X)) = ωo⊥(X)
322

Proof. See Appendix B. The proof of Theorem 3.4 is quite technical, and relies on the notion323

of quasi-incomparable subsets. J324

4 Computing the friendly order type325

Like the usual ordinal invariants, the fot can be computed compositionally for some basic326

operations on wpos:327

I Proposition 4.1. For any non empty wpo A,B,328

1. o⊥(A+B) = o⊥(A) + o⊥(B),329

2. o⊥(A tB) = 1 + (o(A)− 1)⊕ (o(B)− 1),330

Proof. 1. For any sequences sA, sB in Bad⊥(A),Bad⊥(B), the concatenation sBsA is a331

sequence of Bad⊥(A+B). Furthermore, any sequence of Bad⊥(A+B) is of this form.332

2. For any two sequences s1, s2, let s1 tts2 denote the set of sequences obtained through333

shuffling s1, s2 together (e.g. abcad ∈ abattcd). Let xA, xB be two minimal elements of A334

and B. For any sequences sA, sB in Bad(A\{xA}),Bad(B\{xB}), for any s ∈ sAttsB , we335

know that s and sxA and sxB are in Bad⊥(AtB). Reciprocally, from any s ∈ Bad⊥(AtB),336

there is a partition sA ∈ Bad(A), sB ∈ Bad(B) such that s ∈ sA tt sB. Furthermore,337

the natural sum of the ranks of sA in Bad(A) and sB in Bad(B) is strictly positive.338

Suppose for contradiction sake that sA and sB have rank 0 in Bad(A) and Bad(B). Let339

s = s′x. Then (A t B) 6≥s = ∅ and in particular x has no friend in (A t B) 6≥s′ . Thus340

s 6∈ Bad⊥(A tB), contradiction. J341

1 Can one be friend with one’s superior or inferior? No. Your true friends are those you cannot (and do
not have to) compare yourselves with.
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Observe how friendly order type behaves similarly to mot. It is not unusual to have fot342

coincides with mot, for instance o⊥(ω t ω) = o(ω t ω) (Proposition 4.1).343

To bring this new ordinal invariant closer to familiar grounds, we bound the fot of a wpo344

X with the mot of a special subset of X, the stripped subset.345

I Definition 4.2 (Stripped subset). The stripped subset of a wpo X, denoted by str(X), is
X without its friendless elements:

str(X) def= { x ∈ X : X⊥x 6= ∅ } .

Since Bad⊥(X) is a subtree of Bad(str(X)), we know that o⊥(X) ≤ o(str(X)). Here is346

an example where this inequality is strict:347

I Example 4.3. Let X = ω t {♣}. Here str(X) = X, so o(str(X)) = ω + 1. However,348

in Bad⊥(X), the singleton ♣ has rank 0, and the singleton n for any n ∈ ω has rank n.349

Therefore o⊥(X) = ω < o(str(X)).350

Let us show that o(str(X)) also appears in a lower bound on o⊥(X), by introducing an351

alternative characterisation of fot as the mot of a specific subset.352

A maximal linearisation is a monotonic function from a wpo X onto o(X).353

I Definition 4.4 (Friendly subset). A subset X ′ of X is friendly if there exist a maximal354

linearisation ` : X ′ → o(X ′) such that for any bad sequence s = x1, . . . xn in X ′ verifying355

`(x1) > · · · > `(xn), s is open-ended. We say that ` witnesses the friendly condition.356

Observe that every friendly subset of X is a substructure of str(X).357

For any ordinal α, let

δ(α) def=
{
α if α is limit,
γ + bn/2c if α = γ + n with γ limit and n < ω.

I Theorem 4.5 (Alternative characterisation of o⊥(X)). Let X be a wpo. There exists358

a friendly subset X ′ of X which maximizes o(X ′), and o⊥(X) = o(X ′). Furthermore,359

δ(o(str(X))) ≤ o⊥(X) ≤ o(str(X)).360

Proof. See proof in Appendix C. J361

I Example 4.6 (Following on Example 3.2). Remember that H def= Σn<ωΓn. Thus str(H) =362

Σ2≤n<ωΓn, and o(str(H)) = o(H) = ω. ConsiderX1 = H+H andX2 = H+ω. Observe that363

str(X1) = str(H) + str(H) whereas str(X2) = str(H). Therefore, according to Theorem 4.5,364

o⊥(X1) = ω · 2 and o⊥(X2) = ω.365

I Corollary 4.7. For any wpo X, if o(X) is limit and o(str(X)) = o(X), then o⊥(X) =366

o(X).367

The conditions in Corollary 4.7 are often satisfied:368

I Proposition 4.8. For any wpo non-empty X, o⊥(M�(X)) = o(M�(X)).369

Proof. Observe that M�(X) = M�(X) \ {∅}. Thus o(str(M�(X))) = o(M�(X)) − 1 =370

o(M�(X)) (Theorem 1.10). We conclude with Corollary 4.7. J371
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Table 2 Ordinal invariants of the set of finite multisets.

Invariants Multiset embedding of X Multiset ordering of X

Mot o ωô(X) ωo(X)

Height h h∗(X) ωh(X)

Width w ωô(X)−1 ωo⊥(X)

Conclusion372

Table 2 sums up this article’s contributions (in the gray cases) amidst the former state of373

the art.374

These results are part of a more general research program (see [8, 16]) aimed at measuring375

more precisely and more effectively the complexity of wpos used in well-structured systems,376

termination proofs, and other algorithmic applications.377

Investigating the friendly order type is a subject for further research: How does it relate378

to other concepts? Can it be computed compositionally for more operations? Can we define379

a class of wpos where friendly order type always coincides with mot?380
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A Proof of Theorem 3.1434

We write m
6∩
≤r m′ (resp. m

6∩
< m′, m

6∩
⊥ m′) when m ∩m′ 6= ∅ and m ≤r m′ (resp m < m′,435

m ⊥ m′). With these new notations, the multiset ordering can be reformulated as follows436

I Definition A.1 (Multiset ordering (reformulated)). Mr(X) = (M(X),≤r) is ordered with the437

multiset ordering: m ≤r m′ iff there exists m1,m
′
1,m2 such that m = m1∪m2, m′ = m′1∪m2,438

and m1
6∩
< m′1.439

I Lemma A.2. Let A = ∪i≤nAi a set partitioned in n subsets, for some n ∈ N. Let ≤A a
well-partial ordering on A, and ≤Ai the same ordering restricted to the subset Ai for i ≤ n.
Then

h(A,≤A) ≤
⊕
i≤n

h(Ai,≤Ai) .

Proof. From any decreasing sequence s on A, one can extract a decreasing sequence si by440

restricting s to Ai for any i ≤ n. By induction on the rank of s in Dec(A), one shows that441

rk(s) ≤
⊕

i≤n rk(si). J442

Proof of Theorem 3.1. We prove the upper bound by induction on h(X).443

If h(X) = 0 then X = ∅ and h(Mr(∅)) = 1 = ω0.444
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Suppose that X is not empty. For any non-empty multiset m ∈ Mr(X), the residual445

Mr(X)<m can be partitioned as follows:446

Mr(X)<m =
⋃

m1+m2=m,m1 6=∅

{ m′ +m2 : m′
6∩
< m1 } .447

448

Note that this union is a partition of the support of Mr(X)<m, it does not say anything on449

the order between the elements of the subsets in the union.450

For any non-empty multiset m, we define Sm
def= (∩x∈mX6≥x) ∩ (∪x∈mX<x) a subset of451

X. Thus for any multiset m′ in Mr(X), m′
6∩
< m iff m′ ∈Mr(Sm). Therefore:452

Mr(X)<m =
⋃

m1+m2=m,m1 6=∅

{ m′ +m2 : m′ ∈Mr(Sm1) } .453

454

Observe that h(Sm1) < h(X) by definition of Sm1 . Hence by induction hypothesis
h(Mr(Sm1)) ≤ ωh(Sm1 ) < ωh(X). Moreover, ωh(X) is indecomposable. Hence according to
Lemma A.2:

h(Mr(X)<m) ≤
⊕

m1+m2=m,m1 6=∅

h(Mr(∪x∈m1X<x)) < ωh(X) .

Therefore h(Mr(X)) ≤ ωh(X) according to Equation (Res-h). J455

B Proof of Theorem 3.4456

First we prove intermediary lower and upper bounds on the width of the multiset ordering.457

I Lemma B.1. Let X be a wpo. Then

w(Mr(X)) ≥ sup
x∈X,n<ω

w(Mr(X)⊥〈x〉) · n+ 1

Proof. This proof follows the same structure as the proof of Lemma 2.3: We study the458

residual of Mr(X) which contains every element incomparable to some multiset of the form459

〈x〉 × n, and slice this residual into a family of quasi-incomparable subsets.460

According to Equation (Res-w),461

w(Mr(X)) = sup
m∈Mr(X)

w(Mr(X)⊥m) + 1462

≥ sup
x∈X,n<ω

w(Mr(X)⊥〈x〉×n) + 1 .463

464

For all k ∈ [1, n], let Mk = { 〈x〉 × (n − k) ∪ m : m ∈ Mr(X)⊥〈x〉 }. Observe that465

Mk ≡ Mr(X)⊥〈x〉 for any k ∈ [1, n], and for all m ∈ Mk, m ⊥ 〈x〉 × n. We claim that466

(Mk)k∈[1,n] is a quasi-incomparable family of subsets of Mr(X)⊥(〈x〉×n): Let i < n and Y a467

finite subset of M1 ∪ · · · ∪Mi. We define mY and M ′i+1 as468

mY
def=

⋃
j≤i

⋃
m∈(Mj∩Y )

(m \ (〈x〉 × (n− j))) ,469

M ′i+1
def= { 〈x〉 × (n− i− 1) ∪mY ∪m : m ∈Mr(X)⊥〈x〉 } .470

471

Observe that M ′i+1 is an isomorphic subset of Mi+1, and Y ⊥M ′i+1.472

Therefore according to Lemma 1.14, w(Mr(X)⊥(〈x〉×n)) ≥ w(Mr(X)⊥〈x〉) · n. J473



XX:14 Ordinal measures of the set of finite multisets

I Lemma B.2. Let X be a wpo. Then

w(Mr(X)) ≤ sup
x∈X,n<ω

w(Mr(X)⊥〈x〉)⊗ n+ 1

Proof. By definition, for any multisets m,m′ ∈ Mr(X), m ⊥ m′ means that m 6= m′ and474

there exists m1,m
′
1,m2 such that m = m1 ∪m2, m′ = m′1 ∪m2 and m1

6∩
⊥ m′1.475

Therefore, the residual Mr(X)⊥m can be partitioned as an augmentation of a disjoint476

union:477

Mr(X)⊥m ≥aug
⊔

m1+m2=m,m1 6=∅

{ m′1 +m2 : m′ ∈Mr(X),m′1
6∩
⊥ m1 } ,

which can be reformulated into478

Mr(X)⊥m ≥aug
⊔

m1⊆m,m1 6=∅

Mr(X) 6∩
⊥m1

where Mr(X) 6∩
⊥m1

is the residual { m′ ∈Mr(X) : m′
6∩
⊥ m1 }.479

Let us observe this residual: m′
6∩
⊥ m1 means that m′ and m1 are disjoint and there exists480

x ∈ m1 such that for all y′ ∈ m′, x 6≤ y′, and there exists x′ ∈ m′ such that for all y ∈ m1,481

x′ 6≤ y. In particular x′ 6≤ x. Hence m′
6∩
⊥ m1 implies there exists x ∈ m1 such that 〈x〉

6∩
⊥ m′,482

which is equivalent to 〈x〉 ⊥ m′. Therefore the support of Mr(X) 6∩
⊥m1

is included in a union483

on x ∈ m1 of residuals Mr(X)⊥〈x〉. With an augmentation we get a disjoint union:484

Mr(X) 6∩
⊥m1

≤st≥aug
⊔
x∈m1

Mr(X)⊥〈x〉 .

Hence according to Table 1, Mr(X)⊥m ≤
⊕

m1⊆m,m1 6=∅

⊕
x∈m1

w(Mr(X)⊥〈x〉) .

Let x ∈ m such that w(Mr(X)⊥〈x〉) is maximal. Then w(Mr(X)⊥m) ≤ w(Mr(X)⊥〈x〉)⊗
n for some n < ω. Hence according to Equation (Res-w),

w(Mr(X)) = sup
m∈Mr(X)

w(Mr(X)⊥m) + 1 ≤ sup
x∈X,n<ω

w(Mr(X)⊥〈x〉)⊗ n+ 1 . J

The bounds provided in Lemmas B.1 and B.2 actually match. Furthermore, they can be485

reformulated in such a way that the residual on Mr(X) boils down to a residual on X:486

I Lemma B.3. For any non-linear wpo X,487

w(Mr(X)) = sup{ w(Mr(X6≥x)) · ω : x ∈ X,X⊥x 6= ∅ } . (W)488

Proof. For any ordinal α, supn<ω(α · n+ 1) = supn<ω(α⊗ n+ 1) = α · ω. Hence according489

to Lemmas B.1 and B.2, w(Mr(X)) = supx∈X(w(Mr(X)⊥〈x〉) · ω).490

Let x ∈ X. If X⊥x = ∅, then Mr(X)⊥〈x〉 = ∅. Otherwise let y ∈ X⊥x. Observe that, for
any m ∈Mr(X6≥x), m ∪ 〈y〉 ⊥ 〈x〉. Hence

{ 〈y〉 ∪m : m ∈Mr(X6≥x) } ≤st M
r(X)⊥〈x〉 ≤st M

r(X6≥x) .

Therefore w(Mr(X)⊥〈x〉) = w(Mr(X6≥x)) if X⊥x 6= ∅, otherwise w(Mr(X)⊥〈x〉) = 0. J491
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Proof of Theorem 3.4. If X is linear, Bad⊥(X) only contains the empty sequence, hence492

o⊥(X) = 0 and w(Mulr(X) = 1. Otherwise, observe that Equation (W) is quite similar493

to Equation (Res-f) in its structure. Thus w(Mr(X)) = ωo⊥(X) follows directly from494

Equation (W). J495

C Proof of Theorem 4.5496

I Lemma C.1. For any wpo X, for any maximal linearisation ` : str(X)→ o(str(X)), there497

exists a friendly subset X ′ such that ` restricted to X ′ verifies the friendly condition, and498

o(X ′) ≥ δ(o(str(X))).499

Proof. We claim that for any β ≤ o(str(X)), there exists Xβ ⊆ `−1({ γ : γ < β }) a friendly500

subset of X where ` restricted to Xβ verifies the friendly condition, such that o(Xβ) ≥ δ(β).501

In this proof, when we say that a subset is friendly, it is always implied that ` restricted to502

this subset witnesses the friendly condition.503

We build the subsets (Xβ)β≤o(str(X)) as follows:504

X0 = ∅,505

For γ limit, Xγ =
⋃
β<γ Xβ ,506

For any β, Xβ+1 = Xβ ∪ `−1(β) if friendly, otherwise Xβ+1 = Xβ .507

First observe that Xβ is friendly for any β ≤ o(str(X)). Indeed, X0 is friendly, and since508

for any β < β′, Xβ ⊆ Xβ′ , then the union
⋃
β<γ Xβ for γ limit is friendly by induction.509

Let us prove the claim o(Xβ) ≥ δ(β), by showing that for any β + 2 ≤ o(str(X)), we510

have o(Xβ+2) > o(Xβ). Let x = `−1(β′) and x′ = `−1(β′ + 1). Assume for the sake of511

contradiction that Xβ+2 = Xβ . This means that neither Xβ ∪{x} nor Xβ ∪{x′} are friendly.512

Hence there exists y, y′ ∈ Xβ such that for any z ∈ X, we have z ⊥ y =⇒ z ≥ x and513

z ⊥ y′ =⇒ z ≥ x. Now because of ` we know that x 6≥ x′ and y, y′ 6≥ x, x′. Since514

y, y′ ∈ str(X), then X⊥y and X⊥y′ are both non-empty, so actually x ⊥ y and x′ ⊥ y′. And515

since x 6≥ x′, we know y′ < x. Therefore x ⊥ x′, hence y < x′. Which leads to a contradiction516

on the relationship between y and y′. J517

For any friendly subset X ′, o(X ′) ≤ o(str(X)), and there exist X ′ such that o(X ′) ≥518

δ(o(str(X))). Therefore there exists a friendly subset X ′ which maximizes o(X ′).519

Proof of Theorem 4.5. We say that a bad sequence x1, . . . xn respects a maximal linear-520

isation ` when `(x1) > · · · > `(xn). Let X ′ be a friendly subset of X and ` a maximal521

linearisation of X ′ that verifies the friendly condition. Observe that Bad(X ′) restricted522

to sequences that respect ` has for rank o(X ′), and is embedded in Bad⊥(X). Hence523

o⊥(X) ≥ o(X ′).524

We prove the upper bound by induction on o⊥(X). If o⊥(X) = 0 then the only friendly525

subset of X is the empty set. Now suppose that o⊥(X) > 0. For any x ∈ str(X), by526

induction hypothesis on X6≥x, there exists a friendly subset X ′ of X6≥x, with a maximal527

linearisation ` which verifies the friendly condition, such that o(X ′) ≥ o⊥(X6≥x). We extend528

` to the subset X ′ ∪ {x} of X, such that `(x) = o(X ′). Now ` is a maximal linearisation529

of X ′ ∪ {x} which verifies the friendly condition, therefore o(X ′ ∪ {x}) is a friendly subset530

of X and o(X ′ ∪ {x}) > o⊥(X6≥x). Let X ′ be a friendly subset of X which maximizes531

o(X ′). Then for any x ∈ str(X), o⊥(X6≥x) < o(X ′). Therefore o⊥(X) ≤ o(X ′) according to532

Equation (Res-f). J533
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