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Abstract

Acknowledging the economic role of all living things can trigger an
endogenous production shift, which not only preserves but makes thrive
all living capital without assuming that preferences depend on the living
nor that production could degrade the living.

In a planned economy, we find that the optimal sequence of total cap-
ital is always monotonic. Depending on the productivity of total capital
(defined as the sum of physical and living capital), three different regimes
hold: bounded growth; asymptotically balanced unbounded growth or
unbalanced unbounded growth.

Only at the very early stages of development the economy devotes
all its investment effort to increase the stock of physical capital and only
physical capital. As the economy develops, it will start using living capital
in production. In the first regime, the total capital converges to a steady
state with a positive stock of living capital, which is larger than the one
without living capital. In the second regime, growth becomes unbounded,
and consumption grows at a constant rate. Total capital grows at the
same rate but only asymptotically. In the third case, living capital is
used increasingly at the beginning. Once the economy is sufficiently rich,
physical capital starts growing faster than living capital.

At the end of the paper, we consider a market economy with external-
ities from the living. In this case, if the government levies taxes to finance
the accumulation of living capital and implements exactly the optimal se-
quence of living capital as in the planner’s program, then the equilibrium
market prices decentralize exactly the planner’s solution.

Keywords: Ramsey model, physical capital, living capital, bounded
and unbounded growth, global analysis.

JEL codes: C61, C62, O44.

∗Université Paris-Saclay, Univ Evry, EPEE, France. E-mail: stefano.bosi@universite-paris-
saclay.fr.

†Paris School of Economics, Paris Jourdan Sciences Economiques, France. E-mail: car-
men.camacho@psemail.eu.

‡CNRS, Paris School of Economics, TIMAS, DEPOCEN, CASED. E-mail: Cuong.Le-
Van@univ- paris1.fr.

1



1 Introduction

Mankind is currently facing tremendous challenges directly or indirectly caused
by economic activities. Among these challenges, we find climate change, the
exhaustion of natural resources, the rapid loss in biodiversity, and the diffusion
of new lethal diseases. Obviously, one feels compelled to immediately reduce
production and consumption, hoping that the virtues of degrowth would re-
establish a healthier (sustainable) equilibrium as praised by Georgescu-Roegen
(1979). Tradition would suggest to consider human, social and natural capital
as productive inputs and as utils, and then to model how production damages
them. While this approach is extremely important and informative, we pro-
pose a more comprehensive measure for all living things: living capital. Living
capital is a broad measure to encompass all living things and their bonds, tan-
gible and intangible, to acknowledge that all living things form a unity. The
fact of acknowledging the economic role of all living things can change invest-
ment behaviors, privilege their preservation, and bring degrowth even without
introducing any negative feedback from production to living capital.

Living capital is defined as a comprehensive measure of all economic inputs
that are alive, and which are not raw labor. Hence, living capital includes
education, health, social interactions, social networks and social capital, and
also nature characterized by environmental quality, climate, biodiversity and
natural resources. Besides, living capital includes all bonds and feedbacks among
all its components, and this is exactly what distinguishes living capital from
natural and social capital, and even their sum. Obviously, there are positive
and negative feedbacks, but we shall later assume that the net feedback effect
is positive making living capital resilient. The three essential characteristics of
living capital are that, first, it is not essential; second, it is irreversible; and
third, it depreciates at a slower pace than physical capital. Living capital is
not essential because economies can produce without any living capital, using
physical capital, labor and some available technology. And still, we prove that,
once the role of living capital is accounted for, agents, policy makers and the
market will invest and secure its growth. Living capital is irreversible in the
sense that physical capital can be converted to living capital, but the opposite
is not true. Finally, regarding the third assumption: Why does living capital
depreciate slower than physical capital? It cannot be otherwise since living
capital is resilient because of the connections among all its components. Hence
it is as if we were assuming that the positive feedbacks outperform the negative.

From a historical modelling perspective, we have observed the sequential
introduction of various types of productive capitals in economic models. The
first growth models of Ramsey (1928) and Solow (1956) focused on the role of
physical capital in human development. In the Sixties, the new growth the-
ories pioneered by Arrow (1962) and Uzawa (1965) stress instead the roles of
knowledge and human capital. The notion of Natural capital was sequentially
introduced in different disciplines in the early Seventies.1 According to Holdren

1See for instance Holdren and Ehrlich (1974), Solow (1974), Hartwick (1977) and the
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and Ehrlich (1974) natural capital is the sum of nature’s services which range
from food production, to biodiversity warrant, conversion of waste and disease
control. For Arrow et al. (2004) natural capital includes all contributions of
nature to present and future utility. Contributions can be direct and indirect as
preserving biodiversity, flood control, water purification, etc. Only since 2012,
international organizations like the United Nations and the European Union
started collecting data to account for natural resources and nature services. Al-
though evidence is still scarce, there seems to be a strong will to render nature,
namely in terms of renewable resources and ecosystemic services, its complete
importance, including its economic role. The most recent productive capital to
enter the economic modelling scene is social capital. Coleman (1990) defines
social capital as the institutional relations between people understood widely
to include both as formal and informal relations. Soon after, Putnam (1993)
tested the concept using evidence on the Seventies Italian reform of the regional
administration, to underline in particular the connection between social capital
and the performance of institutions.

In an otherwise standard Ramsey setup in discrete time, we obtain the opti-
mal trajectories for both physical and living capital assuming that the relative
”price” between the two capitals is constant. Following Bruno et al. (2009),
Le Van et al. (2010) and Le Van et al. (2018), we characterize the dynamics
of total capital defined as the sum of the value of physical and living capital.
Depending on the productivity of total capital, three different regimes can arise:
(1) bounded growth; (2) asymptotically balanced unbounded growth; and (3)
unbalanced unbounded growth. Let us briefly describe each of them:

(1) If the sum of the productivity parameters of physical and living capital
is lower than one, then total capital converges to a steady state with a positive
stock of living capital.

(2) When this sum is equal to one, growth becomes unbounded and con-
sumption grows at a constant rate. Interestingly, total capital grows at the
same rate as consumption but only asymptotically. In fact, the economy will
optimally follow an Asymptotically Balanced Growth Path (ABGP).

(3) Finally, when the sum is greater than one, growth is unbounded for both
physical and living capital. When total capital trespasses a given threshold,
the economy starts accumulating living capital. The ratio of physical to living
capital first decreases and then it grows to infinity, after total capital grows
beyond a critical threshold.

We can read these results as both an alternative to degrowth theories and a
challenge to the literature supporting the Environmental Kuznets Curve (EKC
hereafter). Indeed, we show in cases (2) and (3) that an economy which recog-
nizes the productive role of living capital will preserve and promote it along the
optimal path. Only at the very early stages of development, the economy will
devote all its investment effort to increase the stock of physical capital and only
physical capital. As the economy develops, it will start using living capital in
production in an increasing manner, relatively reducing investment in physical

numerous references there on.
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capital. Once the economy is sufficiently rich and the stock of living capital
sufficiently large, but only then, physical capital will start growing faster than
living capital. Hence, our model describes an endogenous production shift that
preserves and makes thrive all living capital without assuming that preferences
depend on the living nor that production degrades the living.

We also mentioned that our model can challenge the EKC because, in case
(3), it actually describes a U-shaped relationship between economic development
and physical capital. Here, physical capital does not decrease in the long term
to privilege living capital. On the contrary, both capitals will increase together.
The premise being that the economy reached a critical development stage in
which living capital was sufficiently abundant. Among the early works that
unearthed the possibility of an inverted U-shaped relationship between produc-
tion and environmental quality when environmental damage affected negatively
welfare, let us mention John and Pecchenino (1994), Selden and Song (1995),
Stokey (1998), Jaeger (1998), Andreoni and Levinson (2001) and Bosi and Des-
marchelier (2018), among others. Regarding empirical support, see Grossman
and Krueger (1995), Harbaoug et al. (2002) or Haberl et al. (2020). Our results
could even be related to the imbalance effect revealed in Ouattara et al. (2016)
in the context of tourism-based economies. Like us, they find that economies
should first build a sufficiently large stock of capital and infrastructure that
will ensure the optimal economic trajectory, before devoting resources to nature
preservation.

Let us close our brief review of the related literature by mentioning some
complementary works, which have adopted different perspectives. As men-
tioned, ours is a standard Ramsey framework and it does not deal with the
problem of sustainability. We could have claimed to do so by trivially sum-
marizing some of the findings in the literature in social welfare considering a
sufficiently small discount factor, or a scrap function in the objective function to
signal that the policy maker cared about the final state of living capital.2 How-
ever, sustainability deserves a more careful treatment, possible only once living
capital is fully understood as a productive factor. Regarding agents’ predator
behavior, Van der Ploeg (2010) shows that cooperation among agents is cru-
cial for environmental preservation when natural capital can be converted into
physical capital. Institutions are also pointed out as key warrants of natural
preservation in Veeman and Politylo (2003) and Arrow et al. (2004) (among
others). We also understand from the later that we should rest cautious about
technological progress since it can increase production without bounds and with-
out accounting for all its consequences. As Arrow et al. (2004), Ehrlich et al.
(2012) also highlight the effects that uncontrolled population growth could have
on the environment. While all these channels remain key, we have intentionally
excluded them from our analysis to study how economic recognition alone can
secure living capital.

Finally, let us mention that from a strict technical point of view, and regard-

2See for an introduction to the subject Chichilnisky (1977, 1982, 1996, 1997), Fleurbaey
(2009), Fleurbaey and Zuber (2013) or Cairns et al. (2019), and all the references therein and
thereafter. Obviously, our reference list is not exhaustive.
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ing the dynamic behavior of the optimal trajectories, our results are in line with
Le Van et al. (2010). It is shown that if human capital and new technologies
are sufficiently efficient, then investment in human capital and new technologies
turn out to be larger than investment in physical capital. Conversely, in Le Van
et al. (2018), investment in physical capital remains larger than investment in
social capital in the long run.

After studying the social planner problem, we consider the market economy
with living externalities. In this case, we show that if the government levies
taxes to finance the accumulation of living capital and implements exactly the
optimal sequence of living capital obtained in the planner’s program, then the
equilibrium market prices exactly decentralize the planner’s solution. Note that
we are able to provide the explicit sequences of these market prices.

The rest of the paper is organized as follows. In section 2, we solve the social
planner’s problem by proving the existence of an optimal path and providing
a global analysis of economic trajectories. These results are complemented by
numerical simulations. In section 3, we consider a market economy with living
externalities and we compute the competitive equilibrium. Section 4 concludes.
All proofs are gathered in the Appendix.

2 Social planner

Let us begin with the policy maker’s problem. The policy maker needs to decide
on both the sequences of physical and living capital that will maximize overall
social welfare.

2.1 Fundamentals

Our economy is endowed with three factors to produce a unique final good,
which is used for all purposes. These three productive factors are labor, physical
capital and living capital. Denoting by Kt and Lt physical and living capital,
let us assume that their evolution in time is described as follows:

Kt+1 = IKt + (1− δK)Kt (1)

Lt+1 = ILt + (1− δL)Lt (2)

where IKt and ILt stand for investment in each of the capitals at time t, and
δK and δL are their depreciation rates. Plausibly, we can suppose that living
capital depreciates less than physical capital. Let us also assume that output
and physical capital are the same good.

Let q be the constant ”price” of living capital in terms of output. Then,
total capital at time t is given by:

Xt ≡ Kt + qLt

Note that there is not an a priori reason why the growth processes of physical
and living capital could not follow different trajectories and trends. Further-
more, physical capital could experience degrowth while total capital grows. This
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is exactly the situation we analyze and characterize here, and we will delve with
it in detail once the model is fully presented and completely solved analytically.

The final good sector utilizes both capitals together with labor, blending
their specific services. However, as we will see next, each input has a very
different role in production. Let us denote by Yt total output at time t. Then,

Yt = A (1 + λLt)
θ
Kα

t N
1−α
t (3)

Our approach departs from the literature on climate change and, instead of
modelling environmental damages from production, the production function in
(3) reveals how living capital enhances productivity.3

Let us introduce some plausible parameter restrictions on technology and
capital depreciation, which is assumed to hold throughout the paper, even if
not mentioned explicitly. Our first assumption ensures that positive production
is possible without any living capital, while production is zero without physical
capital.

Assumption 1 0 < θ < 1, 0 < α < 1, λ > 0, A > 0 and 0 < δL ≤ δK ≤ 1.
Regarding labor, let us assume an inelastic labor supply: Nt = N̄ = 1 for

any t. Then we can write Yt as Yt = A (1 + λLt)
θ
Kα

t .
There exists a planner who maximizes a classic time discounted intertempo-

ral utility function
∑∞

t=0 β
t ln ct, where β is the time discount parameter with

0 < β < 1. The policy maker needs to take into account a sequence of con-
straints:

ct + IKt + qILt ≤ A (1 + λLt)
θ
Kα

t

for all t ≥ 0, given K0, L0 > 0. Note that investment in natural capital needs
to be multiplied by q, the transformation price. Using (1) and (2), we can write
the overall resource constraint of the economy at time t as

ct +Kt+1 − (1− δK)Kt + q [Lt+1 − (1− δL)Lt] ≤ A (1 + λLt)
θ
Kα

t

Remark 1 Recall that investment in living capital is irreversible, and that the
consumption good and physical capital are the same good. As a result, physical
capital can actually be consumed, that is IKt ≡ Kt+1 − (1− δK)Kt < 0 at some
t. We have also assumed that living capital cannot be transformed into the
consumption good, that is ILt ≡ Lt+1 − (1− δL)Lt ≥ 0 for all t. Note that this
assumption is compatible with degrowth in living capital at some period t, that
is Lt+1 < Lt, provided that ILt < δLLt. However, the irreversibility assumption
becomes superfluous, because as we will see, the economy always experiences
growth in living capital along the optimal trajectory.

We can define gross production as

F (Kt, Lt) ≡ A (1 + λLt)
θ
Kα

t + (1− δK)Kt + q (1− δL)Lt (4)

3Alternatively, living capital could also be interpreted as a part of the Total Factor Pro-
ductivity (TFP) of physical capital and labor. A higher stock of living capital would make
both physical capital and labor more productive. Our results do not depend on this specific
interpretation.
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so that gross savings at time t coincides with Xt+1, that is

Xt+1 ≡ Kt+1 + qLt+1

Accordingly, the resource constraints at t can be rewritten as:

ct +Xt+1 ≤ F (Kt, Lt)

Hence, the social planner’s problem becomes:

max

∞∑
t=0

βt ln ct

subject to
ct +Xt+1 ≤ F (Xt) (5)

given the initial condition X0 > 0, where

F (Xt) ≡ max {F (Kt, Lt) : Kt + qLt ≤ Xt} (6)

is the maximal gross output given the aggregate capital Xt.
Our analysis begins by proving the existence of a (unique) critical level of

total capital, X̄, with the following characteristic: if the economy’s stock of
total capital lies below X̄, then production does not use any living capital, that
is Xt = Kt. However, beyond X̄, production will always include some living
capital. We will come back to this result and its implications after we actually
prove it. For now, let us start by proving that this critical value X̄ is the unique
solution to equation

f (X) = q (δK − δL) ≥ 0 (7)

where f (X) ≡ (αq − λθX)AXα−1. Note that function f is continuous for any
X > 0, strictly decreasing from ∞ to 0 in (0, αq/ (λθ)] and negative for any
X > αq/ (λθ). Therefore, equation (7) has a unique solution X̄ and, clearly,
this solution satisfies

0 < X̄ ≤ q

λ

α

θ
(8)

Before presenting our first results, we would like to underline that the model’s
dynamics are driven by α and θ, the productivity parameters for physical and
living capital. Furthermore, their sum,

γ ≡ α+ θ > 0

captures the productivity of total capital, and the ratio α/θ, the relative pro-
ductivity of physical to living capital. As we will see, the magnitude of γ, less or
greater than one, does determine whether the economy will experience bounded
or unbounded growth.
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Lemma 2 (maximal gross output) Function F has the following proper-
ties:

(1) If Xt ≤ X̄, then L∗ (Xt) = 0 and K∗ (Xt) = Xt, and F is given by

F (Xt) = AXα
t + (1− δK)Xt (9)

(2) If Xt > X̄, then Lt = L∗ (Xt) ∈ (0, Xt/q) is the solution to L (Lt) =
R (Lt) with

L (Lt) ≡ λθA (1 + λLt)
θ−1

(Xt − qLt)
α
+ qδK (10)

R (Lt) ≡ αqA (1 + λLt)
θ
(Xt − qLt)

α−1
+ qδL (11)

and Kt = K∗ (Xt) = Xt − qL∗ (Xt) ∈ (0, Xt). F is given by

F (Xt) = F (K∗ (Xt) , L
∗ (Xt))

= A [1 + λL∗ (Xt)]
θ
[Xt − qL∗ (Xt)]

α

+(1− δK) [Xt − qL∗ (Xt)] + (1− δL) qL
∗ (Xt) (12)

(3) Function F is continuous, strictly increasing and differentiable for any
Xt ≥ 0, and so it is at Xt = X̄.

(4) Functions K∗ (Xt) and L
∗ (Xt) are strictly increasing for Xt > X̄.

(5) F is strictly concave if Xt < X̄. If Xt > X̄, F is strictly concave if and
only if γ < 1.

Lemma 2 shows that poor economies, those whose total capital lies below the
threshold, do not consider living capital as a production factor. Lemma 2 proves
that economies below the threshold will specialize in ”heavy” industries, relying
uniquely on physical capital. This result could be even more consequential if
industrial pollution and its damage was introduced in the model. Indeed, most
probably we would see a ”living poverty trap” emerge in which poor countries
would not contemplate living capital as linked to production, and could never
do so since they would induce irreversible damages to living and physical capital
that would retain them below the threshold, in the trap.

In order to gain further understanding on the structure of the economy, we
define the ratio of physical to living capital used in the following lemma as

ζ (Xt) ≡
K∗ (Xt)

qL∗ (Xt)

As proven in Lemma 2, this ratio is only defined on
(
X̄,∞

)
since L∗ (Xt) = 0

for values of Xt below X̄.

Lemma 3 (asymptotic properties of capitals) Physical and living capital
have the following asymptotic properties:

(1) When aggregate capital is unbounded, its components are unbounded as
well:

lim
Xt→∞

L∗ (Xt) = ∞

lim
Xt→∞

K∗ (Xt) = ∞

8



(2) If γ < 1, then

lim
Xt→∞

F (Xt)

Xt
≤ 1− δL < 1

(3) If γ = 1, there exists µ ∈ (0, α/θ] such that, for any sequence (Xn) with
limn→∞Xn = ∞, we have

µ ≤ lim inf
n→∞

ζ (Xn) ≤ lim sup
n→∞

ζ (Xn) ≤
α

θ

(4) If γ > 1, function ζ has the following properties:

lim
Xt→X̄−

ζ (Xt) = ∞

lim
Xt→∞

ζ (Xt) =
α

θ

Moreover, if δK > δL, ζ (Xt) < α/θ for any Xt large enough.

Some comments are in order. Although (1) could seem a priori a trivial
result, it is absolutely not. (1) proves that if total capital increases to infinite,
then both physical and living capital necessarily grow boundless. That is to
say, if the optimal solution implies that total capital will grow forever, it will
be impossible to observe a trajectory along which, for instance, physical capital
will grow while living capital will decrease to reach zero. Both capitals need to
grow in order to sustain the infinite accumulation of total capital.

Points (2), (3) and (4) study the limit behavior of some ratios depending on
the productivity of total capital. Note that these limits are taken with respect
to total capital or time. If total capital productivity is smaller than 1, then case
(2) shows that production per unit of total capital will be bounded by 1 − δL,
that is by the persistence of living capital.

According to (3), if γ = 1, that is, if θ = 1 − α and production can be
understood as a Cobb-Douglas production function in physical and living cap-
ital, then the ratio of physical capital to living capital will remain with time
between µ and α/θ = α/ (1− α). The upper limit of the ratio of physical to
living capital is the ratio between their productivity parameters. That is to say,
the ratio of the capitals does not necessarily converge towards the ratio of their
productivities, it could remain ”stuck” below. If on the contrary the production
function exhibits increasing returns to scale, i.e. γ > 1 then we have that first,
the ratio of capitals does converge to α/θ when total capital tends to infinite.
Second, if total capital converges (from above) towards X̄, then the ratio of
physical to living capital will tend to infinite (as living capital will tend to zero
as shown in Lemma 2).

On the technical side, we observe that the maximization in (6) takes place
at any period, included t = 0. Thus, given (K0, L0) and, then, X0 = K0 + qL0,
the initial artificial and natural capitals available for production are possi-
bly different and equal to (K∗ (X0) , L

∗ (X0)) = (X0, 0) if X0 ≤ X̄, and to
(K∗ (X0) , L

∗ (X0)) = (X0 − qL∗ (X0) , L
∗ (X0)) with L∗ (X0) ∈ (0, X0/q) if

X0 > X̄.
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2.2 Existence of an optimal path

The following two lemmas prove that, first, the utility function either converges
to a finite real number or diverges to −∞, and, second, most importantly, they
also show that the utility function has a maximum.

As a preliminary step, we need to characterize the steady state of an economy
where living capital does not play any role. Then we tackle the more general
case.

When living capital does not have any role in production, that is, when
λ = 0, then

X̄ =

(
αA

δK − δL

) 1
1−α

(13)

and, if, additionally, we assume that both capitals depreciate at the same rate,
that is, if δK = δL, then Xt ≤ X̄ = ∞, L∗ (Xt) = 0 and K∗ (Xt) = Xt. The
maximum of production is F (Xt) = AXα

t +(1− δK)Xt. Since there is only one
capital in the model now, we naturally recover the traditional Ramsey model.
Then, recall that the Modified Golden Rule is the Euler equation at the steady
state, that is: αAX̃α−1 + 1 − δK = 1/β. As a result, the steady state without
living capital is given by

X̃ ≡
[

αβA

1− β (1− δK)

] 1
1−α

(14)

Let us deal next with the general case in which λ ̸= 0. We shall assume in
the following that the threshold of total capital is below the Modified Golden
Rule:

Assumption 2 X̄ < X̃.
Assumption 2 is satisfied when living capital is very efficient, that is, when

both of Lt’s productivity parameters λ and θ are high, or when the ”relative
price” of living capital q is low. Indeed, when λ and θ are large enough or q is
sufficiently small, we have that

X̄ ≤ αq

λθ
< X̃

In order to prove the following lemma, we introduce a third critical value for
total capital X̂ defined as:

X̂ ≡
(
A

δK

) 1
1−α

(15)

and compare the three critical values for total capital defined in (13), (14) and
(15). Since α, β ∈ (0, 1), we have X̃ < X̂ and, because of Assumption 2,

X̄ < X̃ < X̂ (16)

Lemma 4 (convergence of intertemporal utility) Let 0 < γ < 1/β. Un-
der Assumption 2, the objective function of the policy maker is finite, that is
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∑∞
t=0 β

t ln ct < ∞ for any X0 ≥ 0. Moreover, the limit of the utility function
along any feasible path exists. It converges to a finite real number or to −∞:
limT→∞

∑T
t=0 β

t ln [F (Xt)−Xt+1] ∈ R ∪ {−∞}.

Using (5), we can re-write the policy maker’s objective as
∑∞

t=0 β
t ln [F (Xt)−Xt+1].

Note that the objective function is now an infinite sum which depends exclu-
sively on the sequence of total capital. Let Π (X0) denote the set of sequences
of composite capital stocks X ≡ (Xt)

∞
t=0, feasible from X0, that is the set of

X ≡ (Xt)
∞
t=0 such that 0 ≤ Xt+1 ≤ F (Xt) for any t ≥ 0. We can prove that

there exists an optimal solution to the planner’s problem.

Proposition 5 (existence of an optimal path) Let 0 < γ < 1/β. Under
Assumption 2, the function U (X) ≡

∑∞
t=0 β

t ln [F (Xt)−Xt+1] is upper semi-
continuous in Π(X0) with respect to the product topology and it attains a max-
imum in Π(X0).

2.3 Dynamics

Having proved the existence of a solution to the social planner problem, and
having characterized some of the asymptotic properties of feasible trajectories
for Xt, let us study next the problem of the convergence of the optimal solution.
Although we have made an effort to keep our setting as simple as possible on the
technical side, production involves two different types of capital which differ not
only in their definition but also in their role in production. Hence, our problem
is essentially complex.

The following lemma provides us with interesting and extremely useful re-
sults: the optimal path of total capital is monotonic. Furthermore, it also shows
that the stock of living capital is positive from a critical date on.

Lemma 6 (monotonicity and threshold) Let X0 > 0. The optimal se-
quence (Xt)

∞
t=0 is monotonic. Furthermore, the optimal solution does not con-

verge to zero when t → ∞. Moreover, there exists T such that, for any t ≥ T ,
the sequence remains above the threshold, that is, total capital is always larger
than X̄: Xt > X̄, and the optimal natural capital is positive, Lt > 0, for any
t ≥ T .

In particular, the previous lemma implies that if the economy is sufficiently
well endowed at t = 0, that is, if X0 > X̄, then T = 0, implying that living
capital is always strictly positive along the optimal solution.

Remark 7 Our lemma can also be read as follows. If X0 < X̄, then the optimal
sequence is monotonically increasing and there will be a time T at which total
capital will be equal to X̄, when the economy will start employing living capital
in production. After T , total capital will continue growing so that living capital
will always be positive after T . Otherwise, if X0 > X̄, then the optimal sequence
of capital could be either monotonic increasing or decreasing. What we know
for sure is that the sequence remains above the threshold for all t, and that the
economy always involves living capital in production.
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Whether the optimal sequence reaches a steady state or whether it increases
forever is the subject of the next series of three propositions. These proposi-
tions distinguish three cases depending on whether the productivity parameter
of total capital is smaller, equal or larger than one.

Proposition 8 (bounded growth) If γ < 1, then the optimal sequence (Xt)
∞
t=0

converges to a steady state X∗. This steady state is larger than the golden rule
steady state value for Xt without living capital: X∗ > X̃.

We know from Lemma 6 that any optimal sequence includes some living
capital from a time T onwards, so that the limit value of total capital does
include a positive amount of living capital. What Proposition 8 further offers
is the proof that taking into account the services of nature and human capital
as part of the production function leads the economy towards a higher level of
total capital. However, since the maintenance of living capital requires some of
the final good, the increase in living capital could come in detriment of physi-
cal capital. Although this increase could also come from the extra production
generated, or from an extraordinary effort in savings, truth is we do not have
the answer this far and the comparison established with the standard Ramsey
model could just stop at total capital. The following lemma sheds light on the
asymptotic composition of total capital.

Lemma 9 Let γ < 1. If δK = δL, then

lim
t→∞

ζt =
α

θ

(
1 +

1

λL∗

)
>
α

θ

where L∗ is the stationary stock of living capital.

Then, when δK = δL, living capital does enhance the accumulation of phys-
ical capital in the long run since the ratio physical to living capital is strictly
larger than the ratio of their productivities. In other words, physical capital is
accumulated beyond its ”relative productivity”.

When the parameter of total productivity of both capitals is equal to one, we
obtain a balanced growth path as one would have expected in light of similar
results in the standard Ramsey model. The following proposition character-
izes the optimal trajectories and growth rates for consumption and each of the
capitals.

Proposition 10 (asymptotically balanced unbounded growth) If γ = 1,

12



then the optimal paths are given by

ct = c̄0
[
βF ′ (X̄)]t

Xt+1 = c̄0
[
βF ′ (X̄)]t β

1− β
− z

Lt+1 =

(
c̄0
[
βF ′ (X̄)]t β

1− β
− z − X̄

)
1

q + λX̄

Kt+1 =

(
c̄0
[
βF ′ (X̄)]t β

1− β
− z +

q

λ

)
λX̄

q + λX̄

where

z ≡ q

λ

[
1 +

δL

F ′
(
X̄
)
− 1

]
(17)

and c̄0 is the value of initial consumption which maximizes V (c0) =
∑∞

t=0 β
t ln
(
c0
[
βF ′ (X̄)]t).

The maximum is attained at

c̄0 ≡ (1− β)F ′ (X̄)(X0 +
q

λ

[
1 +

δL

F ′
(
X̄
)
− 1

])
Therefore, growth is unbounded

lim
t→∞

Kt = lim
t→∞

Lt = ∞

with

lim
t→∞

Kt

qLt
= X̄

λ

q
≤ α

θ

but asymptotically balanced

Lt+1

Lt
∼ Kt+1

Kt
∼ Xt+1

Xt
∼ ct+1

ct
= βF ′ (X̄) > 1 (18)

along the ABGP (Asymptotically Balanced Growth Path).

Proposition 11 (unbalanced unbounded growth) Let 1 < γ < 1/β. The
optimal sequence (Xt)

∞
t=0 converges to infinity with limt→∞ Lt = limt→∞Kt =

∞ and

lim
t→∞

ζt = lim
t→∞

Kt

qLt
=
α

θ

(1) If δK = δL, the capital ratio always stays above its limit, that is, the
ratio physical to living capital converges towards its limit value from above, i.e.
for any t:

ζt ≡
Kt

qLt
=

α

λθ

1

Lt
+
α

θ
>
α

θ

(2) If δK > δL, then the sequence of capital ratios (ζt) is uniformly bounded
away from zero and from ∞. Moreover, when Xt is sufficiently close to X̄ from
the right, ζ ′ (Xt) < 0, and, when Xt is sufficiently large, ζ ′ (Xt) > 0. Moreover,
if δK > δL, for Xt large enough, ζ (Xt) < α/θ.

13



We observe that, when total capital is very efficient (1 ≤ γ < 1/β), growth is
unbounded for both physical and living capital (limt→∞K∗

t = limt→∞ L∗
t = ∞)

and so it is for total capital (limX→∞X∗
t = ∞). Moreover, if 1 < γ < 1/β and

if θ > α, so that living capital is more efficient, or if it has a more important role
in production, then the economy ends up accumulating relatively more living
capital in the long run:

lim
t→∞

Kt

qLt
< 1

Before closing this section, we would like to come back to Proposition 11.
The proposition clearly shows that when physical capital and living capital wear
down at the same rate, so that capitals are indistinguishable from this point of
view, then ζt > α/θ for all t. As mentioned, the economy will optimally ac-
cumulate more physical capital in relative terms than its relative productivity.
The more productive physical capital, the more the economy will favor it. How-
ever, the most interesting result is presented in point (2). Since 1 < γ < 1/β,
we know that total capital will be monotonically increasing. What point (2)
brings anew is that, when physical capital deteriorates faster than living capi-
tal, the composition of total capital will vary with time. When total capital is
low, close to X̄ and that the economy has recently started incorporating nature
and human capital services into account for production purposes, the economy
privileges investment in living capital so that the ratio ζt decreases. Then, when
total capital becomes large enough, then its relative composition changes letting
physical capital dominate the mix from that moment onwards. In this respect,
stressing the role of the natural component in the living capital, we can say that
there our model generates a reverse environmental Kuznets curve.

2.4 Simulations

We close this section providing some numerical illustrations to hopefully offer
with some answers to the remaining open questions. Note that while illustrating
the cases when γ ≤ 1 has little interest since all trajectories are explicit, it is
extremely informative to obtain more information on the transition dynamics in
the more challenging case of unbalanced and unbounded growth when 1 < γ <
1/β. Here, we define adequate ratios for each case that converge in the long-run.
Then, from that converging sequence we will be able to recover (numerically this
time) some further information on the original capitals or ratios. Let us consider
the following subcases: (1) δK = δL and (2) δK > δL.

When the depreciation rates are equal, it is possible to write the dynamics in
variable ζt, which, we know, converges to a limit α/θ according to Proposition
11.

Proposition 12 (simulations with equal depreciation rates) Let 1 < γ <
1/β and δK = δL. The optimal dynamics are driven by the Euler equation

ψ (ζt+1, ζt+2)

ψ (ζt, ζt+1)
= βF ′ (X (ζt+1)) (19)
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where
ψ (ζt, ζt+1) ≡ F (X (ζt))−X (ζt+1) = ct (20)

represents the resource constraint and

Xt = X (ζt) ≡
q

λ

αζt + α

θζt − α

total capital.
The optimal trajectory for ζt is determined by (19) together with the transver-

sality condition:

lim
t→∞

ζt =
α

θ

Using (67) and (20), we will obtain the sequences of total capital (Xt)
∞
t=0

and consumption (ct)
∞
t=0.

When the depreciation rates are different, it is possible to write the optimal
dynamics in terms of a new variable φt, which also converges to a limit λθ/ (αq).

Proposition 13 (simulations with different depreciation rates) Let 1 <
γ < 1/β and δK > δL. Economic dynamics are driven by a recursive transition
function

φt+2 = T (φt, φt+1) (21)

where

φt = φ (Xt) ≡
1 + λL∗ (Xt)

Xt − qL∗ (Xt)
(22)

and

T (φt, φt+1) ≡ φ
(
F
(
φ−1 (φt+1)

)
− βF ′ (φ−1 (φt+1)

) [
F
(
φ−1 (φt)

)
− φ−1 (φt+1)

])
The trajectory is determined by (21) jointly with the transversality condition:

lim
t→∞

φt =
λθ

αq

We close this paper by using the theoretical results presented in the previ-
ous subsection in some numerical illustrations that will complete the long-term
description of the dynamics of our model.

In the first simulation, we assume that both physical and living capital de-
preciate at the same rate: δK = δL = 0.04. The calibration is summarized in
the following table.

A TFP 0.5
α physical capital productivity parameter 1/3
θ living capital productivity parameter 2/3 + 0.01
β time discount 0.99
δK physical capital depreciation rate 0.04
δL living capital depreciation rate 0.04
q relative price of living capital 1/2
λ living capital parameter 1/2
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Figures 1 and 2 present the corresponding results and illustrate well Propo-
sition 12.
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Our program uses the fact that the ratio ζ converges towards α/θ and recovers
backwards the trajectory for ζ (Figure 1). Using this trajectory, we are able
to compute the optimal trajectories for X, K and L. Our results show that
under our calibration, when 1 < γ < 1/β, all original variables grow with time.
Besides, natural capital grows faster than artificial capital until ζ approaches
the steady state. At that point in time, both capitals grow at the same rate
forever (Figure 2).

The second set of numerical exercises illustrate Proposition 13. We assume
this time different depreciation rates for physical and living capital, that is δK =
0.04 > δL = 0.039 and q = 1/4, all other parameters keep the same values as in
the previous exercise. Let us assume that X0 = 0.9983, just slightly larger than
X̄ = 0.9982. The following exercises show that the relative values of physical and
living capital at time 0 do matter for the transitional dynamics. Figures 3 and
4 present results when K0 = 0.75X0 = 0.7487 and L0 = (X0 −K0)/q = 0.9983.

As predicted by Proposition 11 when X0 is close to X̄, ζ decreases with
time and converges towards a constant. Both physical and living capital grow
forever.

Next, Figures 5 and 6 present results when K0 = 0.5X0 = 0.4991 and
L0 = (X0 − K0)/q = 1.99. This example depicts an example in which living
capital is initially ”too” abundant with respect to physical capital. Note that
the economy readjusts in one period. After readjustment, and although both K
and L increase monotically, the ratio ζ decreases as expected.

3 Optimal growth and competitive equilibrium
with living externalities

To complete our analysis, we consider in this section alternative problems where
the trajectory for living capital is known to the decision maker, and it is equal to
the optimal trajectory from the planner’s program (P0). We will say that there
are externalities from the living or ”living externalities”. In the first subsection,
we compare (P0) to the problem of a policy maker identical to that of the
previous section except that, as mentioned, she takes living capital to be equal
to its optimal trajectory in (P0). We prove that both problems do have the
same optimal solution for physical capital and hence consumption. In the final
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subsection, we consider instead a market economy. There, the policy maker will
also take living capital as given and will levy taxes to finance investment in living
capital. We prove in our last theorem that there exist prices that decentralize
the policy maker’s problem and ensure that the economy will follow the optimal
solution for (P0).

3.1 Optimal growth with living externalities

Reconsider gross output (4) and the maximal output (6) with total capital
Xt ≡ Kt + qLt given. A solution (K∗ (Xt) , L

∗ (Xt))
∞
t=0 satisfies

F (Xt) = A [1 + λL∗ (Xt)]
θ
K∗ (Xt)

α
+ (1− δK)K∗ (Xt) + q (1− δL)L

∗ (Xt)

Let us redefine the gross output as a function of total capital and living
capital:

G (Xt, Lt) ≡ A (1 + λLt)
θ
(Xt − qLt)

α
+ (1− δK) (Xt − qLt) + q (1− δL)Lt

and denote the first derivatives byGX andGL. We know that L∗ (Xt) is solution
to GL (Xt, Lt) = 0. Invoking the Envelope Theorem, we have

F ′ (Xt) = GX (Xt, L
∗ (Xt)) +GL (Xt, L

∗ (Xt))L
∗′ (Xt) = GX (Xt, L

∗ (Xt))

when Xt > X̄ (that is L∗ > 0). Hence, if Xt > X̄,

F ′ (Xt) = GX (Xt, L
∗ (Xt)) = αA [1 + λL∗ (Xt)]

θ
[Xt − qL∗ (Xt)]

α−1
+ 1− δK

We observe that F ′ (Xt) = FK (Kt, L
∗ (Xt)) > 0.

In the following subsections, we compare the initial planner’s program (P0)
to the intertemporal utility maximization under the sequence of resource con-
straints, with the program (say (P1)) where the planner chooses the optimal
sequence (K∗

t )
∞
t=0 taking as given the sequence (L∗

t )
∞
t=0 solution to (P0). In pro-

gram (P1) (L∗
t )

∞
t=0 is just a particular sequence of externalities from the living.

From now on, for simplicity, we denote a sequence (zt)
∞
t=0 by (zt).

3.1.1 Optimal growth

Let us begin by recalling the initial program (P0) and the properties of its
optimal solution.

(P0) Optimal growth.

max
(Kt,Lt)

∞∑
t=0

βtu (ct)

ct +Kt+1 + qLt+1 ≤ F (Kt, Lt)

for any t ≥ 0.
Let (K∗

t , L
∗
t )

∞
t=0 be the optimal path of program (P0) with (K∗

0 , L
∗
0) =

(K0, L0). Assuming u (c) ≡ ln c, we have obtained the following properties of
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the optimal sequence (K∗
t , L

∗
t ) depending on the ”total productivity” parameter

γ ≡ α+ θ.
(1) If γ < 1, then (K∗

t , L
∗
t ) converges to the steady state (K∗, L∗) with

lim
t→∞

K∗
t

qL∗
t

=
K∗

qL∗ > 0 (23)

(2) If γ = 1, growth is unbounded and asymptotically balanced with

lim
t→∞

K∗
t

qL∗
t

= X̄
λ

q
≤ α

θ
(24)

(3) If 1 < γ < 1/β, growth is unbounded and unbalanced with

lim
t→∞

K∗
t

qL∗
t

=
α

θ
(25)

3.1.2 Optimal growth with living externalities

Let us assume that the planner takes as given the optimal sequence of living
externalities (L∗

t ), which is the optimal solution to (P0) and that she maximizes
her objective with respect to the sequence of physical capital levels (Kt). This
is the problem denoted by (P1), which is defined and solved below.

(P1) Optimal growth with living externalities.

max
(Kt)

∞∑
t=0

βtu (ct)

ct +Kt+1 ≤M
(
Kt, L

∗
t , L

∗
t+1

)
for any t ≥ 0, where M

(
Kt, L

∗
t , L

∗
t+1

)
≡ F (Kt, L

∗
t )− qL∗

t+1.

There exists an optimal solution
(
K̃t

)
and, because of the strict concavity

of F (K,L) in K and the strict concavity of ln c in c, this solution is unique.
One can prove that actually the optimal solutions to (P1) and (P0) coincide,

that is that
(
K̃t

)
= (K∗

t ), where (K∗
t ) is the optimal solution to (P0). Indeed,

maximizing the Lagrangian function
∑∞

t=0 β
tu (ct)+

∑∞
t=0 λt

[
F (Kt, L

∗
t )− ct −Kt+1 − qL∗

t+1

]
we obtain the first-order conditions λt = βtu′ (ct) and λt = λt+1FK

(
Kt+1, L

∗
t+1

)
for any t. As usual, the first order conditions can be combined to attain the
Euler equation

u′ (ct)

u′ (ct+1)
= βFK

(
Kt+1, L

∗
t+1

)
= βF ′ (Xt+1)

which coincides with the Euler equation of program (P0).
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3.2 Competitive equilibrium with living externalities

Now, consider a market economy where the sequence of living capital (Lt) is
given. In particular, let us assume that the market economy takes as given the
optimal sequence (L∗

t ), which is solution to (P0). In other terms, it is as if the
government chooses (Lt) = (L∗

t ), which is attainable by levying an opportune
sequence of real taxes (τ∗t ) to finance the living capital accumulation, that is
τ∗t = q

[
L∗
t+1 − (1− δL)L

∗
t

]
.

The firm chooses the sequence of physical capital demands (Kt) that maxi-
mizes its intertemporal profit:

π∗ = max
(Kt)

( ∞∑
t=0

p∗t

[
A (1 + λL∗

t )
θ
Kα

t + (1− δK)Kt −Kt+1 − τ∗t

]
− r∗K0

)

At the same time, the representative agent maximizes her intertemporal
utility function under the intertemporal budget constraint:

∑∞
t=0 p

∗
t ct = π∗ +

r∗K0. The associated competitive equilibrium (P2) is defined as follows:
(P2) Competitive equilibrium (p∗t , q

∗,K∗
t ) with (L∗

t ) as externality.
(P2) comprehends the firm’s and the representative consumer’s problems

and the clearing of all markets:
(1) The firm chooses the sequence of physical capital demands (Kt) to max-

imize the profit:

π∗ = max
(Kt)

( ∞∑
t=0

p∗t
[
M
(
Kt, L

∗
t , L

∗
t+1

)
−Kt+1

]
− r∗K0

)

Profit maximization gives

p∗t = p∗t+1MK

(
Kt+1, L

∗
t+1, L

∗
t+2

)
= p∗t+1FK

(
Kt+1, L

∗
t+1

)
for any t ≥ 0.

Remark 14 We observe that there is only one firm acting as a competitive firm
without market power. In other terms, the firm takes prices as given and does
not play strategically by exploiting its market power. In the case of constant
returns to scale, a zero profit condition holds and maximizing the profits of a
large number of firms yields the same solution in terms of optimal aggregate
demand for capital than maximizing the profit of an aggregate firm. However,
in our case, returns to scale are not constant and we assume that the unique
existing firm is a price taker. Even if this is a strong assumption, we can
partially justify it by noticing that the capital good and the consumption good
are the same and the firms shares the market power with many consumers.

(2) The representative consumer maximizes her intertemporal utility func-
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tion under an intertemporal budget constraints:

max
(ct)

∞∑
t=0

βtu (ct)

∞∑
t=0

p∗t ct ≤ π∗ + r∗K0

where π∗ is the profit she earns as (unique) shareholder. r∗ is the price of K0 at
period −1. Indeed, note that physical capital is bought one period before being
used.

(3) All markets clear:

ct +K∗
t+1 =M

(
K∗

t , L
∗
t , L

∗
t+1

)
with K∗

0 = K0.
Our final theorem provides with the prices that allow to decentralize the

policy maker’s maker.

Theorem 15 Let 0 < γ < 1/β and let the sequence (c∗t ,K
∗
t ) be solution to

(P1). Define

p∗t ≡ βtu′ (c∗t ) = βt/c∗t

r∗ ≡ p∗0MK (K0, L
∗
0, L

∗
1) = αA (1 + λL0)

θ
Kα−1

0 + 1− δK

Then (r∗, (p∗t , c
∗
t ,K

∗
t )

∞
t=0) is a competitive equilibrium where (L∗

t ), solution
to (P0), is a sequence of externalities.

Very briefly, note that the price the firm has to pay for K0 increases with
the role of living capital, and in particular with its relative productivity λ and
with θ, its share in production. It also increases with the initial level of living
capital. Regarding the impact of physical capital, pt increases with the share of
physical capital in production and it decreases with K0.

4 Conclusion

We have defined living capital as a comprehensive measure of all economic inputs
that are alive. The three characteristics of living capital are that: first, it is not
essential; second, it is irreversible; third, it depreciates at a slower pace than
physical capital. Among these, the one that makes living capital truly different
from any other productive capital is its non-essentiality, which means that the
economy could very well produce without living capital.

Then, we defined total capital as a sum of physical and living capital in
terms of value and we have considered, first, the planner’s solution and, then,
the market economy.

In the case of the policy maker’s problem, we have shown that the optimal
sequence of capital is always monotonic. Depending on the productivity of total
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capital, three different regimes hold: (1) bounded growth; (2) asymptotically
balanced unbounded growth; (3) unbalanced unbounded growth. In case (1),
when the sum of the productivity parameters of physical and living capital is
lower than one, total capital converges to a steady state with a positive stock
of living capital, which is larger than the one without living capital. In the
second case, when this sum is equal to one, growth becomes unbounded and the
economy experiences an asymptotically balanced growth path. Finally, in case
(3), when the sum of the productivity parameters of physical and living capital
is greater than one, growth is unbounded for both physical and living capital.
Clearly, this implies that total capital grows forever. Beyond a critical point of
total capital, living capital starts to grow but the ratio physical to living capital
first decreases and then, after a critical date, it grows to infinity.

In the case of a market economy, we show that if the government levies taxes
to finance the accumulation of living capital and implements exactly the optimal
sequence of living capital as in the planner’s program, then the equilibrium
market prices decentralize exactly the planner’s solution. We provide the explicit
sequence of market prices.

5 Appendix

Proof of Lemma 2
We maximize F (Kt, Lt) ≡ A (1 + λLt)

θ
Kα

t + (1− δK)Kt + (1− δL) qLt

under the constraint Kt + qLt ≤ Xt with Lt,Kt ≥ 0.
We observe that F (Xt − qLt, Lt) is strictly concave in Lt:

[F (Xt − qLt, Lt)]
′′

A (1 + λLt)
θ
Kα

t

= −α (1− α)
q2

K2
t

−θ (1− θ)
λ2

(1 + λLt)
2−2αθ

qλ

Kt (1 + λLt)
< 0

that is [F (Xt − qLt, Lt)]
′′
< 0.

Equivalently, we can maximize A (1 + λLt)
θ
(Xt − qLt)

α
+ (δK − δL) qLt

with respect to Lt ≥ 0.
If Lt > 0, we obtain the first-order condition:

λθA (1 + λLt)
θ−1

(Xt − qLt)
α−αqA (1 + λLt)

θ
(Xt − qLt)

α−1
+q (δK − δL) = 0

(26)
or, equivalently, L (Lt) = R (Lt), where L (Lt) and R (Lt) are given by (10) and
(11).

We observe that, for L ∈ [0, X/q), L′ (L) < 0 and R′ (L) > 0.
Moreover, limLt→0 L (Lt) = λθAXα

t + qδK , limLt→0 R (Lt) = αqAXα−1
t +

qδL, limLt→Xt/q L (Lt) = qδK and limLt→(Xt/q)
− R (Lt) = ∞.

Thus, there exists a unique value L∗ ∈ [0, Xt/q) such that L (L∗) = R (L∗)
if and only if λθAXα

t + qδK ≥ αqAXα−1
t + qδL.

The critical value X̄ is defined by λθAXα + qδK = αqAXα−1 + qδL, that is
by (7).
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When Xt = X̄, then L∗ = 0; when Xt > X̄, then L∗ > 0 because
λθAXα

t + qδK − αqAXα−1
t − qδL > 0 (indeed, the LHS of this inequality is

strictly increasing in Xt).
Therefore, we obtain the following.
(1) If Xt ≤ X̄, then L∗ (Xt) = 0 and K∗ (Xt) = Xt, and the maximum is

given by (9).
(2) If Xt > X̄, then L∗ (Xt) ∈ (0, Xt/q) and the maximum is given by (12).
(3) Functions (9) and (12) are continuous and differentiable in

[
0, X̄

)
and(

X̄,∞
)
respectively. Moreover, they are also continuous at X = X̄:

lim
Xt→X̄+

F (Xt)

= lim
L∗→0+

[
A (1 + λL∗)

θ
(Xt − qL∗)

α
+ (1− δK) (Xt − qL∗) + (1− δL) qL

∗
]

= AXα
t + (1− δK)Xt = lim

Xt→X̄−
F (Xt)

We apply the Envelope Theorem to prove the differentiability of F at Xt =
X̄. Let us define

G (Xt, Lt) ≡ A (1 + λLt)
θ
(Xt − qLt)

α
+ (1− δK) (Xt − qLt) + (1− δL) qLt

and denote the first derivatives by GX and GL.
We know that L∗ (Xt) is solution to GL (Xt, Lt) = 0. We observe that, if

Xt > X̄ (that is L∗ > 0), then by the Envelope Theorem,

F ′ (Xt) = GX (Xt, L
∗ (Xt)) +GL (Xt, L

∗ (Xt))L
∗′ (Xt) = GX (Xt, L

∗ (Xt))

Hence, if Xt > X̄,

F ′ (Xt) = GX (Xt, L
∗ (Xt)) = αA [1 + λL∗ (Xt)]

θ
[Xt − qL∗ (Xt)]

α−1
+1−δK > 0

(27)
which proves that, F is strictly increasing.

Additionally, we have that

lim
Xt→X̄−

F ′ (Xt) = αAXα−1
t + 1− δK

lim
Xt→X̄+

F ′ (Xt) = lim
Xt→X̄+

GX (Xt, L
∗ (Xt)) = GX (Xt, 0) = αAXα−1

t + 1− δK

which proves that F is differentiable at Xt = X̄.
(4) Taking the derivative of (26) with Lt = L∗ (Xt) with respect to Xt, we

obtain

qL∗′ (Xt) =
αqλθ + α (1− α) q2 P (Xt)

K∗(Xt)

θ (1− θ)λ2K∗(Xt)
P (Xt)

+ 2αqλθ + α (1− α) q2 P (Xt)
K∗(Xt)

> 0 (28)

K∗′ (X) = 1− qL∗′ (X) =
θ (1− θ)λ2K∗(Xt)

P (Xt)
+ αqλθ

θ (1− θ)λ2K∗(Xt)
P (Xt)

+ 2αqλθ + α (1− α) q2 P (Xt)
K∗(Xt)

> 0(29)
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where P (Xt) ≡ 1 + λL∗ (Xt).
(5) Focus on the derivative for Xt > X̄:

F ′ (Xt) = αA [1 + λL∗ (Xt)]
θ
[Xt − qL∗ (Xt)]

α−1
+ 1− δK > 0 (30)

The second derivative when Xt > X̄ is given by

F ′′ (Xt) = αA
λθK∗ (Xt)L

∗′ (X)− (1− α)P (Xt) [1− qL∗′ (Xt)]

P (Xt)
1−θ

K∗ (Xt)
2−α

Then, F ′′ (Xt) < 0 if and only if

λθK∗ (Xt) qL
∗′ (Xt)− (1− α) qP (Xt) [1− qL∗′ (Xt)] < 0 (31)

Replacing expressions (28) and (29) for qL∗′ (Xt) and 1−qL∗′ (Xt) = K∗′ (Xt)
in (31), we find that F ′′ (Xt) < 0 if and only if γ < 1.

Proof of Lemma 3
(1) First, we show that limXt→∞ L∗ (Xt) = ∞.
If it was not the case, there should exist ν and a sequence (Xn) with

limn→∞Xn = ∞ such that L∗ (Xn) ≤ ν for any n.
Let L∗

n ≡ L∗ (Xn). According to (26), for any n, we have

0 = λθA (1 + λL∗
n)

θ−1
(Xn − qL∗

n)
α

−αqA (1 + λL∗
n)

θ
(Xn − qL∗

n)
α−1

+ q (δK − δL) (32)

and

λθA (1 + λL∗
n)

θ−1
(Xn − qL∗

n)
α ≥ λθA (1 + λν)

θ−1
(Xn − qν)

α

αqA (1 + λL∗
n)

θ
(Xn − qL∗

n)
α−1 ≤ αqA (1 + λν)

θ
(Xn − qν)

α−1

We observe that

lim
n→∞

[
λθA (1 + λL∗

n)
θ−1

(Xn − qL∗
n)

α
]

≥ lim
n→∞

[
λθA (1 + λν)

θ−1
(Xn − qν)

α
]
= ∞

lim
n→∞

[
αqA (1 + λL∗

n)
θ
(Xn − qL∗

n)
α−1

]
≤ lim

n→∞

[
αqA (1 + λν)

θ
(Xn − qν)

α−1
]
= 0

Therefore,

lim
n→∞

[
λθA (1 + λL∗

n)
θ−1

(Xn − qL∗
n)

α − αqA (1 + λL∗
n)

θ
(Xn − qL∗

n)
α−1

+ q (δK − δL)
]
= ∞

which is in contradiction with (32), and which proves that limXt→∞ L∗ (Xt) =
∞.

Next, let us show in a similar manner that limXt→∞K∗ (Xt) = ∞.
If it was not the case, then there should exist κ > 0 and a sequence (Xn)

with limn→∞Xn = ∞ such that K∗ (Xn) ≤ κ for any n.
Let K∗

n ≡ K∗ (Xn). According to (26), for any n, we have

λθA (1 + λL∗
n)

θ−1
K∗α

n − αqA (1 + λL∗
n)

θ
K∗α−1

n + q (δK − δL) = 0 (33)
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Since limn→∞ L∗
n = ∞ and K∗

n ∈ [0, κ], a bounded set, we have

lim
n→∞

[
λθA (1 + λL∗

n)
θ−1

K∗α
n

]
= 0

Moreover, αqA (1 + λL∗
n)

θ
K∗α−1

n ≥ αqA (1 + λL∗
n)

θ
κα−1 for any n and

lim
n→∞

[
αqA (1 + λL∗

n)
θ
K∗α−1

n

]
≥ lim

n→∞

[
αqA (1 + λL∗

n)
θ
κα−1

]
= ∞

Thus,

lim
n→∞

[
λθA (1 + λL∗

n)
θ−1

K∗α
n − αqA (1 + λL∗

n)
θ
K∗α−1

n + q (δK − δL)
]
= −∞

which is in contradiction with (33).
Observe that these results hold for any γ > 0.
(2) We have

F (Xt) = A [1 + λL∗ (Xt)]
θ
[Xt − qL∗ (Xt)]

α
+(δK − δL) qL

∗ (Xt)+(1− δK)Xt

Hence,

F (Xt)

Xt
= A [1 + λL∗ (Xt)]

θ [Xt − qL∗ (Xt)]
α

Xt
+ 1− δL + (δK − δL)

[
qL∗ (Xt)

Xt
− 1

]
≤ A

[
1 +

λ

q
qL∗ (Xt)

]θ
[Xt − qL∗ (Xt)]

α

Xt
+ 1− δL

< A

(
1 +

λ

q
Xt

)θ

Xα−1
t + 1− δL

since Xt > X̄ entails L∗ (Xt) > 0.
γ < 1 implies

lim
Xt→∞

(
1 +

λ

q
Xt

)θ

Xα−1
t = 0

Therefore,

lim
Xt→∞

F (Xt)

Xt
≤ 1− δL < 1

(3) Let γ = 1.
First we prove that there exists µ ∈ (0, α/θ] such that, for any sequence

(Xn) with limn→∞Xn = ∞, we have

µ ≤ lim inf
n→∞

ζ (Xn)

From equation (26), we have

λθA [1 + λL∗ (Xt)]
θ−1

[Xt − qL∗ (Xt)]
α − αqA [1 + λL∗ (Xt)]

θ
[Xt − qL∗ (Xt)]

α−1

= q (δL − δK) (34)
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Since by definition

ζ (Xt) =
Xt − qL∗ (Xt)

qL∗ (Xt)

then we have

L∗ (Xt) =
1

q

Xt

1 + ζ (Xt)

and (34) becomes L1 (Xt) + L2 (Xt) = R (Xt), where

L1 (Xt) ≡ λAXα
t

[
1 +

λ

q

Xt

1 + ζ (Xt)

]θ−1 [
θ − α+ θ

1 + ζ (Xt)

]
L2 (Xt) ≡ −αqAXα−1

t

[
1 +

λ

q

Xt

1 + ζ (Xt)

]θ−1

R (Xt) ≡ q (δL − δK)

[
ζ (Xt)

1 + ζ (Xt)

]1−α

We want to prove that there exist µ > 0 and ν > 0 such that, for any Xt ≥ ν,

ζ (Xt) ≥ µ

Suppose the contrary. In this case, there would exist a sequence (Xn) with
limn→∞Xn = ∞ and such that limn→∞ ζ (Xn) = 0.

We observe that limn→∞ L1 (Xn) = −∞ because γ ≥ 1,

lim
n→∞

(
λAXα

n

[
1 +

λ

q

Xn

1 + ζ (Xn)

]θ−1
)

= ∞

and

lim
n→∞

[
θ − γ

1 + ζ (Xn)

]
= −α

Moreover, since α < 1 and θ < 1,

lim
n→∞

L2 (Xn) = −αqA lim
n→∞

(
Xα−1

n

[
1 +

λ

q

Xn

1 + ζ (Xn)

]θ−1
)

= 0

Finally, since α < 1,

lim
n→∞

R (Xn) = q (δL − δK) lim
n→∞

[
ζ (Xn)

1 + ζ (Xn)

]1−α

= 0

Then, 0 = limn→∞ R (Xn) = limn→∞ L1 (Xn) + limn→∞ L2 (Xn) = −∞, a
contradiction.

Now, let us prove that, for any sequence (Xn) with limn→∞Xn = ∞, we
have

lim sup
n→∞

ζ (Xn) ≤
α

θ
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Equation (26) writes:

λθA [1 + λL∗ (Xt)]
θ−1

K∗ (Xt)
α
+q (δK − δL) = αqA [1 + λL∗ (Xt)]

θ
K∗ (Xt)

α−1

Since δK ≥ δL, we have

λθA [1 + λL∗ (Xt)]
θ−1

K∗ (Xt)
α ≤ αqA [1 + λL∗ (Xt)]

θ
K∗ (Xt)

α−1

that is
K∗ (Xt)

qL∗ (Xt)
≤ α

λθ

1 + λL∗ (Xt)

L∗ (Xt)
(35)

Since limXt→∞ L∗ (Xt) = ∞, for any sequence (Xn) such that limn→∞Xn =
∞, we find

lim sup
n→∞

K∗ (Xn)

qL∗ (Xn)
≤ α

θ

(4) Finally, let γ > 1.
It is easy to show that limXt→X̄− ζ (Xt) = ∞. Indeed, L∗ (Xt) converges to

0 continuously and K∗ (Xt) to X̄ also continuously (L∗ (Xt) and K∗ (Xt) are
differentiable).

Focus now on the asymptotic behavior of ζ (Xt) when Xt → ∞. We want
to prove that limXt→∞ ζ (Xt) = α/θ.

Let us to show first that, if ε > 0, then there exists µ > 0 such that ζ (Xt) ≤ µ
for any Xt ≥ X̄ + ε.

According to (35), we have

ζ (Xt) ≤
α

λθ

1 + λL∗ (Xt)

L∗ (Xt)

for any Xt ≥ X̄ + ε. Since limXt→∞ L∗ (Xt) = ∞,

lim
Xt→∞

[
α

λθ

1 + λL∗ (Xt)

L∗ (Xt)

]
=
α

θ

Let η > 0. Then, there exists Y > X̄ + ε such that

α

λθ

1 + λL∗ (Xt)

L∗ (Xt)
≤ α

θ
+ η

for any Xt > Y . Let

µ ≡ max

{
max

Xt∈[X̄+ε,Y ]

[
α

λθ

1 + λL∗ (Xt)

L∗ (Xt)

]
,
α

θ
+ η

}

Therefore, we obtain
ζ (Xt) ≤ µ (36)

for any Xt ≥ X̄ + ε.
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(26) is equivalent to

λθAK∗ (Xt)− αqA [1 + λL∗ (Xt)] = q (δL − δK) [1 + λL∗ (Xt)]
1−θ

K∗ (Xt)
1−α

K∗ (Xt)

qL∗ (Xt)
=

α

λθ

1 + λL∗ (Xt)

L∗ (Xt)
+
δL − δK
λθA

[1 + λL∗ (Xt)]
1−θ

K∗ (Xt)
1−α

L∗ (Xt)
(37)

Note that

[1 + λL∗ (Xt)]
1−θ

K∗ (Xt)
1−α

L∗ (Xt)
=

[
1 + λL∗ (Xt)

L∗ (Xt)

]1−θ [
L∗ (Xt)

K∗ (Xt)

]−θ

K∗ (Xt)
1−γ

(38)
According to (36), we have that, for any Xt ≥ X̄ + ε,

K∗ (Xt)

L∗ (Xt)
≤ µq[

L∗ (Xt)

K∗ (Xt)

]−θ

≤
(

1

µq

)−θ

Then, for any Xt ≥ X̄ + ε,

0 ≤
[
1 + λL∗ (Xt)

L∗ (Xt)

]1−θ [
L∗ (Xt)

K∗ (Xt)

]−θ

K∗ (Xt)
1−α−θ ≤

[
1 + λL∗ (Xt)

L∗ (Xt)

]1−θ (
1

µq

)−θ

K∗ (Xt)
1−α−θ

If γ > 1, we have

lim
Xt→∞

([
1 + λL∗ (Xt)

L∗ (Xt)

]1−θ (
1

µq

)−θ

K∗ (Xt)
1−γ

)
= 0

and, thus, the limit of (38) also exists with

lim
Xt→∞

[1 + λL∗ (Xt)]
1−θ

K∗ (Xt)
1−α

L∗ (Xt)
= 0

In addition and according to (37), we obtain

lim
Xt→∞

K∗ (Xt)

qL∗ (Xt)
=

α

λθ
lim

Xt→∞

1 + λL∗ (Xt)

L∗ (Xt)
=
α

θ
(39)

Since
qL∗ (Xt)

Xt
=

1

1 + ζ (Xt)

then
qL∗ (Xt)

Xt
<

θ

α+ θ

for any X and

lim
Xt→∞

qL∗ (Xt)

Xt
=

θ

α+ θ
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Finally, consider δK > δL. According to (26), we have

ζ (Xt) ≡
K∗ (Xt)

qL∗ (Xt)
=
α

θ
+
αA+ (δL − δK) [1 + λL∗ (Xt)]

1−θ
K∗ (Xt)

1−α

λθAL∗ (Xt)

Notice that

lim
X→∞

(
(δL − δK) [1 + λL∗ (Xt)]

1−θ
K∗ (Xt)

1−α
)
= −∞

Thus, forXt large enough, ζ (Xt) < α/θ and, according to (39), limX→∞ ζ (Xt) =
α/θ.

Proof of Lemma 4
First, we want to prove that, under Assumption 2,

∑∞
t=0 β

t ln ct < ∞ for
any X0 ≥ 0.

We observe that ct ≤ F (Xt) for any t. If X0 = 0, then ct = 0 for any t ≥ 0
and

∑∞
t=0 β

t ln ct <∞.
Let X0 > 0. If the feasible sequence (Xt)

∞
t=0 is bounded, the sequences

(F (Xt))
∞
t=0 and (ct)

∞
t=0 are bounded as well. Thus,

∑∞
t=0 β

t ln ct <∞.
Now, let the sequence (Xt)

∞
t=0 be unbounded.

A sequence (Xt)
∞
t=0 is feasible ifXt+1 ≤ F (Xt) for any t. Define the maximal

sequence
(
X̃t

)∞
t=0

by X̃t+1 = F
(
X̃t

)
for any t with X̃0 = X0. According to

point (3) in Lemma 2, F is strictly increasing and Xt ≤ X̃t for any t. Then, if

(ct)
∞
t=0 is a sequence of feasible consumptions, ct ≤ F (Xt) ≤ F

(
X̃t

)
= X̃t+1

for any t, and
∑∞

t=0 β
t ln ct ≤

∑∞
t=0 β

t lnF
(
X̃t

)
.

Let us show that there exists T such that X̃t > X̄ for any t ≥ T .
The case X̃t ≤ X̄ for any t is impossible. If X0 = X̃0 ≤ X̄, there exists

T such that X̃T > X̄. Indeed, if not, X̃t+1 = AX̃α
t + (1− δK) X̃t ≡ ξ

(
X̃t

)
for any t ≥ 0. Since ξ is continuous and strictly concave with ξ′ (0) = ∞,
ξ′ (∞) = 1 − δK < 1, it crosses the line X̃t+1 = X̃t at X̃t = 0 and X̃t = X̂.
Thus, according to (16), limt→∞ X̃t = X̂ > X̄, a contradiction.

Let X̃T > X̄ for some T . Since X̂ = AX̂α + (1− δK) X̂ and, according to
(16), X̄ < X̂, we have X̄ < AX̄α + (1− δK) X̄. Moreover, by definition of X̄,
F
(
X̄
)
= AX̄α + (1− δK) X̄. Since F is strictly increasing, and if X̃T > X̄,

then X̃T+1 = F
(
X̃T

)
> F

(
X̄
)
= AX̄α + (1− δK) X̄ > X̄. By induction, we

obtain X̃t > X̄ for any t ≥ T . Clearly, if T = 0, we have X̃t > X̄ for any t ≥ 0.
In the following, without loss of generality, we focus on the case X̃t > X̄ for

any t ≥ 0.
We consider three cases: (1) γ < 1, (2) γ = 1, (3) 1 < γ < 1/β.
(1) γ < 1.
According to point (3) of Lemma 2, F is C1, and, since γ < 1, according to

point (5), F is strictly concave. Then, F (Xt) /Xt is a continuous and strictly
decreasing function. Moreover, according to point (2) of Lemma 3,

lim
Xt→0+

F (Xt)

Xt
= ∞ and lim

Xt→∞

F (Xt)

Xt
≤ 1− δL < 1
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Thus, F (Xt) /Xt crosses 1 once and, therefore, there exists a unique fixed
point Z > X̄ such that Z = F (Z).

If X̃T ≤ Z for some T , then X̃T+1 = F
(
X̃T

)
< F (Z) = Z. By induction,

we can conclude that X̃t ≤ Z for any t ≥ T .

If X̃T > Z for some T , then X̃T+1 = F
(
X̃T

)
< X̃T and, again by induction,

we conclude that X̃t ≤ X̃T for any t ≥ T .

Therefore, X̃t ≤ max
{
Z, X̃T

}
for any t. This implies

∑∞
t=0 β

t ln ct ≤∑∞
t=0 β

t ln X̃t+1 <∞.
(2) γ = 1.
As above, X̃t > X̄ for any t ≥ 0. Then, according to point (5) of Lemma

2, F ′′ (Xt) = 0 for any Xt > X̄ and, thus, F (Xt) = aXt + b for any Xt > X̄.

Therefore, X̃t+1 = F
(
X̃t

)
= aX̃t + b for any t ≥ 0.

We can distinguish two subcases depending on a: (2.1) 0 < a < 1, (2.2)
a ≥ 1.

(2.1) Let 0 < a < 1 and Z satisfy Z = aZ + b.
If X̃t ≤ Z then X̃t+1 ≤ Z and, by induction, X̃t ≤ Z for all t. The sequence(

X̃t

)∞
t=0

is bounded and we are fine:

∞∑
t=T

βt ln ct =

∞∑
t=T

βt ln [F (Xt)−Xt+1] ≤
∞∑
t=T

βt lnF
(
X̃t

)
≤

∞∑
t=T

βt lnF (Z) =
βT

1− β
lnF (Z) <∞

If X̃T > Z for some T , then X̃T+1 = aX̃T + b < X̃T and, by induction,

X̃t ≤ X̃T for any t ≥ T . Therefore, X̃t ≤ max
{
Z, X̃T

}
for any t. This implies∑∞

t=0 β
t ln ct ≤

∑∞
t=0 β

t ln X̃t+1 <∞.

(2.2) Let a ≥ 1. Then, X̃t+1 = aX̃t + b > X̃t and the sequence
(
X̃t

)∞
t=0

converges to infinity when t goes to infinity.
Let ε > 0. There exists T such that

X̃t >
1

ε

b

a

for any t ≥ T . Clearly,

X̃t+1 =

(
1 +

1

X̃t

b

a

)
aX̃t < (1 + ε) aX̃t

for any t ≥ T .
Since

X̃T+1 > X̃T >
1

ε

b

a
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we get also X̃T+2 < (1 + ε) aX̃T+1. By induction, X̃T+t < [(1 + ε) a]
t
X̃T and,

thus,

∞∑
t=T+1

βt ln ct ≤
∞∑

t=T+1

βt lnXt+1 = βT+1
∞∑
t=0

βt lnXT+t+2

≤ βT+1
∞∑
t=0

βt ln X̃T+t+2 < βT+1
∞∑
t=0

βt ln
(
[(1 + ε) a]

t+2
X̃T

)
= βT+1

∞∑
t=0

βt
(
(t+ 2) ln [(1 + ε) a] + ln X̃T

)
<∞

because
∑∞

t=0 tβ
t = β/ (1− β)

2
< ∞. Then,

∑∞
t=0 β

t ln ct =
∑T

t=0 β
t ln ct +∑∞

t=T+1 β
t ln ct <∞.

(3) 1 < γ < 1/β.
We know that X̃t > X̄ for any t ≥ 0 and that

X̃t+1 ≡ F
(
X̃t

)
= A

[
1 + λL∗

(
X̃t

)]θ [
X̃t − qL∗

(
X̃t

)]α
+(1− δK)

[
X̃t − qL∗

(
X̃t

)]
+ (1− δL) qL

∗
(
X̃t

)
We observe that X̃t ≡ K̃∗

(
X̃t

)
+ qL∗

(
X̃t

)
and

X̃t+1 = F
(
X̃t

)
= A

[
1 +

λ

q
qL∗

(
X̃t

)]θ [
X̃t − qL∗

(
X̃t

)]α
+(1− δK)

[
X̃t − qL∗

(
X̃t

)]
+ (1− δL) qL

∗
(
X̃t

)
≤ A

(
1 +

λ

q
X̃t

)θ

X̃α
t + (1− δK) X̃t + (1− δL) X̃t

= A

(
1 +

λ

q
X̃t

)θ

X̃α
t + (2− δK − δL) X̃t

= A

(
λ

q

)θ (
X̃t +

q

λ

)θ
X̃α

t + (2− δK − δL) X̃t

= a
(
X̃t + b

)θ
X̃α

t + cX̃t

where a ≡ A (λ/q)
θ
> 0, b ≡ q/λ > 0 and c ≡ 2− δK − δL.

Define

Ỹt+1 ≡ a
(
Ỹt + b

)γ
+ cỸt
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with Ỹ0 = X̃0. Clearly,

Ỹt+1 = a
(
Ỹt + b

)α (
Ỹt + b

)θ
+ cỸt ≥ a

(
Ỹt + b

)θ
Ỹ α
t + cỸt

and

Ỹ1 ≥ a
(
Ỹ0 + b

)θ
Ỹ α
0 + cỸ0 = a

(
X̃0 + b

)θ
X̃α

0 + cX̃0 ≥ F
(
X̃0

)
= X̃1

Ỹ2 ≥ a
(
Ỹ1 + b

)θ
Ỹ α
1 + cỸ1 ≥ a

(
X̃1 + b

)θ
X̃α

1 + cX̃1 ≥ F
(
X̃1

)
= X̃2

Thus, by induction, Ỹt ≥ X̃t for any t ≥ 0.
Since γ > 1 we can find ε > 0 such that a (b/ε)

γ
> b/ε. Clearly, Ỹt > b/ε

implies

Ỹt+1 ≡ a
(
Ỹt + b

)γ
+ cỸt > aỸ γ

t > a

(
b

ε

)γ

>
b

ε

and

Ỹt+1 ≡ a
(
Ỹt + b

)γ
+ cỸt

=

[
a

(
1 +

b

Ỹt

)γ

+
c

Ỹ γ−1
t

]
Ỹ γ
t < a (1 + ε)

γ
Ỹ γ
t

If Ỹt ≤ b/ε for any t, since ct ≤ F
(
X̃t

)
≤ F

(
Ỹt

)
≤ F (b/ε), the sum∑∞

t=0 β
t ln ct is finite-valued.

Suppose instead that ỸT > b/ε for some T . Then, Ỹt > b/ε for any t ≥ T
and Ỹt+1 < a (1 + ε)

γ
Ỹ γ
t for any t ≥ T . Hence, X̃T+1 ≤ ỸT+1 < a (1 + ε)

γ
Ỹ γ
T

and

X̃T+t ≤ ỸT+t < [a (1 + ε)
γ
]
γt−1
γ−1 Ỹ γt

T (40)

for any t ≥ 1. In particular, we get

X̃T+t+2 ≤ ỸT+t+2 < [a (1 + ε)
γ
]
γt+2−1

γ−1 Ỹ γt+2

T
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and, thus,

∞∑
t=T+1

βt ln ct ≤
∞∑

t=T+1

βt lnXt+1 = βT+1
∞∑
t=0

βt lnXT+t+2

≤ βT+1
∞∑
t=0

βs ln X̃T+t+2 ≤ βT+1
∞∑
t=0

βt ln ỸT+t+2

< βT+1
∞∑
t=0

βt ln

(
[a (1 + ε)

γ
]
γt+2−1

γ−1 Ỹ γt+2

T

)

≤ βT+1
∞∑
t=0

βt

(
γt+2 ln ỸT +

γt+2 − 1

γ − 1
ln [a (1 + ε)

γ
]

)

≤ βT+1
∞∑
t=0

βt

[
γt+2

(
ln ỸT

)+
+
γt+2 − 1

γ − 1
(ln [a (1 + ε)

γ
])
+
]

< ∞

because βγ < 1. Then,
∑∞

t=0 β
t ln ct =

∑T
t=0 β

t ln ct +
∑∞

t=T+1 β
t ln ct <∞.

Finally, we want to prove that the limit of the utility function along any
feasible path converges to a finite real number or diverges to −∞.

From the initial part of this lemma, we know that, under Assumption 2,∑∞
t=0 β

t ln ct <∞ for any X0 ≥ 0.
Let ln− ≡ min {0, ln} and ln+ ≡ max {0, ln}.
The sequence

∑T
t=0 β

t (ln [F (Xt)−Xt+1])
−

is decreasing in T , so that it
converges to a finite non-positive number or diverges to −∞.

We know that, for any µ > 0, there is T such that
∑∞

t=T β
t (ln [F (Xt)−Xt+1])

+
<

µ. This implies
∑∞

t=0 β
t (ln [F (Xt)−Xt+1])

+
<∞. Indeed, otherwise,

∑∞
t=T β

t (ln [F (Xt)−Xt+1])
+
=

∞ for any T . Since
∑∞

t=0 β
t (ln [F (Xt)−Xt+1])

+
is increasing, it converges to

a finite non-negative number.
Notice that

T∑
t=0

βt ln [F (Xt)−Xt+1]

=

T∑
t=0

βt (ln [F (Xt)−Xt+1])
−
+

T∑
t=0

βt (ln [F (Xt)−Xt+1])
+

Then,
∑T

t=0 β
t ln [F (Xt)−Xt+1] converges to a finite number or diverges

to −∞.
Proof of Proposition 5
The set Π (X0) is compact in the product topology.
We want to show that U (X) ≡

∑∞
t=0 β

t ln [F (Xt)−Xt+1] is upper semi-
continuous in Π (X0).

Let X0 be given. Consider the maximal sequence
(
X̃t

)∞
t=0

with X̃t+1 =

F
(
X̃t

)
for any t, and X̃0 = X0.
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Consider a sufficiently small ε ∈
(
0, b/X̄

)
.

There are two cases: either (1) X̃t ≤ b/ε for any t ≥ 0, or (2) there exists T
such that X̃T > b/ε.

(1) If X̃t ≤ b/ε for any t ≥ 0, then,

∞∑
t=0

βt ln [F (Xt)−Xt+1] ≤
∞∑
t=0

βt lnF
(
X̃t

)
≤

∞∑
t=0

βt lnF
(
b

ε

)
=

1

1− β
lnF

(
b

ε

)
<∞

Given µ > 0, there exists T0 such that, for any T ≥ T0 and any X ∈ Π(X0),
we have

∞∑
t=T

βt (ln [F (Xt)−Xt+1])
+ ≤ µ

where ln+ ≡ max {0, ln}.
Let Xn ∈ Π(X0) such that Xn → X ∈ Π(X0) in the product topology.
Let µ be given. Then, for any T ≥ T0 and any n,

U (Xn) ≤
T∑

t=0

βt ln
[
F (Xn

t )−Xn
t+1

]
+

∞∑
t=T+1

βt
(
ln
[
F (Xn

t )−Xn
t+1

])+
≤

T∑
t=0

βt ln
[
F (Xn

t )−Xn
t+1

]
+ µ

This implies that

lim sup
n
U (Xn) ≤ lim

n→∞

T∑
t=0

βt ln
[
F (Xn

t )−Xn
t+1

]
+ µ

=

T∑
t=0

βt ln [F (Xt)−Xt+1] + µ

Let T → ∞. We have

lim sup
n
U (Xn) ≤

∞∑
t=0

βt ln [F (Xt)−Xt+1] + µ = U (X) + µ

Since µ is an arbitrary positive number, we get lim supn U (Xn) ≤ U (X),
that is U is upper semi-continuous.

(2) Now, assume that there exists T such that X̃T > b/ε.
As in Lemma 4, we consider the following subcases: (2.1) γ < 1, (2.2) γ = 1,

(2.3) 1 < γ < 1/β.
(2.1) If γ < 1, according to point (1) in the proof of Lemma 4, we have∑∞

t=0 β
t ln ct <∞.
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(2.2) Let γ = 1. As above, X̃t > X̄ for any t ≥ 0. Then, X̃t+1 = F
(
X̃t

)
=

aX̃t + b for any t ≥ 0. If a < 1, we follow the point (2.1) in the proof of Lemma
4 to get

∑∞
t=0 β

t ln ct < ∞. Similarly, if a ≥ 1, we follow the point (2.2) in the
proof of Lemma 4 to obtain

∑∞
t=0 β

t ln ct <∞.
(2.3) Let 1 < γ < 1/β. Since ε ∈

(
0, b/X̄

)
, we have b/ε > X̄. Thus,

X̃T > b/ε implies X̃T > X̄. We know that, if X̃T > X̄ for some T , then, under
Assumption 2, X̃t > X̄ and

X̃t+1 = A

[
1 +

λ

q
qL∗

(
X̃t

)]θ [
X̃t − qL∗

(
X̃t

)]α
+(1− δK)

[
X̃t − qL∗

(
X̃t

)]
+ (1− δL) qL

∗
(
X̃t

)
for any t ≥ T . Since γ > 1, we can find ε > 0 such that a (b/ε)

γ
> b/ε.

Let Ỹt+1 ≡ a
(
Ỹt + b

)γ
+ cỸt for any t ≥ T with Ỹ0 = X̃0. It is easy to see

that Ỹt > b/ε implies Ỹt+1 > b/ε and Ỹt+1 < a (1 + ε)
γ
Ỹ γ
t .

If Ỹt ≤ b/ε for any t, since ct ≤ F
(
X̃t

)
≤ F

(
Ỹt

)
≤ F (b/ε), we have that

the sum
∑∞

t=0 β
t ln ct is finite-valued.

If ỸT > b/ε for some T , then, Ỹt > b/ε for any t ≥ T . Hence, X̃T+1 ≤
ỸT+1 < a (1 + ε)

γ
Ỹ γ
T and (40) holds. Applying the same argument of the point

(3) in the proof of Lemma 4, we get
∑∞

t=0 β
t ln ct <∞.

Therefore, in all the three subcases: (2.1), (2.2), (2.3), given µ > 0, there ex-
ists T0 such that, for any T ≥ T0 and anyX ∈ Π(X0), we have

∑∞
t=T β

t (ln [F (Xt)−Xt+1])
+ ≤

µ.
Let Xn ∈ Π(X0) → X ∈ Π(X0). Then, for any T ≥ T0 and any n,

U (Xn) ≤
T∑

t=0

βt ln
[
F (Xn

t )−Xn
t+1

]
+

∞∑
t=T+1

βt
(
ln
[
F (Xn

t )−Xn
t+1

])+
≤

T∑
t=0

βt ln
[
F (Xn

t )−Xn
t+1

]
+ µ

This implies that

lim sup
n
U (Xn) ≤ lim

n→∞

T∑
t=0

βt ln
[
F (Xn

t )−Xn
t+1

]
+ µ

=

T∑
t=0

βt ln [F (Xt)−Xt+1] + µ

Let T → ∞. We have

lim sup
n
U (Xn) ≤

∞∑
t=0

βt ln [F (Xt)−Xt+1] + µ = U (X) + µ
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Since µ is arbitrary, we get lim supn U (Xn) ≤ U (X), that is U is upper
semi-continuous in Π (X0).

Therefore, there exists X that maximizes U (X) in Π (X0).
In order to have U (X) > −∞, we observe the following.
Consider X0 ∈

(
0, X̄

]
. According to Assumption 2,

X0 < X̂ =

(
A

δK

) 1
1−α

In this case, since X0 < AXα
0 + (1− δK)X0 and F (X0) − X0 = AXα

0 +
(1− δK)X0 −X0 > 0, X =(X0, X0, . . .) is feasible from X0. Then,

∞∑
t=0

βt ln [F (Xt)−Xt+1] =

∞∑
t=0

βt ln [F (X0)−X0] =
ln [F (X0)−X0]

1− β
> −∞

Clearly, maxU (X) ≥
∑∞

t=0 β
t ln [AXα

0 + (1− δK)X0 −X0] > −∞.
If X0 > X̄, consider the sequence

(
X0, X̄, X̄, . . .

)
. We have F (X0) >

F
(
X̄
)
> X̄ because, if X̃T > X̄ for some T , then, under Assumption 2, X̃t > X̄

for any t ≥ T . Thus, the sequence
(
X0, X̄, X̄, . . .

)
is feasible and

∞∑
t=0

βt ln [F (Xt)−Xt+1] = ln
[
F (X0)− X̄

]
+

∞∑
t=1

βt ln
[
F
(
X̄
)
− X̄

]
= ln

[
F (X0)− X̄

]
+

β

1− β
ln
[
F
(
X̄
)
− X̄

]
> −∞

Clearly, maxU (X) ≥ ln
[
F (X0)− X̄

]
+
∑∞

t=1 β
t ln
[
AX̄α + (1− δK) X̄ − X̄

]
>

−∞.
Proof of Lemma 6
Since F is increasing, the optimal sequence (X∗

t )
∞
t=0 is monotonic (see Amir

(1996) and Le Van and Dana (2002)).
It cannot converge to zero, otherwise, for any t large enough, F (X∗

t ) =
AX∗

t
α + (1− δK)X∗

t . Since F ′ (0) = ∞, the Euler equation would lead to a
contradiction.

There is a period T such that X∗
T > X̄. Otherwise, the optimal path (X∗

t )
would satisfy F (X∗

t ) = AX∗
t
α+(1− δK)X∗

t for any t. Besides, it must converge
to the steady state X̃ which is larger than X̄. By Assumption 2, we get a
contradiction.

The optimal path either converges to a steady state larger than the threshold
X̄ or diverges to +∞.

Proof of Proposition 8
Let γ < 1.
From the Euler equation, X∗ is a steady state if and only if F ′ (X∗) = 1/β.

From points (3) and (5) of Lemma 2, F is strictly concave and differentiable on
(0,+∞).
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We recall that 1− δK + αAX̃α−1 = 1/β and that X̄ < X̃ implies F ′ (X̄) =
1 − δK + αAX̄α−1 > 1/β. We know that the stationary state X∗ satisfies
1/β = F ′ (X∗).

F ′ (X∗) = 1/β < F ′ (X̄) implies thatX∗ > X̄. Indeed, F is strictly concave.

We want to show that X∗ > X̃.
We have

F ′ (Xt) = αA [1 + λL∗ (Xt)]
θ
[Xt − qL∗ (Xt)]

α−1
+ 1− δK

We know that Xt > X̄ implies L∗ (Xt) > 0, that is Xt − qL∗ (Xt) < Xt and

[Xt − qL∗ (Xt)]
α−1

> Xα−1
t . In addition, [1 + λL∗ (Xt)]

θ
> 1.

Then, F ′ (Xt) > αAXα−1
t + 1 − δK for any Xt > X̄. Since X̃ > X̄, we get

F ′
(
X̃
)
> αAX̃α−1 + 1− δK = 1/β = F ′ (X∗).

We know also from Lemma 2 that F is strictly concave. We obtain X̃ < X∗.
If δK = δL, (26) becomes

λθ (Xt − qLt) = αq (1 + λLt) (41)

Since
Xt = (1 + ζt) qLt (42)

we obtain
Lt =

α

λ (θζt − α)

(41) entails λθKt = αq + αqλLt and we find

ζt ≡
Kt

qLt
=

α

λθ

1

Lt
+
α

θ
(43)

Thus,

lim
t→∞

ζt =
α

θ

(
1 +

1

λ limt→∞ Lt

)
=
α

θ

(
1 +

1

λL∗

)
>
α

θ

Proof of Proposition 10
(2) Let γ = 1 and δK ≥ δL. Consider only X0 ≥ X̄ and X ≥ X0. In this

case,
F
(
X̄
)
= AX̄α + (1− δK) X̄ = F ′ (X̄) X̄ + Z

where

F ′ (X̄) = αAX̄α−1 + 1− δK >
1

β
(44)

and Z ≡ (1− α)AX̄α. From the first-order condition (30), we know that, for
any X > X̄,

λθA

(
1 + λL

X − qL

)θ−1

(X − qL)
γ−1−αqA

(
1 + λL

X − qL

)θ

(X − qL)
γ−1

+q (δK − δL) = 0
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and, since γ = 1,

λθA

(
1 + λL

X − qL

)θ−1

− αqA

(
1 + λL

X − qL

)θ

+ q (δK − δL) = 0 (45)

Then,
1 + λL∗ (X)

X − qL∗ (X)

is constant for any X ≥ X̄ and equal to 1/X̄ (since L∗ (X̄) = 0). Hence,

Lt = L∗ (Xt) =
Xt − X̄

q + λX̄
(46)

Moreover,

Kt = Xt − qLt = X̄
q + λXt

q + λX̄
(47)

and
Kt

qLt
= X̄

λ
qXt + 1

Xt − X̄
(48)

For any X ≥ X̄, we obtain

F ′ (X) = αA [1 + λL∗ (X)]
θ
[X − qL∗ (X)]

α−1
+ 1− δK

= αA

[
1 + λL∗ (X)

X − qL∗ (X)

]θ
[X − qL∗ (X)]

α+θ−1
+ 1− δK

= αA

(
1

X̄

)1−α

+ 1− δK = F ′ (X̄)
For any Xt+1 ≥ X̄, the Euler equation implies

ct+1

ct
= βF ′ (Xt+1) = βF ′ (X̄) > 1

Pptimal consumption grows at a constant rate > 1.

ct = c0
[
βF ′ (X̄)]t (49)

Let us compute F (Xt) for Xt > X̄:

F (Xt) = A (1 + λLt)
θ
(Xt − qLt)

α
+ (1− δK) (Xt − qLt) + (1− δL) qLt

= A (1 + λLt)
1−α

(Xt − qLt)
α
+ (1− δK) (Xt − qLt) + (1− δL) qLt

= A

(
1 + λLt

Xt − qLt

)1−α

(Xt − qLt) + (1− δK) (Xt − qLt) + (1− δL) qLt

=
(
AX̄α−1 + δL − δK

)
(Xt − qLt) + (1− δL)Xt
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Using (46) to replace Lt, we get

F (Xt) =
(
AX̄α−1 + δL − δK

)(
Xt − q

Xt − X̄

q + λX̄

)
+ (1− δL)Xt

=

[
1− δL +

(
AX̄α−1 + δL − δK

) λX̄

q + λX̄

]
Xt +

(
AX̄α−1 + δL − δK

) qX̄

q + λX̄

= aXt + b

which is linear in Xt, where

a ≡ 1− δL +
(
AX̄α−1 + δL − δK

) λX̄

q + λX̄
(50)

b ≡
(
AX̄α−1 + δL − δK

) qX̄

q + λX̄
(51)

Notice that X̄ is solution to (45)

AX̄α−1 =
q (δK − δL)

αq − λθX̄

Then, the optimal path (Xt) satisfies for any t:

Xt+1 = F (Xt)− ct = F (Xt)− c0
[
βF ′ (X̄)]t

= aXt + b− c0
[
βF ′ (X̄)]t

= aXt + b− c0 (aβ)
t

(52)

since F ′ (X̄) = F ′ (Xt) = a.
Now, we want to prove that the solution to the difference equation:

xt+1 = axt + b− c (aβ)
t

(53)

with x0 ̸= 0, 0 < β < 1 and

a > 1/β > 1, b > 0, c > 0 (54)

is given by

xt+1 = at+1

(
x0 −

b

1− a
− c

a

1− βt+1

1− β

)
+

b

1− a
(55)

that is by

xt+1 = at+1

(
x0 −

b

1− a
− c

a

1

1− β

)
+
c

a

(aβ)
t+1

1− β
+

b

1− a
(56)

Let us prove (56) by induction.
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For t = 0, (56) gives

x1 = a

(
x0 −

b

1− a
− c

a

)
+

b

1− a
= ax0 + b− c

that is (53).
Now, let (56) be true at period t. Check it for period t+ 1.
(53) implies

xt+2 = axt+1 + b− c (βa)
t+1

Replacing (56), we have

xt+2 = at+2

(
x0 −

b

1− a
− c

a

1− βt+1

1− β

)
+

ab

1− a
+ b− c (βa)

t+1
(57)

Since
ab

1− a
+ b =

b

1− a

and

−at+2 c

a

1− βt+1

1− β
− c (βa)

t+1

= −at+2 c

a

1

1− β

[
1− βt+1 + βt+1 (1− β)

]
= −at+2 c

a

1

1− β

(
1− βt+2

)
(57) becomes

xt+2 = at+2

(
x0 −

b

1− a
− c

a

1− βt+2

1− β

)
+

b

1− a

Thus, (56) is verified also for t+1. Then, it holds for any t ≥ 0 proving that
(55) is the solution to (53).

Equation (52) is exactly equation (55) with c = c0. Notice that all restric-
tions in (54) are satisfied. Indeed, according to (44),

a = F ′ (X̄) > 1

β

and, according to (50) and (51),

b = [a− (1− δL)]
q

λ
>

[
1

β
− (1− δL)

]
q

λ
> 0 (58)

Therefore, using to (56), the solution becomes

Xt+1 =
[
F ′ (X̄)]t+1

(
X0 +

q

λ

[
1 +

δL

F ′
(
X̄
)
− 1

]
− 1

1− β

c0

F ′
(
X̄
))

+
β

1− β
c0
[
βF ′ (X̄)]t − q

λ

[
1 +

δL

F ′
(
X̄
)
− 1

]
(59)
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According to (58) and using that by (54) a = F ′ (X̄) > 1,

b

1− a
=
q

λ

(
δL

1− a
− 1

)
= − q

λ

[
1 +

δL

F ′
(
X̄
)
− 1

]
< 0

We need Xt ≥ 0 for any t. If the term multiplying F ′ (X̄) in (59) was
negative, i.e. if

X0 +
q

λ

[
1 +

δL

F ′
(
X̄
)
− 1

]
− 1

1− β

c0

F ′
(
X̄
) < 0

and since by (54) F ′ (X̄) > 1/β > 1, then Xt would become negative sooner or
later.

Hence, this term must be positive, which implies that

1

1− β

c0

F ′
(
X̄
) ≤ X0 +

q

λ

[
1 +

δL

F ′
(
X̄
)
− 1

]
(60)

establishing an upper bound on c0.

The value of the program is V (c0) =
∑∞

t=0 β
t ln
(
c0
[
βF ′ (X̄)]t) and V is

increasing in c0. From (60), the maximum is attained at

c0 = c̄0 ≡ (1− β)F ′ (X̄)(X0 +
q

λ

[
1 +

δL

F ′
(
X̄
)
− 1

])
Note that this implies that the first term in (59) becomes zero.

Therefore, by (49) the optimal paths are given by

ct = c̄0
[
βF ′ (X̄)]t

Xt+1 = c̄0
[
βF ′ (X̄)]t β

1− β
− z

for any t, where z > 0 is defined by (17). Clearly, when t→ ∞,

Xt+1 ∼ c̄0
[
βF ′ (X̄)]t β

1− β

From (46), (47) and (48), Lt+1, Kt+1 and the ratio Kt+1

qLt+1
obtain

Lt+1 =
Xt+1 − X̄

q + λX̄
=
c̄0
[
βF ′ (X̄)]t β

1−β − z − X̄

q + λX̄

Kt+1 = X̄
q
λ +Xt+1
q
λ + X̄

= X̄

q
λ + c̄0

[
βF ′ (X̄)]t β

1−β − z
q
λ + X̄

Kt+1

qLt+1
= X̄

λ
qXt+1 + 1

Xt+1 − X̄
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Thus,
lim
t→∞

Kt = lim
t→∞

Lt = ∞

Taking th elimit of the ratio we have

lim
t→∞

Kt

qLt
= lim

t→∞

(
X̄

λ
qXt + 1

Xt − X̄

)
= X̄

λ

q
≤ α

θ

where the last inequality follows from (8). Note that this result on the limit is
in line with point (3) of Lemma 3.

Finally, we observe that, asymptotically, physical, living and total capital,
and consumption grow at the same rate:

Lt+1

Lt
∼ Kt+1

Kt
∼ Xt+1

Xt
∼ ct+1

ct
= βF ′ (X̄) > 1

In this respect, we can say that the unbounded growth is asymptotically
balanced.

Proof of Proposition 11
Let 1 < γ < 1/β. In this case, F is strictly convex for Xt > X̄. Hence

F ′ is increasing and F ′ (Xt) > F ′ (X̄) for any Xt > X̄. Since F ′ (X̄) >
1/β, there exists no steady state. The optimal path (Xt)

∞
t=0 diverges to in-

finity: limt→∞Xt = ∞. Then, according to points (1) and (4) of Lemma 3,
limt→∞ Lt = limt→∞Kt = ∞ and

lim
t→∞

Kt

qLt
=
α

θ

with Kt/ (qLt) < α/θ for t large enough.
In the following, we consider the two possible cases according to Assumption

1: δK = δL and δK > δL.
(1) Let δK = δL. Following the same argument as at the end of the proof of

Proposition 8, we obtain again equation (43):

ζt =
α

λθ

1

Lt
+
α

θ

However, under the assumptions of Proposition 11, Lt diverges to ∞. Thus,
ζt > α/θ for any t and, since limt→∞ Lt = ∞, we have limt→∞ ζt = α/θ.

(2) Let now δK > δL.
The first order condition in (26) can be written as:

λθAK∗ (X)− αqA [1 + λL∗ (X)] = q (δL − δK) [1 + λL∗ (X)]
1−θ

K∗ (X)
1−α

Since ζ (Xt) ≡ K∗ (Xt) / [qL
∗ (Xt)], we can divide the above expression to

obtain

λθAζ (Xt) = αA

[
λ+

1

L∗ (Xt)

]
+(δL − δK) qθζ (Xt)

θ
K∗ (Xt)

1−γ

[
λ+

1

L∗ (Xt)

]1−θ
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and, taking derivatives on both sides with respect to Xt:

ζ ′ (Xt)

(
λθA+ θ (δK − δL) q

θζ (Xt)
θ−1

K∗ (Xt)
1−γ

[
λ+

1

L∗ (Xt)

]1−θ
)

=
L∗′ (Xt)

L∗ (Xt)
2

(
−αA+ (1− θ) (δK − δL) q

θζ (Xt)
θ
K∗ (Xt)

1−γ

[
λ+

1

L∗ (Xt)

]−θ
)

+K∗′ (Xt) (γ − 1) qθ (δK − δL) ζ (Xt)
θ
K∗ (Xt)

−γ

[
λ+

1

L∗ (Xt)

]1−θ

(61)

We have

K∗ (Xt)
−γ

K∗′ (Xt) = q1−γL∗ (Xt)
2−γ K∗′ (Xt)

qL∗′ (Xt)

L∗′ (Xt)

L∗ (Xt)
2

[
K∗ (Xt)

qL∗ (Xt)

]−γ

(62)

(28) and (29) imply

K∗′ (Xt)

qL∗′ (Xt)
=
αqλθ + θ (1− θ)λ2 K∗(Xt)

1+λL∗(Xt)

αqλθ + α (1− α) q2 1+λL∗(Xt)
K∗(Xt)

since P (Xt) ≡ 1 + λL∗ (Xt).
This means that, for any Xt sufficiently large, the term K∗′ (Xt) / [qL

∗′ (Xt)]
is uniformly bounded above and below away from zero. We also have that
ζ (Xt) ≡ K∗ (Xt) / [qL

∗ (Xt)] is uniformly bounded away from zero and from
+∞.

(61) can be rewritten as

ζ ′ (Xt)R (Xt) = S (Xt)

where

R (Xt) ≡ λθA+ θ (δK − δL) q
θζ (Xt)

θ−1
K∗ (Xt)

1−γ

[
λ+

1

L∗ (Xt)

]1−θ

> 0

(63)
and

S (Xt) ≡ σ (Xt)
L∗′ (Xt)

L∗ (Xt)
2

with

σ (Xt) ≡ −αA+ (1− θ) (δK − δL) q
θζ (Xt)

θ
K∗ (Xt)

1−γ

[
λ+

1

L∗ (Xt)

]−θ

+(γ − 1) (δK − δL) q
−αζ (Xt)

−α
L∗ (Xt)

2−γ K
∗′ (Xt)

L∗′ (Xt)

[
λ+

1

L∗ (Xt)

]1−θ

(64)

because of (62).
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Taking the limit of the second term in (64)

lim
Xt→∞

(
(1− θ) (δK − δL) q

θζ (Xt)
θ
K∗ (Xt)

1−γ

[
λ+

1

L∗ (Xt)

]−θ
)

= (1− θ) (δK − δL) q
θλ−θ lim

Xt→∞

[
ζ (Xt)

θ
K∗ (Xt)

1−γ
]
= 0

Moreover, the limit of the third term of (64)

lim
Xt→∞

[
(γ − 1) (δK − δL) q

−αζ (Xt)
−α

L∗ (Xt)
2−γ K

∗′ (Xt)

L∗′ (Xt)

[
λ+

1

L∗ (Xt)

]1−θ
]

= (γ − 1) (δK − δL) q
−αλ1−θ lim

Xt→∞

[
ζ (Xt)

−α
L∗ (X)

2−γ K
∗′ (X)

L∗′ (X)

]
= ∞

Hence, for any Xt large enough, S (Xt) > 0 and ζ ′ (Xt) > 0.
Let us prove that ζ ′ (Xt) < 0 when Xt is sufficiently close to X̄ from the

right.
We have

ζ ′ (Xt) =
σ (Xt)

R (Xt)

L∗′ (Xt)

L∗ (Xt)
2 (65)

where R (Xt) > 0 is given by (63) and σ (Xt) by (64).
Observe that

lim
Xt→X̄+

σ (Xt) = −αA+ (1− θ) (δK − δL) X̄
1−α (66)

because

q−αζ (Xt)
−α

L∗ (Xt)
2−γ K

∗′ (Xt)

L∗′ (Xt)

[
λ+

1

L∗ (Xt)

]1−θ

∼ q−αζ (Xt)
−α

L∗ (Xt)
2−γ

L∗ (Xt)
θ−1 K

∗′ (Xt)

L∗′ (Xt)

= q−αq1−θζ (Xt)
−α

K∗ (Xt)
θ−1

L∗ (Xt)
2−γ K

∗′ (Xt)

L∗′ (Xt)

[
qL∗ (Xt)

K∗ (Xt)

]θ−1

= q1−γζ (Xt)
1−γ

K∗ (Xt)
θ−1

L∗ (Xt)
2−γ K

∗′ (Xt)

L∗′ (Xt)
→ 0

since 1 − γ < 0 < 2 − γ, limXt→X̄+ L∗ (Xt) = 0, limXt→X̄+ K∗ (Xt) = X̄,

limXt→X̄+ ζ (Xt)
1−γ

= 0 and

lim
Xt→X̄+

K∗′ (Xt)

L∗′ (Xt)
= q

αqλθ + θ (1− θ)λ2X̄

αqλθ + α (1− α) q2 1
X̄

X̄ satisfies (7), that is

(δK − δL) X̄
1−α = αA− λθA

X̄

q
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Replacing in (66), we find

lim
Xt→X̄+

σ (Xt) = −αA+ (1− θ)

(
αA− λθA

X̄

q

)
= −θA

[
α+ λ (1− θ)

X̄

q

]
< 0

Hence, whenXt is sufficiently close to X̄ from the right, we get σ (Xt) /R (Xt) <
0 and, according to (65), ζ ′ (X) < 0.

Proof of Proposition 12
Under the proposition’s assumptions γ > 1 and δK = δL. In this case, it is

possible to write the dynamics in the variable ζt, which, we know, converges to
α/θ (see Proposition 11).

The existence of a limit for this reduced dynamics will allow us to simulate
the trajectory (ζt) and then, the trajectories (Xt) and (ct).

We know that

F (Xt+1) = A (1 + λLt+1)
θ
(Xt+1 − qLt+1)

α
+ (1− δK)Xt+1

and that according to (30),

F ′ (Xt+1) = αA (1 + λLt+1)
θ
(Xt+1 − qLt+1)

α−1
+ 1− δK

Moreover, ct = F (Xt)−Xt+1, Lt = α/ [λ (θζt − α)] and

Xt = (1 + ζt) qLt =
q

λ

αζt + α

θζt − α
≡ X (ζt) (67)

The Euler equation becomes

u′ (ct)

u′ (ct+1)
=
ct+1

ct
= βF ′ (Xt+1)

that is (19), where ψ is defined by (20).
Besides, (19) obtains solving the ”new” optimization problem: max

∑∞
t=0 β

t ln (ψ (ζt, ζt+1))
with ζt ≥ α/θ for any t.

The solution will be interior because of ln. Taking the derivative of the
intertemporal utility with respect to ζt+1, we find

ψ2 (ζt, ζt+1)

ψ (ζt, ζt+1)
+ β

ψ1 (ζt+1, ζt+2)

ψ (ζt+1, ζt+2)
= 0

Since ψ (ζt, ζt+1) ≡ F (X (ζt))−X (ζt+1), we have

ψ1 (ζt+1, ζt+2) = F ′ (X (ζt+1))X
′ (ζt+1)

ψ2 (ζt, ζt+1) ≡ −X ′ (ζt+1)

and we recover (19).
Proof of Proposition 13
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We study now the case γ > 1 with δK > δL. From (26):

λθA

(
1 + λLt

Xt − qLt

)θ−1

= αqA

(
1 + λLt

Xt − qLt

)θ

+ q (δL − δK)K1−γ
t (68)

for any t, where Kt = Xt − qLt. We know that (26) implies that Lt = L∗ (Xt)
is a strictly increasing function of Xt.

Define φ (Xt) according to (22). (68) reduces to

λθAφ (Xt)
θ−1

= αqAφ (Xt)
θ
+ q (δL − δK)K∗ (Xt)

1−γ
(69)

Taking derivatives in (69) with respect to Xt, we find

θAφ′ (Xt)φ (Xt)
θ−2

[λ (θ − 1)− αqφ (Xt)] = q (γ − 1) (δK − δL)K
∗ (Xt)

−γ
K∗′ (Xt)
(70)

θ < 1, γ > 1 and K∗′ (Xt) > 0 imply φ′ (Xt) < 0. Since φ is strictly
monotonic, we can define the inverse function Xt = φ−1 (φt) for any φt > 0.

According to (69), we find

λθA

[
lim

Xt→∞
φ (Xt)

]θ−1

= αqA

[
lim

Xt→∞
φ (Xt)

]θ
(71)

since γ > 1 and limXt→∞K∗ (Xt)
1−γ

= 0. Thus, limXt→∞ φ (Xt) = l > 0,
otherwise, according to (71), limXt→∞ φ (Xt) = 0 would imply that ∞ = 0,
which is a contradiction. Then, (71) becomes λθAlθ−1 = αqAlθ, that is l =
λθ/ (αq) > 0, which is not surprising:

lim
Xt→∞

φ (Xt) = lim
Xt→∞

1 + λL∗ (Xt)

K∗ (Xt)
= lim

Xt→∞

1

K∗ (Xt)
+
λ

q
lim

Xt→∞

qL∗ (Xt)

K∗ (Xt)

= 0 +
λ

q
lim

Xt→∞

1

ζ (Xt)
=
λ

q

θ

α

Now, consider the Euler equation:

ct+1

ct
= βF ′ (Xt+1) = β

(
αA [1 + λL∗ (Xt+1)]

θ
[K∗ (Xt+1)]

α−1
+ 1− δK

)
= β

(
αAφ (Xt+1)

θ
[K∗ (Xt+1)]

α+θ−1
+ 1− δK

)
Clearly, limt→∞ (ct+1/ct) = ∞ since limXt→∞ φ (Xt) = l > 0 and limXt→∞K∗ (Xt)

α+θ−1
=

∞.
For the numerical exercises, we will consider the Euler equation ct+1/ct =

βF ′ (Xt+1) with ct = F (Xt)−Xt+1:

F (Xt+1)−Xt+2

F (Xt)−Xt+1
= βF ′ (Xt+1)

Using Xt = φ−1 (φt), we obtain

F
(
φ−1 (φt+1)

)
− φ−1 (φt+2)

F (φ−1 (φt))− φ−1 (φt+1)
= βF ′ (φ−1 (φt+1)

)
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that is (21), a recursive transition function.
The trajectory is determined by (21) jointly with the transversality condi-

tion:

lim
t→∞

φt = l =
λθ

αq

Proof of Theorem 15.
First, we prove that (K∗

t ) maximizes the firm’s profit. Define

∆T ≡
T∑

t=0

p∗t
[
F (K∗

t , L
∗
t )−K∗

t+1 − qL∗
t+1

]
−

T∑
t=0

p∗t
[
F (Kt, L

∗
t )−Kt+1 − qL∗

t+1

]
where K∗

0 = K0 and 0 ≤ Kt+1 ≤ F (Kt, L
∗
t ) − qL∗

t+1 = L
(
Kt, L

∗
t , L

∗
t+1

)
. We

have:

∆T =

T−1∑
t=0

(
−p∗t

(
K∗

t+1 −Kt+1

)
+ p∗t+1

[
F
(
K∗

t+1, L
∗
t+1

)
− F

(
Kt+1, L

∗
t+1

)])
−p∗T

(
K∗

T+1 −KT+1

)
Since F (K∗

t , L
∗
t )− F (Kt, L

∗
t ) ≥ FK (K∗

t , L
∗
t ) (K

∗
t −Kt), we obtain

∆T ≥
T−1∑
t=0

[
−p∗t + p∗t+1FK

(
K∗

t+1, L
∗
t+1

)] (
K∗

t+1 −Kt+1

)
− p∗T

(
K∗

T+1 −KT+1

)
The Euler equation implies −p∗t + p∗t+1FK

(
K∗

t+1, L
∗
t+1

)
= 0, that is ∆T ≥

−p∗T
(
K∗

T+1 −KT+1

)
≥ −p∗TK∗

T+1.
To finish this proof, we have to show that limT→∞ p∗TK

∗
T+1 = 0. As above,

we focus on the three cases: (1) γ < 1, (2) γ = 1, and (3) 1 < γ < 1/β.
(1) γ < 1. Since c∗T = F (K∗

T , L
∗
T )−K∗

T+1 − qL∗
T+1, we get

p∗TK
∗
T+1 = βTu′ (c∗T )K

∗
T+1 = βT K

∗
T+1

c∗T
= βT

K∗
T+1

L∗
T+1

F(K∗
T ,L∗

T )
L∗

T+1
− K∗

T+1

L∗
T+1

− q
≡ βT ρ∗T

(72)
where the ratio ρ∗T is uniformly bounded because (K∗

t , L
∗
t ) converges to the

steady state (K∗, L∗). According to (72) limT→∞ βT = 0 implies that limT→∞ p∗TK
∗
T+1 =

limT→∞ βT ρ∗T = 0.
(2) γ = 1. According to (4), we have

F (K∗
T , L

∗
T )

L∗
T+1

=

[
A

(
1 + λL∗

T

K∗
T

)θ
K∗

T

L∗
T

+ (1− δK)
K∗

T

L∗
T

+ q (1− δL)

]
L∗
T

L∗
T+1

since γ ≡ α+ θ = 1. The growth path is asymptotically balanced and, by (18),
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limT→∞
(
L∗
T+1/L

∗
T

)
= βF ′ (X̄). Then,

lim
T→∞

F (K∗
T , L

∗
T )

L∗
T+1

=

[
Aλθ lim

T→∞

(
K∗

T

L∗
T

)1−θ

+ (1− δK) lim
T→∞

K∗
T

L∗
T

+ q (1− δL)

]
lim

T→∞

L∗
T

L∗
T+1

=
λX̄

(
AX̄−θ + 1− δK

)
+ q (1− δL)

βF ′
(
X̄
) (73)

since limT→∞K∗
T = ∞ and limT→∞ (K∗

T /L
∗
T ) = λX̄.

ρ∗T in (72) is uniformly bounded because of (73) and limT→∞ (K∗
T /L

∗
T ) =

λX̄. Then, according to (72), limT→∞ βT = 0 implies limT→∞ p∗TK
∗
T+1 = 0.

(3) 1 < γ < 1/β. We know that

c∗T+1 = βc∗TFK

(
K∗

T+1, L
∗
T+1

)
= βc∗T

[
αA
(
1 + λL∗

T+1

)θ
K∗α−1

T+1 + 1− δK

]
= β

c∗T
K∗

T+1

αA
(
1 + λL∗

T+1

)θ
K∗α

T+1 + βc∗T (1− δK)

Hence,

c∗T+1

K∗
T+2

= β
c∗T

K∗
T+1

[
αA

(
1 + λL∗

T+1

K∗
T+1

)θ

K∗α+θ−1
T+1 + 1− δK

]
K∗

T+1

K∗
T+2

(74)

From the budget constraint, at equilibrium, we have:

K∗
T+2 + qL∗

T+2 ≤ A
(
1 + λL∗

T+1

)θ
K∗α

T+1 + (1− δK)K∗
T+1 + q (1− δL)L

∗
T+1 − c∗T+1

≤ A
(
1 + λL∗

T+1

)θ
K∗α

T+1 + (1− δK)K∗
T+1 + q (1− δL)L

∗
T+1

that is, dividing by K∗
T+2, and rearranging

1 +
qL∗

T+2

K∗
T+2

A
(

1+λL∗
T+1

K∗
T+1

)θ
K∗α+θ−1

T+1 + 1− δK + (1− δL)
qL∗

T+1

K∗
T+1

≤
K∗

T+1

K∗
T+2

(75)

Replacing (75) in (74), we get

c∗T+1

K∗
T+2

≥ β
c∗T

K∗
T+1

(
1 +

qL∗
T+2

K∗
T+2

)[
αA
(

1+λL∗
T+1

K∗
T+1

)θ
K∗α+θ−1

T+1 + 1− δK

]
A
(

1+λL∗
T+1

K∗
T+1

)θ
K∗α+θ−1

T+1 + 1− δK + (1− δL)
qL∗

T+1

K∗
T+1

Since γ ≡ α + θ > 1, limT→∞ (qL∗
T /K

∗
T ) = θ/α and limT→∞K∗

T = ∞, we
find

lim
T→∞

(
1 +

qL∗
T+2

K∗
T+2

)[
αA
(

1+λL∗
T+1

K∗
T+1

)θ
K∗α+θ−1

T+1 + 1− δK

]
A
(

1+λL∗
T+1

K∗
T+1

)θ
K∗α+θ−1

T+1 + 1− δK + (1− δL)
qL∗

T+1

K∗
T+1

= α

(
1 + lim

T→∞

qL∗
T+2

K∗
T+2

)
= α

(
1 +

θ

α

)
= γ
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Fix ε ∈ (0, γ − 1). Then, there exists T0 such that, for any T ≥ T0, we
have c∗T+1/K

∗
T+2 ≥ β (γ − ε) c∗T /K

∗
T+1 and, by induction, c∗T0+τ+1/K

∗
T0+τ+2 ≥

[β (γ − ε)]
τ+1

c∗T0
/K∗

T0+1 or, equivalently,

K∗
T0+τ+2

c∗T0+τ+1

≤ 1

[β (γ − ε)]
τ+1

K∗
T0+1

c∗T0

(76)

Therefore,

lim
T→∞

p∗TK
∗
T+1 = lim

T→∞

βTK∗
T+1

c∗T
≤
βT0K∗

T0+1

c∗T0

lim
T→∞

(γ − ε)
T0−T

= 0

since γ − ε > 1.
Let us prove that the consumer does maximize her overal utility when

0 < γ < 1/β, that is, if (ct) satisfies
∑∞

t=0 β
tu (ct) >

∑∞
t=0 β

tu (c∗t ), then∑∞
t=0 p

∗
t ct > π∗ + r∗K0.

(1) From (P0), we have c∗t + K∗
t+1 + qL∗

t+1 = F (K∗
t , L

∗
t ) for any t. Thus,

p∗t c
∗
t = p∗tF (K∗

t , L
∗
t )−p∗tK∗

t+1−qp∗tL∗
t+1. Let us show that the series

∑∞
t=0 p

∗
t c

∗
t ,∑∞

t=0 p
∗
tK

∗
t+1,

∑∞
t=0 p

∗
tL

∗
t+1 and

∑∞
t=0 p

∗
tF (K∗

t , L
∗
t ) are bounded away from ∞

and, thus,
∑∞

t=0 p
∗
t c

∗
t = π∗ + r∗K0 with

∑∞
t=0 p

∗
t c

∗
t < ∞ and π∗ + r∗K0 =∑∞

t=0

[
p∗tF (K∗

t , L
∗
t )− p∗tK

∗
t+1 − qp∗tL

∗
t+1

]
<∞.

Note that p∗t ≡ βtu′ (c∗t ) = βt/c∗t . Then,
∑∞

t=0 p
∗
t c

∗
t =

∑∞
t=0 β

t = 1/ (1− β) <
∞. Moreover, since

∑∞
t=0 p

∗
t c

∗
t =

∑∞
t=0 p

∗
t

[
F (K∗

t , L
∗
t )−K∗

t+1 − qL∗
t+1

]
and∑∞

t=0 p
∗
t c

∗
t < ∞, we get

∑∞
t=0 p

∗
tF (K∗

t , L
∗
t ) =

∑∞
t=0 p

∗
t c

∗
t +

∑∞
t=0 p

∗
tK

∗
t+1 +

q
∑∞

t=0 p
∗
tL

∗
t+1 <∞, provided that

∑∞
t=0 p

∗
tK

∗
t+1 <∞ and

∑∞
t=0 p

∗
tL

∗
t+1 <∞.

First, since the sequence (L∗
t /K

∗
t ) is bounded away from 0 and from ∞, if∑∞

t=0 p
∗
tK

∗
t+1 <∞, then we would have that

∑∞
t=0 p

∗
tL

∗
t+1 =

∑∞
t=0 p

∗
tK

∗
t+1

(
L∗
t+1/K

∗
t+1

)
<

∞.
In this regard, let us show that

∑∞
t=0 p

∗
tK

∗
t+1 < ∞. We need to distinguish

two cases: γ ≤ 1 and 1 < γ < 1/β. If γ ≤ 1, we have that ρ∗T in (72) is
uniformly bounded and

∑∞
t=0 p

∗
tK

∗
t+1 =

∑∞
t=0 β

tρ∗T < ∞. In the second case,
1 < γ < 1/β, and according to (76), we have

∞∑
t=0

p∗tK
∗
t+1 =

∞∑
t=0

βtK∗
t+1

c∗t
=

T0∑
t=0

βtK∗
t+1

c∗t
+

∞∑
τ=0

βT0+τ+1K∗
T0+τ+2

c∗T0+τ+1

≤
T0∑
t=0

βtK∗
t+1

c∗t
+

∞∑
τ=0

βT0+τ+1

[β (γ − ε)]
τ+1

K∗
T0+1

c∗T0

=

T0∑
t=0

βtK∗
t+1

c∗t
+
βT0K∗

T0+1

(γ − ε) c∗T0

∞∑
τ=0

(
1

γ − ε

)τ

=

T0∑
t=0

βtK∗
t+1

c∗t
+
βT0K∗

T0+1

c∗T0

1

γ − ε− 1
<∞

Therefore,
∑∞

t=0 p
∗
tF (K∗

t , L
∗
t ) <∞.
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Finally, let us show that, if (ct) satisfies
∑∞

t=0 β
tu (ct) >

∑∞
t=0 β

tu (c∗t ),
then

∑∞
t=0 p

∗
t ct > π∗ + r∗K0. Indeed, 0 >

∑∞
t=0 β

tu (c∗t ) −
∑∞

t=0 β
tu (ct) ≥∑∞

t=0 β
tu′ (c∗t ) (c

∗
t − ct). Thus, 0 >

∑∞
t=0 p

∗
t c

∗
t −

∑∞
t=0 p

∗
t ct and

∑∞
t=0 p

∗
t ct >∑∞

t=0 p
∗
t c

∗
t = π∗ + r∗K0. To finish the proof, take r∗ = p∗0FK (K0, L0).
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