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1. Introduction

Living organisms synthesize and process a large range of chemi-
cally diverse molecules (proteins, enzymes, peptides, metabo-
lites, ions, nucleic acids, etc.). The expression level of these 
compounds is continuously monitored in space and time, and 
adjusted by dedicated regulatory systems and feedback mecha-
nisms. The levels of some of these molecules get dysregulated 
(up- or down-regulated) when the organism faces a disease, 
such as cancers, neurodegenerative diseases, or infections.[1–4] 
Assays that monitor a single marker, that is, a molecule that, on 
its own, is representative of a cellular state, have been intensely 
developed for diagnostics,[5] but in many cases, the detection of 

DNA as an informational polymer has, for the past 30 years, progressively 
become an essential molecule to rationally build chemical reaction networks 
endowed with powerful signal-processing capabilities. Whether influenced 
by the silicon world or inspired by natural computation, molecular program-
ming has gained attention for diagnosis applications. Of particular interest 
for this review, molecular classifiers have shown promising results for disease 
pattern recognition and sample classification. Because both input integration 
and computation are performed in a single tube, at the molecular level, this 
low-cost approach may come as a complementary tool to molecular profiling 
strategies, where all biomarkers are quantified independently using high-tech 
instrumentation. After introducing the elementary components of molecular 
classifiers, some of their experimental implementations are discussed either 
using digital Boolean logic or analog neural network architectures.
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a panel of disease-related markers is nec-
essary to provide a robust and informative 
diagnostic (Figure 1A).[6–8] For example, an 
in silico multi-marker classifier based on 
gene expression profiles from whole blood 
samples has been proposed to discrimi-
nate bacterial from viral cause in acute 
respiratory infections.[9] Transcriptional 
signatures of isolated leukocytes have been 
used to identify specific pathogens in acute 
infections.[10] By combining 61 genetic 
markers with eight circulating protein 
levels, it was possible to detect and stratify 
eight common cancer types from a blood 
sample, while simultaneously identifying 
the tissue of origin.[6] Various SARS-Cov2 
viral strains could be identified by Raman 
spectroscopy, which scrutinizes multiple 
slight variations at the molecular level.[11]

More generally, the use of multidimensional molecular 
signatures may improve early diagnosis, prognosis, therapy 
monitoring, and personalized treatments. The current domi-
nant strategy consists in profiling a patient sample, that is, 
measuring multiple genomic, transcriptomic, proteomic, or 
metabolomic markers to construct a multidimensional profile, 
which is then compared to typical disease signatures identified 
from statistical analysis or in silico training (Figure  1B). This 
approach involves multidimensional assays such as multiplex 
PCR or ELISA, next generation sequencing, microarrays, mass 
spectrometry, or microfluidics instruments, and generally 
requires costly equipment, lengthy protocols, skilled techni-
cians, and complex bioanalysis pipelines to accurately quantify 
each of these markers independently and interpret the result.

Comparatively, gene regulatory networks empower cells 
with the ability to integrate multiple stimuli such as concentra-
tions of internal or external molecules, and trigger an appro-
priate response. For instance, the bone morphogenetic protein 
pathway involves a large set of receptors able to interact with 
a wide range of ligands, playing a fundamental role in organ-
izing tissue architecture, beyond osteogenesis.[12] Specific 
receptors are also at play to provide immune cells with pattern 
recognition capabilities for recognizing foreign elements.[13] At 
the tissue level, neural networks compute complex classifica-
tion problems allowing for pattern recognition. A well-known 
example is the olfactory circuit which can classify thousands of 
different odors from promiscuous receptor inputs.[14] In these 
illustrations, cells and brains do not measure in the analytical 
sense each of the input stimuli; they “directly recognize” a 
multidimensional pattern, which may correspond to a threat, 
a smell, etc.

Inspired by these biological examples, where pattern rec-
ognition and classification are performed at the molecular 

© 2023 The Authors. Advanced Biology published by Wiley-VCH GmbH. 
This is an open a ccess article under the terms of the Creative Commons 
Attribution License, which permits use, distribution and reproduction in 
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level, man-made molecular classifiers have been created for 
multi-dimensional biosensing applications (Figure  1C).[15–17] 
In this review, we will describe these early examples of arti-
ficial (bio)chemical networks engineered to classify samples 
based on multiple input sensing and computation. Because 
in these systems the integration of multiple chemical inputs 
into a low dimensional output (e.g., “healthy”/“disease”) is 
performed in moleculo, we will refer to them as molecular 
classifiers. Most notably, DNA nanotechnology, a field, inau-
gurated 30 years ago,[18] is perfectly fitted for building mole-
cular classifiers for several reasons: i) It can be interfaced 
with most biological molecules, either by direct hybridiza-
tion with nucleic acids (NA), or via antibody, aptamers or 
transcription factors for proteins or small metabolites; ii) it 
can be connected to a variety of readouts including optical 
(colorimetric, fluorescent) and electronic signals for low-cost 
or even instrument-free setups; iii) DNA reaction networks 
are based on simple interaction rules between DNA strands; 
iv) an ever-expanding catalog of biocatalysts is available for 
modifying at will the biopolymer, bringing countless design 
possibilities on top of DNA hybridization rules; v) synthetic 
DNA is cheap, an argument most certainly central for the 
development of screening tests and clinical assays acces-
sible to all. We discuss here the latest advances in DNA 
nanotechnology that are specifically targeted at solving clas-
sification problems at the molecular level, with a particular 
emphasis on their application to diagnosis. Section  2 reca-
pitulates the elementary modules that compose a molecular 
classifier. We then briefly describe in Section 3 the molecular 
toolboxes that are compatible with the design of classifica-
tion algorithms. Section 4 is dedicated to experimental dem-
onstrations of molecular classifiers, using either Boolean or 
neural-like architectures. Section  5 concludes this review 
and give some considerations on the future of molecular 
computing for diagnosis.

2. Elementary Modules of Molecular Classifiers

Molecular classifiers are built from elemental functions that can be 
wired together in complex circuits, whose topology and dynamics 
are tailored to the computational task. These elemental functions 
include target recognition and transduction (interface between 
inputs and circuit), connections (gates, fan-in, etc.), amplification, 
thresholding, signal restoration, and readout (Figure 2).

2.1. Target Recognition and Signal Transduction

Target recognition and signal transduction are often encoded in 
the same molecule or molecular complex, used as an interface 
between the input biomarker(s) and a nucleic acid signal that 
can be further processed through DNA computation. In the case 
of nucleic acid detection, signal transduction may be encoded 
for instance in toehold-mediated strand displacement (TMSD) 
gates,[17,27] riboswitches,[28] DNAzymes or ribozymes.[29] Proteins 
may also be the input in strand-displacement cascades.[30–32] 
For small molecules and other metabolites and proteins, 
signal transduction may utilize antibody-DNA conjugates,[33–35] 
aptamers,[36] or aptaswitches, but also transcription factors[37,38] 
or enzymes. Enzymes themselves may be used as inputs of 
DNA circuits using modified nucleic acid substrates.[39]

2.2. Signal Amplification

Often in molecular diagnosis, the concentration of input sig-
nals is orders of magnitude below analytical instrumenta-
tion detection capacities (aM to pM versus nM to µM) and 
calls for molecular-level signal amplification. Many nucleic 
acid amplification systems have been developed and are 
detailed in other reviews.[40–44] Enzyme-free systems, including 

Adv. Biology 2023, 2200203

Figure 1. A) A molecular signature consists of a panel of biomarkers (A, B, C, D, and E in this example) that, taken together, allow accurate diagnosis, 
prognosis, or patient stratification. B) Molecular profiling refers to the separate quantification of these biomarkers to construct the patient molecular 
profile, which can be compared to the disease signature(s). C) Molecular classifiers represent a class of artificial (bio)chemical circuits emulating 
Boolean logic or neural networks, executed to classify samples using in-moleculo computation from the biomarker inputs.
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hybridization-chain reaction (HCR), catalytic hairpin assembly 
(CHA), and entropy-driven catalysis (EDC) present the advan-
tages of being robust to the media composition and may be 
used directly in cell extract or plasma.[15] However, these sys-
tems provide a relatively low amplification factor ranging from a 
dozen to a few thousands fold, insufficient for most biosensing 
applications. By contrast, enzyme-powered amplification, which 
leverages the unrivaled catalytic efficiency of protein biocata-
lysts, enables amplification levels unachievable by enzyme-free 
circuits. Polymerase chain reaction is by far the most used NA 
amplification method in clinical settings, owing to its design 
simplicity, amplification efficiency, and sensitivity. However, 
the thermocycling process makes this method tricky to adapt to 
computation (although it was a central tool in the seminal work 
from Adleman,[18] and still is in many others[45,46]). A dozen of 
isothermal amplification chemistries and probably hundreds of 
variations and hybrid concepts are now available and have been 
or could be adapted in DNA computing.[41,47] These include 
loop-mediated isothermal amplification (LAMP; using only a 
DNA polymerase), rolling circle amplification (RCA; DNA poly-
merase, optionally an endonuclease), exponential amplifica-
tion reaction (EXPAR; DNA polymerase and nicking enzyme), 
duplex-specific nuclease signal amplification (DSNSA; duplex 
specific nuclease), helicase-dependent amplification (helicase, 
DNA polymerase), strand-displacement amplification (DNA 
polymerase and nicking enzyme), recombinase polymerase 
amplification (recombinase, DNA polymerase), nucleic acid 
sequence based amplification (reverse transcriptase, RNA poly-
merase, RNAse H), among others.

Most, if not all amplification systems are prone to leak, meaning 
that a positive signal is eventually generated even in absence of 
the input sequence, albeit at a lower rate. This limitation makes 
exponential mechanisms particularly unstable and affects their 
sensitivity because the signal amplified from the unspecific leaky 

events is undisguisable from the specific reaction and shields low 
concentrations of input. More generally, leak limits the sensitivity 
of a system and also complicates circuit scaling, because errors 
propagate through the circuits and may affect the output com-
putation.[48,49] A number of strategies have been implemented to 
tackle this problem, consisting in reducing the leak, absorbing it 
or compensating for it. Careful strand design to minimize base 
breathing and purification of the gates reduces leakage in strand 
displacement circuits.[50–52] “Shadow cancellation” compensates 
for the leak using a complementary circuit with the same leak 
rate that outputs an anti-leak molecule.[53]

Spurious reactions also occur in DNA-enzyme circuits, 
owing to nonspecific interaction of the enzyme with a tem-
plate or undesired, partial hybridization of primers and/or 
templates.[54] A strategy conceptually similar to the shadow 
cancelation mechanism has been proposed for RCA, where a 
single-stranded DNA is produced from nonspecific reaction 
and activates the digestion of the correctly amplified product 
mediated by Cas12a, therefore compensating for background 
amplification.[55] Wan et al. have incorporated in an arsenic cel-
lular biosensor an ingenious nonlinear degradation mechanism 
that allows to reduce the background signal without affecting 
the maximum output response.[23] A similar nonlinear degrada-
tion mechanism of the signal oligonucleotide was proposed to 
absorb the leak in an EXPAR-like system, reducing by 3 orders 
of magnitude the limit of detection of microRNAs.[19] Dozens of 
other strategies or additives are summarized in a comprehen-
sive review by Özay and McCalla.[56]

2.3. Thresholding

Threshold mechanisms somehow resemble leak-absorption 
mechanisms in the sense that they scavenge or deactivate a 

Adv. Biology 2023, 2200203

Figure 2. Basic modules of molecular classifiers. The relevant biomarker levels are converted to DNA inputs via signal transduction strategies, and 
amplified using a variety of enzyme-based or enzyme-free amplification modules. Threshold function may be obtained using template-based enzymatic 
deactivation of signal strand in PEN-DNA networks,[19] signal molecule scavenging in genetic circuits,[20] or irreversible strand exchange in strand-
displacement-based circuits.[21] Examples of readout strategies include gold nanoparticle aggregation (colorimetric),[22] volume bar-like display (fluo-
rescent),[23] peroxidase DNAzyme (colorimetric),[24] paper-based readout (colorimetric),[25] or liquid–liquid phase separation.[26]
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certain fraction of the signal molecule before it is transmitted 
to the next layer of the circuit. Such thresholds are particularly 
useful in Boolean circuits to make a gate respond to a certain 
concentration of input, above or below the threshold, rather 
than just its presence or absence . A threshold function is also 
essential in analog mode as it controls the bias of neurons in 
neural computation. In combination with an amplifier, thresh-
olding allows signal restoration, that is, the amplification of an 
output signal up to a given concentration, a crucial mechanism 
to avoid background noise as mentioned above, but also to deal 
with signal loss in circuits of large size.[57]

2.4. Readout

Readout strategies depend on the type of signal generated 
(optical such as fluorescence or colorimetry, electrochemical, 
mass, etc.), the way it is measured (real-time, end-point, dig-
ital, single-molecule, etc.) and the user interface or instru-
ment that is used (plate reader, lateral flow assay, mass 
spectrometry, digital display, naked-eye, etc.). While molecular 
profiling generally requires high-tech instrumentation such 
as sequencers, flow cytometers or mass spectrometers, DNA 
computing has the unique ability to replace this technological 
overhead by molecular devices, with the promise of lower 
costs and simpler readouts. Even though a vast majority of 
nucleic acid circuits are currently tracked using fluorescence, 
the field may move in the future toward instrument-free or 
naked-eye readout, well-adapted to point-of-care devices. Par-
ticle aggregation has been used for naked-eye detection by 
a change of color[58] using notably the plasmonic properties 
of gold nanoparticles, or their agglutination at the bottom 
of V-shaped wells (mostly used for rapid immunoassays).[59] 
Paper-based assay[25,60] and paper-based microfluidics[61,62] are 
proposed as simple, low-cost, and low-tech interfaces suit-
able for screening campaigns in disease outbreaks. Shi et al. 
explore the possibility to grow large, self-assembled and easy-
to-detect structures from single-molecule seeds.[63] The low-
cost arsenic sensing platform mentioned above generated a 
visual bar-like pattern for easy interpretation of the results.[23] 
Gong et al. reported an exotic readout based on phase sepa-
ration of droplets conditionally to a Boolean logic algorithm 
run on microRNA inputs.[26] Single-molecule nanopore 

sensing[64,65] may also be of interest for multiplexing the 
readout of many computations at a time.

Of note, the properties of CRISPR effector proteins 
regarding both cleavage specificity and collateral activity have 
been explored for signal transduction and signal amplification, 
respectively.[66] This has triggered since the last decade a wave 
of CRISPR-based diagnosis assays, for example SHERLOCK,[67] 
DETECTR,[68] or LEOPARD,[69] among others.

3. Molecular Toolboxes

Depending on the underlying (bio)chemistry, the basic func-
tions described above are integrated in various flavors of mole-
cular toolboxes, which allow to rationally build networks with 
specific topologies and functions.[70,71] We focus here on those 
that have been proved to be compatible with molecular classi-
fication tasks.

3.1. Genetic Circuits

As touched on above, cells have evolved a modular and 
sophisticated way of organizing molecular—genetic—circuits 
(Figure 3A). These can sense and integrate a large panel of 
internal or external cues and in turn generate a variety of tai-
lored responses (division, motion, death, etc.). A little more 
than 20 years ago, two seminal works have shown the pos-
sibility to wire genetic building blocks to reshape metabolic 
pathways into artificial networks, in these cases implementing 
a toggle switch[72] and an oscillator.[73] Since then, the field of 
synthetic biology went on exploring the versatility of rewired 
genetic networks. These have led to a vast array of demonstra-
tions spanning dynamical behaviors, computation,[74] pattern 
formation, and biosensing.[75,76] However, whole cell biosen-
sors, despite their demonstrated capabilities in solving complex 
classification problems, suffer from a few pitfalls including 
biosafety and storage issues, incompatibility with toxic species, 
or limited diffusion of the inputs through the cell membrane. 
This have prompted the development of cell-free biosensors 
to bypass—at least partially—these problems.[70,77] These are 
still relatively costly systems that need cautious storage condi-
tions (maintenance of cold-chain or lyophilization). Yet, both 

Adv. Biology 2023, 2200203

Figure 3. Simplified scheme of some biomolecular toolboxes. A) Genetic circuits. B) Toehold-mediated strand displacement. C) DNA tile self-assembly. 
D) Genelet. E) PEN-DNA. F) Polymerase-driven strand displacement.
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cell-based and cell-free systems can coordinate a generous 
panel of transducers (membrane receptors, transcription fac-
tors, riboswitches, aptaswitches, etc.), amplifiers (polymerases 
or ribosomes), and output modules (fluorescent or biolumines-
cent proteins, enzyme-based, or aptamer-based readouts).[78]

3.2. Enzyme-Free Systems

By harnessing the predictability and simplicity of base pairing 
between nucleic acid sequences, a number of molecular algo-
rithms were made from hybridization of DNA sequences 
alone (Figure  3B).[15] These circuits rely on the control of 
output release by strand exchange reactions,[16] following an 
irreversible (TMSD)[57,79,80] or reversible process (toehold-
mediated strand exchange, based on seesaw gates).[21,81] 
Functional nucleic acids such as aptamers[82,83] or (deoxy)
ribozymes[84] have been used to build Boolean circuits,[85,86] 
expanding the range of input molecules compatible with 
nucleic acid circuits.[87]

3.3. DNA Tile Assembly

The programmable self-assembly of DNA tiles—that is single 
or multi-stranded DNA bricks interacting via “sticky ends”—
has been largely exploited to build macrostructures from the 
top-down (Figure  3C).[88] The interactions between different 
tiles is predetermined and can be designed so that the growth 
from a seed structure is controlled by logical rules, eventu-
ally forming a given output pattern.[89] Of note regarding the 
application of DNA tile assembly for diagnostics, sensitive seed 
detection has been demonstrated using kinetically controlled 
single-stranded DNA slat assembly, robust to spontaneous 
nucleation.[63] Interestingly, this framework can be combined 
with strand displacement reactions, opening the way to spatial 
and temporal control of the growth.[90]

3.4. Transcriptional Systems

Genelets are transcription-based systems powered by rNTPs 
polymerization, which rely on the dynamical production and 
degradation of RNA strands by an RNA polymerase and an 
RNAse, respectively (Figure 3D). Pseudo-genes are encoded in 
partially double-stranded DNA templates whose expression rate 
is modulated by the presence of input DNA activators and RNA 
inhibitors. By connecting different pseudogenes, various tran-
scriptional circuits such as oscillators[91] or bistable switches[92] 
have been implemented. It was even theoretically demonstrated 
that neural network architectures with adjustable biases and 
weights can be assembled from genelets, using RNA species 
as neurons and pseudogenes as synapses.[93] Such networks are 
amenable to transcriptomic pattern recognition, or multiomic 
analysis using functional RNA such as aptamers,[94] ribozymes, 
or riboswitches.

Single-stranded hairpin pseudogenes have also been pro-
posed to build transcription-only circuits.[95] Here, the tran-
scription of a gene can be inhibited by nucleic acids binding in 

the loop to induce the dehybridization of the promoter region, 
similar to the molecular beacon mechanism.[96]

Another modular design  inspired by retrovirus replication, 
Reverse transcription and TRanscription-based Autonomous 
Computing System (RTRACS),[97–99] makes use of 4 enzymes 
(reverse transcriptase, RNAseH, RNA polymerase, and DNA 
polymerase) to convert RNA inputs into RNA outputs. It was 
suggested that RTRACS could be combined with small mole-
cule inputs using aptamers or aptazymes, or protein outputs if 
run in a cell-free expression system.[98]

3.5. DNA-Enzyme Systems

In the early 2010s, the PEN-DNA toolbox was proposed to con-
struct dynamical circuits such as oscillatory, multistable, or 
excitable systems (Figure 3E).[100–102] PEN-DNA systems rely on 
DNA strands, termed templates, to encode the connectivity of 
the network, and on 3 DNA-processing enzymes (Polymerase, 
Exonuclease, Nickase) to catalyze the production and degrada-
tion of short oligonucleotides used as signals. These circuits 
support linear and nonlinear amplification (e.g., exponential) 
kinetics,[101] threshold function,[19] and can transduce various 
biomolecular inputs including DNA or RNA strands,[103] small 
molecules and enzymes.[38] Reif et al. proposed a polymerase-
only system, where output DNA oligos are released by a DNA 
polymerase with strand-displacement activity (Figure 3F).[104,105] 
This single-enzyme system comes at the cost of increased leak, 
because output strands are present in the mixture from the 
very beginning of the reaction, even if initially nonreactive.[104] 
Other demonstrations of DNA computations using restriction 
enzymes have been reported. For instance, Benenson et al. and 
Zhao et al. leveraged the activity of type IIS restriction enzyme 
FokI to build a decision tree[106] and a Boolean algorithm,[107] 
respectively.

4. Molecular Computers for Sample Classification

We now describe a selected number of nucleic acid circuits that 
have shown applicability in sample classification. We can clas-
sify these circuits in two categories according to whether they 
rely on Boolean logic or neural network architectures (Table 1). 
Boolean circuits refer to a type of digital computation inspired 
by their electronic counterparts, where—molecular—gates 
output either 0 or 1 according to combinations of inputs and 
encoded conditions. Logic circuits operate on digitalized input 
values, simply presence or absence, or below or above a pre-
defined threshold. Binariness makes them robust to noise, but 
it does not reflect the wide heterogeneity in the concentration 
values of physiological biomarkers. In addition, the handling 
of continuous concentrations is cumbersome with digital cir-
cuits, and requires a large budget of logic gates ranging from 
dozens to hundreds of gates.[108,109] On the contrary, summation 
is straightforward in analog molecular networks, which directly 
manipulates concentrations. This feature, together with the 
possibility to adjust individually each weight makes analog net-
works more compact (e.g., using less nucleic acid strands) than 
those using logic gates.

Adv. Biology 2023, 2200203
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4.1. Boolean Logic and Digital Circuits

Boolean molecular logic circuits are inspired from Boolean 
logic rules currently used for electronic computing to mimic 
silicon computer systems.[110,111] Boolean logic allows digital 
computations and can be adapted for several purposes such as 
the classification of binary inputs or the conception of com-
plex algorithmic tasks. A Boolean logic circuit is composed of 
multiple logic gates, where each takes one or multiple inputs 
as an entry and accordingly returns a binary output having 
either 0 or 1 value. The “1” value can be associated as TRUE/
YES answer whereas the “0” can be considered as FALSE/
NO answer. When inputs are taken in a continuous interval, 
analog-to-digital conversion is performed by thresholding the 
input values. Based on this paradigm, many digital computing 
systems operating at molecular level have been designed in the 
past few decades.[17]

Seelig et  al. have proposed a Boolean logic approach 
for miRNA patterns classification.[57] The largest network 
includes 5 logic gates, encoded in 12 DNA gates (including 
threshold, amplification, and translator functions), repre-
senting ≈30 strands. The circuit was shown to work properly 
with dozens of nM of synthetic RNA inputs spiked in total RNA 
extract. However, its low sensitivity would require input pream-
plification to be compatible with biologically relevant concen-
trations. Qian and Winfree used the so-called seesaw gates to 
scale up this approach, based on a dual-rail logic representation 

(Figure 4A).[21] The circuit, composed of 130 DNA strands for 
conversion (“seesawing”), thresholding and reporting, encodes 
6 Boolean operations for computing the square root of 4-bit 
input number. Song et al. encoded the same algorithm in a 
more compact polymerase-driven strand displacement cir-
cuit made of 37 DNA strands (Figure  4B).[105] The DNA poly-
merase, which considerably speeds up the strand displacement 
reactions (as compared with TMSD) combined with the lower 
leak of single-stranded gate (as compared with the seesaw 
gate motif) allowed to decrease the computation time down to  
30 min, an important improvement regarding the applicability 
of these circuits to the clinical world.

Wang et al. drew inspiration from switching circuits, an 
architecture originally proposed by Shannon in 1938[112] and 
nowadays widely used in fast and high-bandwidth telecom-
munication. The proposed architecture relies on a single DNA 
switch motif, activated upon a strand displacement reaction by 
an input strand, therefore allowing high modularity and easy 
programmability, with the advantage of having uniformity 
in the molecular design.[113] As in electronics, two switches 
in series encode an AND gate, while they compute a OR gate 
when wired in parallel. Cascading these two functions, the 
authors constructed the square root molecular computer for a 
4-bit input with 24 strands, that reaches a time to half comple-
tion in less than 10 min. Although the computation is fast, the 
sensitivity (dozens of nM of inputs) is currently limited by the 
lack of an efficient catalytic mechanism.

Adv. Biology 2023, 2200203

Table 1. Features of some representative molecular logic circuits and neural networks.

Type Nodes Strands Computation Input 
conc

Input type Chemistry Input 
number

Reference

Logic 5 gates 33 miRNA pattern classification >10 nM miRNA TMSD 6 [57]

Logic 12 gates 130 4-bit square root circuit >10 nM ssDNA TMSD 4 [21]

Logic 7 gates ND 2 inputs classification >µM Metabolites TMSD 2 [37]

Logic 10 gates 34 4-bit square root circuit >nM ssDNA Polymerase-driven SD 4 [105]

Logic 1 gate ND Glucose and NOx classifier >µM Metabolites In cellulo genetic circuit 2 [76]

Logic 7 gates ND miRNA pattern classification fM to pM miRNA In cellulo genetic circuit 6 [118]

Logic 8 gates 1 RNA transcript classifier ND RNA 
transcripts

In cellulo TMSD + TXTL 12 [119]

Logic 7 gates 24 4-bit square root circuit >µM ssDNA TMSD 4 [113]

Logic 7 gates 100 Even–odd number sorting 100 nM ssDNA Tile assembly 6 [116]

Neural 4 neurons 112 4-neuron Hopfield NN >10 nM ssDNA TMSD 4 [81]

Neural 6 neurons 305 Handwritten digit recognition >10 nM ssDNA TMSD 100 [121]

Neural 1 neuron ≈20 Healthy versus lung cancer >nM Circular 
ssDNA

TMSD 4 [46]

Neural 2 neurons 62 Bacterial versus Viral infection >nM mRNA TMSD 7 [124]

Neural 1 neuron ND AND, OR, or MAJORITY ND DNA genes TXTL 3 [20]

Neural 1 neuron ND 4-input linear classifier >µM Metabolites TXTL 4 [127]

Neural 1 neuron 13 Majority voting >nM ssDNA PEN-DNA 10 [125]

Neural/logic 2 neurons, 1 gate 13 Nonlinear space partitioning pM-nM miRNA PEN-DNA 2 [125]

Neural 1 neuron ND Spatial pattern recognition >µM Metabolites Multicellular genetic network 2 [126]

Neural 2 neurons 250 Handwritten symbol recognition >10 nM ssDNA TMSD 144 [123]

Neural 8 neurons, 1 gate 512 Handwritten symbol recognition >10 nM ssDNA TMSD 148 [123]
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Takeuchi et al. developed a miRNA classifier based on a 
5-input DNA AND gate and a nanopore readout.[114] The gate 
simply consists of the 5 microRNA binding sites and a 5′ 
hairpin structure to guide the direction of the gate inside the 
nanopore (α-hemolysin) from the 3’ end. The binding of all  
5 miRNAs to the gate leads to a distinct nanopore signal subse-
quently decoded in silico. Although the computation is not per-
formed by a Boolean DNA circuit, this work demonstrates the 
possibility to use nanopore readout to detect subfemtomolar 
concentration of nucleic acid targets.

Using allosteric transcription factors (aTF), the Lucks’ group 
developed a range of biosensors for small molecules and 
metals, termed ROSALIND (RNA Output Sensors Activated 
by Ligand INDuction, Figure  4C).[115] In this case, DNA tem-
plates are engineered to produce a fluorescent RNA aptamer 
upon in vitro transcription, which is regulated by the binding/
unbinding of aTF. More specifically, in absence of input, the 
aTF is bound to the template, preventing the RNA polymerase 
from escaping the upstream promoter region. When the input 
metabolite is present, it binds to its cognate aTF, pulling it 
out of its binding site and eventually removing the inhibi-
tion exerted on the operator for the aptamer transcription. In 

a subsequent work, the same group interfaced this sensing 
layer with strand displacement computation.[37] To that goal, 
the aptamer output is replaced by an invader RNA that initi-
ates the strand displacement reaction on AND or OR DNA 
gates. A NOT gate was also constructed by producing, upon 
the presence of the input, an output RNA that sequesters a 
constitutively transcribed invader strand (with no aTF binding 
site), therefore preventing the gate to be activated. Combining 
these elementary logic gates, they built more complex systems 
including NOR, IMPLY, NAND, and NIMPLY gates, taking tet-
racycline and zinc ions as inputs.

Woods et al. designed a Boolean framework based on DNA 
tile self-assembly that can run a wide variety of 6-bit algo-
rithms.[116] Each algorithm is encoded in a specific set of tiles 
selected from an ingeniously designed collection of 355 single-
stranded DNA tiles. Starting from a DNA origami seed that 
encodes the 6-bit input, the tiles self-assemble iteratively to 
form an extended nanotube, and the result of the computation 
is read by atomic force microscopy after labeling biotinylated 
strands with streptavidin.

Courbet et al. have engineered bacteria to perform logic com-
putation.[117] The design is based on the inversion or deletion 

Adv. Biology 2023, 2200203

Figure 4. Molecular ‘AND’ Logic Gates. A) See-saw gates digital computing.[21] B) Polymerase-driven AND gate.[105] C) ROSALIND coupled to toehold-
mediated strand displacement reaction.[37] D) Bacteria engineered to perform logic computation using Integrase-controlled transcription.[76] E) Ribo-
computing device.[119]
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of gene terminator or promoter by integrase input(s) to control 
the output transcription rate of a gene gate. By playing with the 
gene architecture, location and orientation of the recombination 
site, the authors demonstrated the high programmability of the 
approach for designing various logical operations. By incorpo-
rating sensitive transcriptional promoters upstream to the inte-
grase gene, the expression of the integrase becomes conditional 
to the promoter inputs, allowing to interface the genetic circuit 
with other molecules (nitrogen oxides, glucose, Figure  4D).[76] 
They demonstrated this “bactosensor” to be resistant to the 
presence of a high percentage of serum or urine concentra-
tion in the culture medium. This aspect is non negligible since 
the toxicity of samples for living cells remains one of the main 
drawbacks of whole-cell devices. Because the output depends 
directly on modifications at the genomic level, these bacterial 
sensors can store the result of the computation for long-term, 
the latter being recovered by re-growing the cells or by ana-
lyzing their DNA by PCR or sequencing. This unique feature 
may provide a useful approach for results preservation and/or 
to delay the readout in remote clinical settings.

In 2011, Benenson's team built a cell-type classifier based on 
transcriptional/post-transcriptional synthetic regulatory circuits 
that senses the expression level of endogenous miRNAs.[118] 
Interestingly, they substituted the fluorescence output by the 
production of a protein (hBax) that induces apoptosis in HeLa 
cells which expresses the correct miRNA pattern, without 
affecting surrounding cells. This proof-of-concept represents 
a “tour-de-force” in terms of optimization of complex genetic 
circuits running inside mammalian cells from endogenous 
inputs. Green et al. reported another cellular computer based 
on ribocomputing, where engineered riboswitches respond 
to RNA transcripts expressed from transformed plasmids 
(Figure 4E).[119] They ultimately constructed a 12-input Boolean 
classifier made of AND, OR and NOT gates. However, this 
strategy requires the transfection/transformation of synthetic 
circuits for internal sensing and actuation (green fluorescent 
protein (GFP) production[119] or apoptosis triggering[118]) on tar-
geted cells, which seems not directly applicable for therapeutic 
purposes.

4.2. Neural Networks

Molecular neural networks (MNN) have an architecture that 
abstracts their biological counterparts (BNN) with a mathe-
matical formulation borrowed from the field of artificial intelli-
gence (ANN, Figure 5). They are built by connecting individual 
molecular “neurons,” each performing a weighted sum on 
an upstream input collection and returning an output signal 
according to the embedded—nonlinear—activation function; 

very much like a biological neuron receives input current from 
dendrites, processes these signals in the cell body and outputs 
to the next neuron(s) via its axon. Contrary to logic circuits, 
which work on digital inputs, neural networks are governed 
by ordinary differential equations . As such they are related to 
chemical reaction networks, which, in the deterministic limit, 
are also naturally described by ordinary differential equations. 
In this analogy, continuous values of the variables in the neural 
network are represented by continuous ranges of concentra-
tions in the chemical mixture. Although neural networks were 
proposed early in the field of DNA computing,[120] experimental 
demonstrations of a DNA-encoded chemical “neuron” appeared 
only a decade ago (cf. below). The most elementary neural 
network is a perceptron composed of a unique neuron that 
switches ON if the weighted sum of its inputs exceeds a given 
threshold and stays OFF otherwise. A perceptron can classify 
linearly separable data, that is, sets of data that can be separated 
by a line or a plane in two or three dimensions, respectively—
or a hyperplane for patterns of higher dimensions. Multiple 
perceptrons can be cascaded to assemble multi-layered architec-
tures capable of sophisticated classification algorithms.

In 2011, Qian et  al. experimentally demonstrated a neural 
network architecture based on reversible strand displacement 
gates (see-saw gates).[81] In this initial demonstration, the 
authors achieved a single layer NN of 4 fully connected neurons 
mimicking a Hopfield neural network, capable of recognizing 4 
different patterns. Each pattern corresponds to the answers to 
4 questions for playing the game “guess who” with 4 scientists. 
More recently, Cherry and Qian successfully implemented a 
neural network capable of recognizing handwritten digits (100-
bit patterns, Figure 6A).[121] This more compact architecture uti-
lizes annihilation gates allowing simple and powerful winner-
take-all computation.[122]

Pei et al. also proposed a compact approach based on the 
sparse topology of convolutional neural networks.[123] In this 
work, the classification is performed based on the transfor-
mation of the inputs (binary 2D matrices) by a convolutional 
kernel, followed by summation and subtraction to finally acti-
vate the output neuron(s) (Figure 6B). All inputs assigned to the 
same region of the kernel share the same weight, each repre-
sented by a unique weight tuning molecule, therefore reducing 
the size of the DNA network. They demonstrated the recogni-
tion of 8 handwritten symbols encoded in a 12 × 12 binary input 
matrix. Adding an upstream coarse logical circuit, DNA-based 
convolution MNN could recognize 32 symbols from 4 catego-
ries (8 symbols borrowed from the Arabic numbers, Chinese 
oracles, English alphabets, and Greek alphabets): in this imple-
mentation, 4 “pixels” are used to tag the symbols, each tag corre-
sponding to the symbol category. A set of DNA gates encoding 
a Boolean algorithm first reacts with the tag strands, outputting 

Adv. Biology 2023, 2200203

Figure 5. A) Biological, B) Artificial, and C) Molecular neurons used in BNN, ANN, and MNN, respectively.
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both a fluorescence signal corresponding to each category and 
a set of weight tuning molecules using a fan-out mechanism. 
The weight tuning molecules are captured on magnetic beads 
and released to activate the downstream MNN for completing 
the pattern classification, that is, choosing among the 8 sym-
bols of the corresponding category. As a result, each of the 32 
symbols is recognized from a combination of the 4 digital cir-
cuit outputs and 8 MNN outputs.

These works have shown the potential of DNA strand dis-
placement cascade for classification tasks. However, because 
they use high input concentrations (typically dozens of 
nanomolars), it remains unclear whether these circuits could 
become compatible with typical nucleic biomarkers concentra-
tion level.

This sensitivity issue can be partially addressed using pre-
amplification of the inputs. In 2015, Lopez et al. reported a 
DNA classifier that distinguishes bacterial versus viral respir-
atory infection (Figure  6C).[124] The classifier is also based on 
strand displacement reactions and therefore requires in vitro 
transcription of cDNA mixtures to raise the input concentra-
tion from pM to nM. The classifier consists of two disjointed 
single layer perceptrons that are connected to bacterial or 
virus-related sequences and report a ROX or FAM signal if the 
weighted sum on each neuron exceeds the defined threshold. 
The absolute weights values are encoded in the numbers of 
probe binding sites selected for each transcript sequence and 
their sign depends on the output strand of the following strand 
displacement reaction for summation (one sequence for posi-
tive weights, one for negative weights). At the end of the com-
putation, the measured ROX signal is subtracted from the FAM 
signal, ex-moleculo, allowing output normalization and accurate 
discrimination of bacterial and viral infections.

Zhang et al. elaborated a complex sample pre-processing 
procedure to convert low microRNA concentrations (fM to pM 
range) into higher concentration (>nM) of DNA strands using 
an asymmetric PCR (termed LATE PCR for Linear After Expo-
nential PCR).[46] The complete workflow involves the reverse 
transcription of the miRNAs, LATE PCR, followed by the cir-
cularization of the product into “Loop DNA” which are finally 
purified by gel electrophoresis. These converted Loop DNA are 
then fed as inputs to a 4-miRNA linear classifier, which is able 
to properly distinguish between clinical serum samples from 
healthy people and lung cancer patients (Figure 6D). For each 
wire of the molecular classifier (i.e., connection between a Loop 
DNA sequence and the integrator), the absolute weight value 
corresponds to the number of probe binding sites introduced 
into the Loop DNA during the PCR step, and its sign depends 
on the output sequence. As in Cherry and Qian, a final “winner-
take-all” annihilation reaction between two outputs, one from 
negative weights, the other from positive weights, returns the 
final digital output, 'healthy' or 'diseased'. Although the mul-
tistep sample treatment remains tedious, this appears to be, to 
our knowledge,  the first time a MNN is used on real patient 
samples.

The PEN-DNA toolbox also possesses the necessary building 
blocks to assemble a perceptron, namely input transduction, 
weighting, summation, and thresholded nonlinear activation 
function.[125] Weights are tuned by introducing decoy unproduc-
tive templates that compete for the inputs with cognate activator-
producing templates: As a result, the ratio of the two templates 
defines the weight of a given input. Negative weights can be 
implemented by using templates that produce anti-activator 
strands, and thus does not require additional annihilation gates 
as used in enzyme-free networks. The bias term can be easily 

Adv. Biology 2023, 2200203

Figure 6. Experimentally demonstrated neuromorphic molecular computing. A) Winner-take-all (WTA) computation designed for handwritten digit 
recognition.[121] B) Molecular convolutional network for the recognition of symbols.[123] C) Classifier of bacterial versus viral infection from host RNA 
transcripts.[124] D) Neural sensor of lung cancer patient from 4 input circulating miRNAs.[46] E) Neural-logic hybrid network capable of nonlinear space 
partitioning.[125] F) Riboregulator-based perceptron for the classification of gene inputs.[20] G) Metabolic perceptron from enzymatic conversion and 
benzoate biosensor.[127]
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tuned by varying the concentration of the template that thresh-
olds the amplification. Okumura et al. reported a majority voting 
linear classifier working on 10-bit inputs, demonstrating robust 
weight equalization for all 10 inputs and sharp decision margin. 
The authors also implemented the first 2-layer neural network 
and a neural-logic hybrid network capable of nonlinear classifica-
tion on picomolar concentrations of microRNA inputs without 
preamplification (Figure  6E). All these experiments have been 
performed on synthetic samples, and their application on actual 
patient samples requires further validation.

Van der Linden et al. employed a cell-free expression system 
(in vitro transcription translation) to run a perceptron on 
genetic inputs (Figure  6F).[20] The RNA transcripts resulting 
from gene expression are interfaced with protein production 
summation layer via riboswitches, whose respective concentra-
tion encodes the weight on the different inputs. Upon activa-
tion by their cognate transcript, all riboswitches produce the 
sigma factor σ28, which in turn activates the expression of GFP 
under transcriptional control of the P28a promotor. The activa-
tion threshold can be ingeniously controlled by adding anti-σ28 
to scavenge a fraction of the output σ28 (Figure 2). On a three-
input pattern, the perceptron with adjustable bias can compute 
a OR (no threshold), MAJORITY (moderate threshold), and 
AND (high threshold) functions. The authors notified that such 
classifiers may be tricky to tune manually for any input set due 
to the inherent variability at the transcriptional and transla-
tional level, as well as on the regulatory elements. This problem 
may however drive the development of strategies to (semi-)
autonomously train a MNN by continuously adjusting the 
weights of the network until the desired outcome is obtained. 
In addition, and despite the additional complexity as compared 
to enzyme-free systems, TXTL-based computation possesses 
the unique advantage of being naturally compatible with a large 
array of inputs (e.g., small molecules) and outputs (e.g., lumi-
nescent proteins).

Li et al. implemented a perceptron-like genetic network that 
allows pattern recognition in bacterial consortia composed of 
sender and receiver cells.[126] In a simplified representation, 
sender cells are induced by an input molecule (acyl-homoserine 
lactone, OC6), which triggers the production of a quorum 
sensing molecule (acyl-homoserine lactone OCH14) via the acti-
vation of the PLux promoter through the binding of LuxR tran-
scription factor. OCH14 can diffuse in the receiver population 
equipped with a quorum sensing genetic network that perform 
the weighted sum of OCH14 from the different sender popula-
tions and activate the production of a fluorescent protein if it 
exceeds a given threshold. Interestingly, they demonstrated the 
tuning of the weight using—mutated—PLux promoters of dif-
ferent strengths for each sender population. Negative weights 
were also implemented by placing the Plux promoter down-
stream a constitutively active promoter, consequently blocking 
the RNA polymerase when bound to the OC6-LuxR transcrip-
tion factor. Using this population computing method in com-
bination with an in silico gradient descent training algorithm, 
they showed accurate classification of 3 × 3-bit patterns.

While all above-mentioned neural networks are based on 
DNA actuation, either being in vitro genetic circuits, DNA-
enzyme or strand-displacement-based systems, it may be 
interesting as well to leverage metabolic circuits that naturally 

integrate and return small molecules as inputs and outputs. 
Pandi et  al. approximate a single-layer perceptron using such 
strategy, where inputs (hippurate, cocaine, benzamide, and 
biphenyl-2,3-diol) are all converted into benzoate in a cell-
free transcription translation media (Figure  6G).[127] The sum-
mation and actuation layer is encoded in a benzoate sensor, 
that is, a GFP expressing plasmid under the control of ben-
zoate transcriptional activator. They built a computational 
model that allows to tune each weight independently by con-
trolling the concentration of the corresponding transducing 
enzymes (more precisely, their gene). Although limited to posi-
tive weight only and lacking control of the activation function 
(unique threshold), this work sets up the foundations for more 
complex, possibly multilayer metabolic perceptrons.

5. Conclusion and Perspectives

The integration of multiple molecular clues to provide more 
precise and personalized diagnostics is a strong trend, as 
emphasized in this review. However, to collect the necessary 
multidimensional data, current approaches rely on cumber-
some, often costly procedures involving high-tech equipment, 
skilled staff and the final classification task is typically per-
formed in silico or according to expert knowledge. Integrated 
molecular computers may bring simple though robust and 
informative assays to the patient bedside. However, this field 
still needs to address a couple of challenges before it can deliver 
generalizable and scalable tools for molecular medicine. One 
of them is the relatively low sensitivity of most molecular clas-
sifiers, which hardly meets the requirements of clinical set-
tings. Target pre-amplification may solve this issue,[46,124] but 
it adds extra steps that conflict with the benefits of molecular 
computers in terms of cost and speed. Enzyme-driven systems 
have shown amplification efficacy rivaling with PCR-based 
methods and could either be used as sensitive computational 
frameworks or combined with enzyme-free chemical reaction 
networks.[128]

Another asset of molecular computation is that it can be 
directly executed inside the body or cells.[118,129,130] In principle, 
this theragnostic approach (combining diagnosis and thera-
peutics) could control the spatio-temporal release of drugs, for 
instance to selectively kill cancer cells or pathogens, or to regu-
late imbalanced molecular pathways in neurodegenerative dis-
eases. Yet this view is still in its infancy,[75] and we still need to 
learn how to make robust molecular programs which operate 
in an unknown, fluctuating, and possibly hostile environment.

Boolean logic circuits have been widely explored in the field 
of DNA nanotechnology.[17] Despite the simple abstraction 
scheme borrowed from silicon-based computational paradigm, 
Boolean functions can be layered to solve complex classification 
problems. As they work on binary input combinations however, 
they are not naturally adapted to many diagnostic tasks, where 
input values are continuous biomarker concentrations and may 
vary substantially between individuals. Threshold gates and 
fuzzy logic architectures[131] somehow mitigate the problem 
of digitalization, but it remains that building a desired classi-
fication algorithm is challenging. By contrast, MNN accepting 
variable weights and thresholds can be (re)programmed to 

Adv. Biology 2023, 2200203
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fit a given classification problem without changing a set of 
strands.[121] These same features authorize compact—and there-
fore experimentally realistic—networks that compute complex 
linear and nonlinear data classification on large sets of input 
biomarkers.

At present, molecularly encoded classifiers are trained in 
silico before being hard-coded in a chemical reaction net-
work.[46,118,121,124] Making neural networks that learn in vitro is 
still a formidable and open-ended task, and it is uncertain if 
what we learned from in silico training will be directly appli-
cable.[132] The standard algorithm for training ANN, stochastic 
gradient descent, uses a myriad of complex mathematical oper-
ations such a differentiation for computing the gradient of the 
backpropagation step, and it is undefined if those operations 
can be easily transposed in a chemical setting (even the biolog-
ical relevance of backpropagation has been debated[133]). Lakin, 
Stefanovic et al. have proposed a theoretical biochemical adap-
tative circuit based on self-inhibiting DNAzyme that can learn 
linear functions, that is, the conversion of an input species to 
output species at a given rate.[134] The learning function relies 
on a feedback circuit that updates the weights by controlling 
the activation level of the DNAzyme actuators, based on the dif-
ference between the output value (concentration of the output 
strand) and the expected value (concentration of a DNA species 
that react in an annihilation reaction with the output strand). 
The same group also suggested to use buffered—inactive—
DNA gates activated by a feedback loop to similarly learn the 
weights in DNA strand displacement circuits.[135]

A whole new set of ideas and tools will likely complement 
this approach to train MNN—directed evolution and the mas-
sive parallelism of microfluidics are probably among the most 
promising candidates. In this scheme, millions of networks 
with varying topologies and weights are encapsulated in micro-
compartments (e.g., droplets or chambers), and tested against 
a range of inputs. After each round, the best instantiations are 
kept and iterated—possibly with variations, and the round of 
testing performed again until the system reaches the desired 
objective.

The question of molecular learning will also force us to 
design networks that learn without strong supervision, probably 
by taking inspiration from the brain rather than artificial neural 
networks. The brain is not thought to use backpropagation to 
learn.[133,136] Rather, it encodes computations and information 
in the temporal domain, by sending spikes of electrical activity 
between neurons. This sparse temporal encoding is the basis of 
Hebbian learning, which learns connections between neurons 
by amplifying weights between the ones that fire together. In 
the future, MNN may exploit this natural learning to train net-
works in a massively parallel way, and without relying on assis-
tance from an external operator. Temporal information pro-
cessing has been investigated for instance using DNA strand 
displacement[137] or genetic circuits logic gates[138] and may also 
make use of spiking biochemical circuits.[139]

Another option is to quantitatively model the experimental 
system, measuring the activation function and the chemical 
weight modulation, to then perform the training in silico using 
standard optimization algorithms.[126] However, this approach 
may not be possible for complex biochemical systems, for 
which obtaining a comprehensive modelng is challenging. It 

was also proposed to use translational regulation as a mecha-
nism to adjust in real-time the weights during learning.[20]

Reservoir computing is an approach to reduce the burden 
of training.[140–143] In this framework, a recurrent network with 
many interacting and nonlinear units is perturbed with inputs, 
provoking a complex response of the network. This perturba-
tion essentially maps the set of inputs to a high-dimensional 
state and can be seen as a computation. But contrary to 
common neural networks, no effort is made to adjust the 
weights between the units. The only training is to learn a linear 
function that maps back the high-dimensional response to the 
desired output. While reservoir computing has not really won 
against the brute force approach of deep learning in the in silico 
world, it may be a natural contender in the molecular world. 
Chemical systems genuinely have complex responses, with 
many layers of intended and unintended feedbacks between the 
chemical species. In addition, finely tuning chemical interac-
tions may be cumbersome, depending on the underlying chem-
istry. Since reservoir computing does not need to tune internal 
weights, it may be well adapted to molecular learning.

In addition, reservoir computing may open up a new 
dimension to pattern recognition: the temporal domain. 
Indeed, most molecular diagnosis is static, in the sense that 
it only looks at a profile of concentrations at a fixed point in 
time. Yet in the body, concentrations evolve dynamically, and 
many species are expressed periodically or in bursts. Reser-
voir computers can naturally handle time-varying inputs, and 
for instance detect the recurrence of a pattern in the temporal 
signal of a chemical species. Alternatively, implementing a 
resetting function may be of interest for the quasi-continuous 
monitoring of disease progression, relevant for implantable 
devices that monitor at specific time points the composition 
of biofluids. This may be performed for instance by limiting a 
chemical fuel so that the computation consumes it all and the 
system relaxes to the initial state after readout. A fuel shot is 
reintroduced each time a new sampling is performed, making 
it possible to reuse a molecular computer many times. Com-
puting on surfaces is also compatible with resetting as the 
support can be restored to its initial step by simply washing 
and flowing back the necessary components for rebooting the 
molecular program. Computing on surface has other advan-
tages as it may limit errors, avoid cross-reactivity andaccelerate 
reaction rates. As reactive elements are spatially separated on 
distinct locations, it allows to (re)use the same components 
(e.g., molecular gates or neurons) on different nodes of the 
network, − mitigating the tediousness of sequence design 
faced when scaling up −, and enables to run multiple algo-
rithms simultaneously.[144,145]
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