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How do coalitions break down? An alternative view∗

Raouf Boucekkine† Carmen Camacho‡ Weihua Ruan§ Benteng Zou¶

Abstract

We propose an alternative dynamic theory of coalition breakdown. Motivated by recent coalition

splitting events through unilateral countries’ withdrawals, we assume that: i) the payoff sharing rule

within coalitions is not necessarily set according to any optimality and/or stability criterion, and, ii)

players initially behave as if the coalition will last forever. If the sharing rule is non-negotiable or

if renegotiation is very costly, compliance to these rules may become unbearable for a given member

because the rule, being too rigid, would make exit preferable as time passes. We examine this endogenous

exit problem in the case of time-invariant sharing rules. Assuming a Nash non-cooperative game after

(potential) splitting where players play Markovian, we characterize the solutions of the endogenous exit

problem in a linear-quadratic frame with endogenous splitting time. We find that splitting countries

are precisely those which use to benefit the most from the coalition. Suitable sharing rules should be

used to prevent coalition splitting. When initial pollution is high, all shares should be low enough and

none of the players should detain a payoff share larger than 1/2. If initial pollution is small, we provide

with an explicit interval for the sharing rule values preventing the collapse of the coalition. Finally,

we demonstrate that the latter properties are qualitatively consistent with the optimal behaviors and

equilibrium outcomes resulting from players anticipating the end of the coalition and acting accordingly.
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1 Introduction

While the classical literature on coalitions had essentially addressed the question of coalition for-

mation and stability (with a few exceptions though, see Bolton et al., 1996), numerous papers on

coalition break-ups have been written in the last few years. This abundant literature is essentially

motivated by the recent numerous withdrawals of countries from international organizations and

agreements, some highly impactful. Beside some of the decisions taken by the Trump adminis-

tration, which may seem “idiosyncratic”1, the United Kingdom withdrawal from the European

Union on January 31, 2020, or Canada withdrawal from Kyoto Protocol on December 13, 2011, 10

years after the US, are two of these striking break-up events which have attracted the attention of

economists and political scientists. Just as a way of illustration let us mention papers investigating

the impact of Brexit (Sampson, 2017; La Torre et al., 2020; the special issue of the Oxford Review

of Economic Policy, vol 33, 2017; etc.), or the economic consequences of the U.S. withdrawal from

the Kyoto Protocol and the Paris agreement (Bucher et al., 2002; Zhang et al., 2017; Nong and

Siriwardana, 2018; ...). 2

This paper is a methodological contribution to this rising literature. The traditional game-theoretical

settings proposed to study the design of international agreements and the stability of coalitions are

quite diverse: they range from cooperative to non-cooperative, from static to dynamic through

repeated games or fully dynamic set-ups, and they often include interesting procedural ingredi-

ents, typically on enforceability of the agreements. Regarding the particular problem of coalition

splitting, one finds two main conceptual settings. The first one is based on the theory of coalition

stability, which is anchored in the cooperative games literature.3 A second type of setting uses the

traditional Nash non-cooperative theory with individual optimizing strategies (plus a Pareto-like

criterion to evaluate efficiency). An essential part of this literature uses dynamic games. Ngo Van

Long (see, for example, Van Long, 2010, for a survey) is one of the principal contributors to this

line of research.

Our paper departs from the latter dynamic games literature in two major ways:

• First of all, the sharing rule within coalitions is not necessarily set according to any optimality

and/or stability criterion.

• Second, players initially behave as if the coalition will last for ever.

1For example: on July 7, 2020, the Trump administration formally notified the United Nations that the U.S. was
pulling out of the World Health Organization, which became effective as of July 6th, 2021.

2See also the empirical study of Mayer et al (2019) on the cost of being non-EU, and the general theoretical
investigation of Gancia et al (2020) on the gain of being in some economic unions and partnerships.

3Two different frames are considered in this literature. The first looks at static or repeated games as explained
by Tulkens (1998) and surveyed by Bréchet et al. (2011). The second deals instead with dynamic games and, after
Petrosjan (1977), searches for sharing mechanisms that will ensure the coalition stability (see Zaccour, 2007, for more
details).
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At first glance, the two departures seem rather realistic. The coalitions are typically based on

a number of, say, constitutional rules specifying the duties and benefits corresponding to each

member of the coalition. Usually, the coalition may obviously entail large heterogeneities across

members, in particular in multi-country coalitions, technological, demographic or geographic no-

tably. It’s unlikely that the constitutional rules at the dawn of the coalition can cope with all these

discrepancies, and meet any kind of optimality in the sense of the criteria given above (for exam-

ple, Nash bargaining or Shapley value). It’s also quite reasonable that when engaging in essential

(and somehow existential) collective initiative like a strategic political alliance or a long-term en-

vironmental agreement, no member will start playing against it, they will rather act optimally in

accordance with the constitutional rules, as if the coalition will last till the end time agreed upon.

If the constitutional rules are non-negotiable or if renegotiation is very costly, compliance to these

rules may become unbearable as time passes, either because the rules, being too rigid, would make

exit preferable (endogenous exit) or because an exogenous (symmetric or asymmetric) shock occurs

undermining the political, economic or historical rational behind the coalition creation. We shall

consider the endogenous exit problem in this paper, specializing in the case of time-invariant and

non-negotiable constitutional rules. As we shall see, the problem remains largely nontrivial in this

benchmark case.

While realistic and fitting a variety of situations in very different contexts, our assumptions entail

two theoretically unpleasant features: predetermined (non-optimal) shares under the coalition set-

ting and time inconsistency. As we will see clearly when solving the dynamic games posed, our

alternative frame involves the absence of forward-looking behavior in the coalition stage, which

enables a forward induction solution method. We study this case till its ultimate consequences,

including policy implications (which does make perfect sense as this case is based on reasonably

realistic assumptions). Nonetheless, we also provide with the solution to the standard forward-

looking counterpart where players do anticipate the coalition breakdown from t = 0 and behave

accordingly. Despite that the induced solution scheme is opposite to the counterpart in our alterna-

tive case and consists in backward induction, we show that the ultimate optimal splitting problems

are analogous. Moreover the main policy implication (related to the sharing rule) is qualitatively

the same. That’s to say the equilibrium outcomes generated by our alternative frame is quite far

from irrationality (if rationality corresponds to the pure forward-looking case).

In our theory, since we focus on coalition splitting, we specialize in the simple case where one single

country can potentially break down its tie to the coalition. After the split, if any, a two-players

non-cooperative game sets in: the splitting country and the remaining coalition treated as a single

player. This mimics many of the recent coalition withdrawals occurrences mentioned above, and

we believe the theoretical approach taken is deep enough to highlight some of the key determinants

of coalition breakdowns as we will argue throughout the text. Another critical aspect of our theory

is (non)-negotiability. Non-negotiable here means that the core principles establishing the initial
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coalition (say, the sharing rules) cannot be redefined to strictly cope with the preferences of any

single country. For instance, we have in mind the case of the U.S. splitting from the 2015 Paris

agreement or the case of UK splitting from the EU. We do precisely formalize this problem by

designing a tractable dynamic game-theoretic frame assuming time-invariance of the sharing rules

under coalition.

In this paper, we specialize in the theoretical literature of environmental agreements to fix the

ideas. Fundamental work has already been accomplished on these issues in a variety of frameworks

ranging from multistage games à la Carraro and Siniscalco (1993) to dynamic games (Hoel, 1993;

Xepapadeas, 1995; Dutta and Radner, 2009). Here, we take a different approach to better suit the

question of coalition splitting as we have posed it just above. We consider a set of countries which are

initially bound in a coalition, and whose aim it to maximize a given joint payoff subject to a public

bad. The coalition is based on time-invariant (typically suboptimal) constitutional rules, namely

the sharing quotas of the benefits and the costs of the coalition. Given all these ingredients, under

which conditions a country initially belonging to this coalition may eventually optimally decide to

split at a finite date, and when? What are the determinants (Constitution, technology,...etc) of

splitting and of the duration of the coalition? Is it possible to identify time-invariant consititional

rules which prevent the coalition breakdown?

In our framework, the splitting time is an explicit optimal control in the hands of any member

of initial coalitions. The recent contribution of Colombo et al. (2022) is close to our setting in

investigating partial cooperation in international environmental agreements. There, all players are

identical and so is the share of each player in joint welfare (regardless of whether there is full or

partial cooperation). In their setting, the coalition that is optimally set at the initial time will last

forever. Our work is also related to the seminal contribution of Benchekroun et al (2006), who study

the temporary natural resource cartels where the cartels’ ending time is known for all players at the

beginning of the game, while in our setting it is a decision of one player. More precisely, we assume

that initially players (countries) agree to manage cooperatively the common stock of pollution. As

a shortcut to the constitutional aspects of the coalition, we assume that each country enters the

coalition with a given fixed share of the (intertemporal) payoff of the coalition. We do not include

splitting costs (formalizing possible penalties paid by the splitting country) for simplicity. As it

will be clear in the main text and in the Appendix, the algebraic developments needed without this

additional ingredient are already huge. Note that a splitting fixed sunk cost can hardly change the

qualitative results in terms of the sustainability of time-invariant constitutional rules.

If a country splits at time T , a non-cooperative game sets in between the country and the group

of countries remaining in the coalition. Within a fully linear-quadratic model, we characterize the

optimal affine Markovian subgame perfect strategies for a given split time T . We later solve for

the whole sequence starting with the initial cooperative game phase where all coalition members

play as if the coalition will last for ever. As argued above, if this assumption fails, then a different
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solution setting via backward induction should be applied reflecting the forward-looking nature of

splitting in such a case. We ultimately uncover the conditions under which splitting occurs at finite

time. We also study the determinants of the coalition duration with particular attention to the

role of technological vs constitutional heterogeneity across players. It’s worth pointing out that

the choice of strategies can be extended to non-Markovian ones. For example, open-loop Nash

equilibria or heterogeneous Nash equilibria à la Zou (2016) may match better some situations.

For example, after the U.S. withdrawal from the Paris agreement, the remaining coalition stayed

committed to the initial decarbonization objectives. Nevertheless, the techniques developed in this

paper are general enough to study different kinds of choices of strategic spaces.4

Technically, our analytical approach combines multistage optimal control tools with the typical

techniques used to solve differential games. There exist an increasing number of papers using

multistage optimal control to characterize optimal/ equilibrium regime transitions and the inherent

optimal regime shift timings (Boucekkine et al., 2013; Moser et al., 2014; Saglam, 2011; Zampolli et

al. 2016; etc.).5 In contrast, much fewer papers merging multi-stage optimal control and dynamic

games have come out.6 We shall show how the latter avenue can also be taken safely in our paper.

Three key aspects drive the paper’s results: the technological gap as an indicator of heterogeneity

across players, the Constitution of the coalition (captured by a single parameter, the payoff share

accruing to countries under coalitions) and the pollution damage. Thanks to these parsimonious

specifications, we are able to provide with a full analytical solution to the two-stage differential

game under scrutiny. We do cover all the set of parameterizations taken by the three indicators

listed above, which results in a highly nontrivial mathematical analysis (despite parsimony). In

particular, we characterize the intermediate parametric cases leading to optimal finite time splitting.

We specially highlight the requirement that the payoff share accruing to the splitting country should

be large enough in the latter case. Consistently, we prove that constraining the payoff share to

be low enough by Constitution may lead to optimal everlasting coalitions only provided initial

pollution is high enough, which may cover the emergency cases we are witnessing nowadays.

The paper is organized as follows. Section 2 presents the general specification of our game-

theoretical setting. Section 3 analyzes a specialized linear-quadratic version of the game, providing

in particular the optimal players’ strategies for given splitting times. Section 4 characterizes the

existence of an optimal splitting time, discusses its drivers and delivers some policy insights. Sec-

tion 5 addresses the case of an uncommited coalition where the players anticipate splitting and

behave in a forward-looking way in this respect. Finally, Section 6 concludes.

4In Appendix B, we illustrate this point by showing how our setting can be readily adapted to heterogeneous
strategies after the splitting.

5Commonly, all these studies rely on Tomiyama (1984). It is worth mentioning here that our stopping time
problem differs from the one explored in the literature under stochastic setting (see Shiryaev, 2008, and Albrecht et
al, 2010). The main difference derives from the fact that our stopping time is a contingent event, not following any
random observations.

6An exception is for example Boucekkine et al. (2011).
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2 The model

Suppose that at time 0 there is a given coalition of players, say a pro-environmental coalition

managing a common stock of pollution, denoted y. Suppose that one of the coalition members,

named player i, can potentially quit it at some future date T , where 0 ≤ T ≤ ∞. The rest of the

coalition is assumed to be roughly homogenous to the point that we can label it as a single player

J . Both players i and J differ in a number of characteristics, technological and constitutional as

mentioned in the Introduction. Our analysis will identify a posteriori the specific characteristics

that lead player i to split.

Within the coalition, players i and J choose jointly the level of variables xi, xJ ∈ [0, X] ⊂ [0,+∞),

which provide them with a joint utility or payoff. The players’ actions increase the level of the

public bad, y, resulting in a drop in welfare, which corresponds to the pollution externality in

environmental economics. In our model, we assume that at time 0, players play cooperatively until

time T , when player i decides eventually to quit the coalition. Note that at time T , player J may

also switch her strategy in response. We shall concentrate on the Markovian perfect equilibria of

the game after T . Finally, we introduce a further simplification by assuming that actions xi, xJ ∈
[0, X] ⊂ [0,+∞), while determining the level of players’ utilities does also increase the level of CO2

emissions by exactly xi + xJ . The model can be then straightforwardly interpreted in a one-good

economy: the good x is consumed and produced with a linear technology, and there is a one-to-one

relationship between input and output, and between output and pollution emissions. In the end,

player j can obtain utility directly from xj , but she also suffers from pollution, since y brings a

(partially external) pollution disutility.

Initially, the objective of the players in the coalition is therefore to maximize joint overall welfare

or payoff, which is defined for everlasting coalitions as

max
xi,xJ

W (∞) =

∫ +∞

0
e−rt [ui(xi) + uJ(xJ)− ci(y)− cJ(y)] dt, (1)

where r is the time discount rate, ui(.) and uJ(.) are utility functions of players i and J , respectively,

which are strictly increasing and concave; and ci(y), cJ(y) are their respective individual disutility

due to pollution, which are strictly increasing and convex functions. Note that the objective

function is simply the aggregate payoff of the two players. We shall discuss how the optimal payoff

is shared across players when we come to the constitutional bases of the initial coalition.

Finally, decisions are subject to the dynamic constraint:

ẏ(t) = xi(t) + xJ(t)− δy(t), (2)

and δ ∈ [0, 1] is the depreciation rate. In our example, y stands for the stock of CO2, so that

δ would stand for the natural reabsorption rate of CO2 in the atmosphere. The initial condition
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y(0) = y0 ≥ 0 is given.

We get now into the constitutional aspects of the coalition. Essential aspects are sharing rules (of

the aggregate payoff) and penalties in case of splitting. As argued in the Introduction, we shall

focus on the first aspect. Concretely, we suppose that player i’s share in the total payoff is α ∈ (0, 1)

and the remaining share, 1− α, belongs to the rest of the coalition, i.e., welfare of players i and J

are

Wi = αW (∞) and WJ = (1− α)W (∞).

Two points are worth doing at this stage. First of all, while α is defined as a fraction of the

intertemporal and discounted payoff, it indeed applies at any period of time since it’s constant.

We can therefore interpret it also as an instantaneous share. This said, the payoff to be shared in

our game-theoretic framework is the intertemporal one: when splitting is an option, player i will

consider the share of the intertemporal payoff from the start of the coalition to its (potential) end

at date T , that is αW (T ) where:

W (T ) =

∫ T

0
e−rt [ui(xi) + uJ(xJ)− ci(y)− cJ(y)] dt.

Second, beside this technical point, one would inquire about the particular meaning of such a sharing

rule in a pollution problem like this one. One would be naturally tempted to bring this aspect closer

to the standard literature of environmental agreements where the enforcement of a Pareto efficiency

criterion would require transfers from certain countries to others (see the early contribution of

Tahvonen, 1994). However, this is precisely what we don’t do in this model, the weight α is by no

way a Pareto weight nor the Shapley value: it is stricto sensu a constitutional parameter, it’s fixed

initially with the birth of the coalition according to the initial political, demographic or economic

relative powers of the members.

Of course, α would be generally dependent on the characteristics of each country member of the

coalition, that is, on the shapes of the national preferences and technologies. But in reality each

country’s weight also depends on more complex characteristics like global and regional history,

geography and the resulting regional and global geopolitics, which can hardly be recovered un-

equivocally from technological differentials or cultural differences. In this paper, we define the

constitutional rule as being independent from the latter to clearly discriminate between the consti-

tutional aspects of the coalition and the more purely technological diversity. We consider this case

as the natural benchmark to explore. Moreover, we assume that renegotiation (of α) is impossible

or too costly, which is far from unrealistic if one recalls the political and constitutional foundations

of international coalitions like those mentioned in the Introduction: often splitting may prove less

costly than renegotiation.7

7One way to avoid that player i quits the coalition is to redefine α as the Shapley value, allow renegotiation and
letting α be a function of the common resource, i.e. α = α(y).
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We now move to some preliminary technical considerations. If player i quits the coalition at time

T , then she obtains a share α of overall welfare until time T . Accordingly from time T onwards,

player i’s objective becomes

Wi,II = max
xi

∫ +∞

T
e−rt [ui(xi)− ci(y)] dt, (3)

and player J faces

WJ,II = max
xJ

∫ +∞

T
e−rt [uJ(xJ)− cJ(y)] dt, (4)

subject to the same state equation:

ẏ(t) = xi(t) + xJ(t)− δy(t), t ≥ T, (5)

where the initial condition y(T ) is determined (by continuity) from the outcomes of the first (coali-

tion) period.

The optimal switching time for player i is defined as

max
T

(
αW (T ) +

∫ +∞

T
e−rt [ui(x

∗
i )− ci(y

∗)] dt

)
= max

T
(αW (T ) +Wi,II(T )) . (6)

Intuitively, a coalition between i and J established at time 0 can last over the period of time [0, T ]

if the first term in (6) is non-decreasing in T . That is, the longer player i stays in, the higher

is joint social welfare. Otherwise, if the first term in (6) is decreasing in T , then player i would

exit immediately the coalition with J and T will be 0. Similarly, player i may consider to quit

the coalition with J if the second term in (6) is non-increasing with T . Otherwise, if the second

term was also increasing in T , then it would always be optimal to set T = +∞ and somehow very

surprisingly, this a priori non-optimal (almost ad-hoc) coalition would be stable and last forever.

Obviously, the precise optimal choice of T relies on the game that is played after the splitting, or

more precisely, on the strategy space after the splitting. As one can deduce from all the above, the

optimal choice of T can be 0, ∞ or take any other finite value between 0 and ∞, depending on

the parameter set. If it exists, the interior optimal switching time T is obtained by taking the first

order condition of (6), that is, T is the solution to

α
dW (T )

dT
+

dWi,II

dT
= 0, (7)

provided the second order optimality condition

α
d2W (T )

dT 2
+

d2Wi,II

dT 2
< 0
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holds.

In the next section using a linear-quadratic model, we first study the situation in which the coalition

lasts forever, that is, when T = +∞. Then, we will analyze the conditions ensuring the existence

of a unique interior solution for T , 0 < T < +∞. If splitting occurs in finite time, then applying

the implicit function theorem to (7) shows that

∂T

∂α
= −

dW (T )
dT

αd2W (T )
dT 2 +

d2Wi,II

dT 2

> 0.

That is, the larger the payoff share player i gets, the later she will quit the coalition. Similarly, the

smaller the stake of player i in the coalition, the sooner she quits the coalition to potentially gain

more freedom of choice.

It is worth mentioning that differently from most of the optimal switching literature, the players

before and after time T are different in our setting. Indeed, before time T , there is a single player:

the coalition. After T , there are two competing players. Thus special care should be taken when

employing the usual necessary optimal switching conditions at T . These difficulties may come

mainly from the choice of different strategic spaces after the coalition splits. We shall be more

explicit in this respect below.

3 The linear-quadratic differential game with initially committed

coalition members

We start with the case where coalition members act as if the coalition lasts forever. As it’s tradi-

tional in differential games, we resort to linear-quadratic functional forms for analytical tractability

(see Dockner and Van Long, 1993; Dockner et al, 2000; Bertinelli et al, 2014; etc). In this section,

we focus on the strategies at each stage of the game for a given splitting time, Section 4 will address

the optimal splitting time issues. Section 5 considers the case of un-commited coalition members

as mentioned in the Introduction.

In our linear-quadratic setting, the utility functions are given by

ui(xi) = aixi −
x2i
2
, uJ(xJ) = aJxJ −

x2J
2
.

If xj is the pollution emission that player j employs to produce the final consumption good, then

aj is here the efficiency parameter which converts pollution into the consumption good. Note

that a higher aj indicates a more advanced economy, meaning that it can generate more of the

consumption good from the same unit of pollution.8

8Consistently with the general conditions on the preferences given in Section 2, the LQ utility functions posited

9



The pollution damage functions are

cj(y) =
by2

2
, j = i, J.

The pollution damage is the same for both players independent of any individual characteristic

and in particular, independent of the agent’s development level. In the following, we assume that

coefficients aj , j = i, J , are sufficiently large, such that the utility functions are always positive and

increasing in xj and that the long-run steady state of pollution is positive.

3.1 The cooperative stage

Let us start by solving the problem of the ever lasting coalition. As motivated in the Introduction,

each coalition member acts as if the coalition lasts forever, and will do so till splitting (if any)

occurs. The joint payoff function is

max
xi,xJ

W (∞) =

∫ +∞

0
e−rt

[
aixi + aJxJ −

x2i + x2J
2

− by2
]
dt, (8)

subject to the following state equation (2).

We can readily summarize the main results of the optimization problem faced by any coalition

member acting as if the coalition is everlasting, in the following proposition.

Proposition 1 For any positive constants b, r, δ, then for any state trajectory y(t), the choices for

player i and J are

x∗j (y) = aj +B + Cy, j = i, J,

where

C =
r + 2δ −

√
(r + 2δ)2 + 16b

4
(< 0), B =

(ai + aJ)C

r + δ − 2C
(< 0).

The trajectory of state is: ∀t ≥ 0,

y(t) = (y0 − y∗)e(2C−δ)t + y∗

where y∗ is the asymptotically stable long-run steady state given by

y∗ =
ai + aJ + 2B

δ − 2C
(> 0).

The long-run steady state y∗ depends on all the parameters, especially the sum of the technology

are required to be increasing in the control domains. This amounts to having the controls xk in the intervals [0 ak],
k ∈ {i, J}. These conditions are checked for the optimal and equilibrium solutions computed hereafter.
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levels, ai and aJ . A higher technology level, which translates into higher consumption, leads

to a higher level of long-run pollution. Consistently with the standard linear-quadratic model

considered, the convergence speed, (2C − δ), is independent of the technology levels, it rather

depends on time preference r, the unit damage of pollution, b, and Nature’s regeneration rate δ.

We notice that the two players’ aggregate consumption at the long-run steady state is obviously a

function of y∗ and is always positive:

x∗i (y
∗) + x∗J(y

∗) = ai + aJ + 2B + 2Cy∗ =
δ

δ − 2C
(ai + aJ + 2B) > 0,

where the last inequality comes from the fact that ai + aJ + 2B > 0. Furthermore, aggregate

consumption is always positive along the optimal trajectory path, that is,

x∗i (y) + x∗J(y) = ai + aJ + 2B + 2Cy = ai + aJ + 2B + 2C[(y0 − y∗)e(2C−δ)t + y∗]

= x∗i (y
∗) + x∗J(y

∗) + 2C(y0 − y∗)e(2C−δ)t > 0

∀y and ∀r, δ, ai, aJ , b > 0, provided y0 < y∗, which is a natural assumption. If there exists a unique

finite solution to (7), then using the Proposition above, the pollution stock would reach the value

y(T ) given by

y(T ) = (y0 − y∗)e(2C−δ)T + y∗. (9)

Accordingly, the total payoff of player i just before the splitting is thus

αW (T ) = α

[
(a2i + a1J − 2B2)(1− e−rT )

2r
− 2BC

∫ T

0
e−rty(t)dt− (C2 + b)

∫ T

0
e−rty2(t)dt

]
. (10)

It is straightforward that

dW (T )

dT
= e−rT

[
a2i + a2J − 2B2

2
− 2BCy(T )− (C2 + b)y2(T )

]
> 0 (11)

if and only if

y(T ) = (y0 − y∗)e(2C−δ)T + y∗ ∈ (0, y)

where

y =
−2BC +

√
4B2C2 + 2(C2 + b)(a2i + a2J − 2B2)

2(C2 + b)
(> 0). (12)

Incidentally, the analysis above provides an upper-bound condition for remaining in the coalition

in terms of pollution:

Corollary 1 Under the assumptions of Proposition 1, and provided that α > 0:

• if the initial condition checks y0 > y, then T = 0;

11



• if the coalition potential long-run steady state checks (y0 <)y∗ < y, then T = +∞.

The above corollary can be written in a more compact manner:

T


= 0, if y < y0,

∈ (0,+∞), if y0 < y < y∗,

= +∞, if y > y∗.

From (12), it is easy to see that lim
ai,aJ→0

y = 0, for all b > 0. By continuity when ai, aJ are

sufficiently small, and for any y0 > 0, it follows that y < y0, thus according to Corollary 1 it must

necessarily be that T = 0. In other words, when both players in the initial coalition have a low

enough development level, the coalition hardly exists. It is intuitive to see why. Both players here

are heavy polluters, in the sense that they do not extract much consumption from the pollutant.

None of them can make a remarkable effort to reduce pollution and alleviate the damage from the

common bad. Since player i does not perceive the gains of staying in the coalition, she will exit

immediately. Notice that here the motive for quitting the coalition is not free-riding in a strict

sense since player i also takes into account J ’s welfare when they remain in the coalition. Here the

coalition does not last because player i does no perceive any advantage for neither of them.

Additionally, it can be shown that for any ai, aJ not both zero, lim
b→0

y ≥ +∞ > lim
b→0

y∗ =
ai + aJ

δ
.9

When pollution damage is low and ai and aJ are not both close to zero, the coalition will remain

together forever. Intuitively, when pollution damage is negligible, then one would have expected

T to be 0 since there is no incentive to stay in the coalition. But, what we prove here is just the

opposite. The reason for this seemingly contradicting result comes from the fact that when b is

close to zero, both cooperation in the coalition and competition bring nearly identical welfare to

player i. Indeed, note that the limit case shows lim
b→0

x∗j = aj = lim
b→0

xmj for both j = i, J . Therefore,

when damage from pollution is low and if the coalition is already established, then the coalition

will last forever. However, if there was no coalition at time 0, then there is no incentive to form

one either.

Let us add some further comments on our results. A given level of pollution stock provides on

9It is easy to check that

y =

√
2(C2 + b)(ai + aJ)− 4bB2 − 2BC

2(C2 + b)

≥

[√
C2 + b− (4bC2/(r + δ − 2C)2)− 2C2

2(C2 + b)

]
(ai + aJ)

≡ S(b)(ai + aJ)

and

y∗ =
r + δ

δ(r + δ) + 4b
(ai + aJ).

Thus, one sufficient condition for y > y∗ is S(b) > y∗, for any ai and aJ not both zero. By l’Hopital’s rule,
limb→0 S(b) = +∞.

12



the one hand with utility via consumption, but on the other hand, it also generates disutility.

The positive effect on welfare is linear on emissions while the disutility generated by the stock of

pollution is quadratic. Hence, participating in a coalition makes sense especially when b is small

enough relative to the technological parameters ai and aJ . As a result, if there is no technological

progress (at least for one player), then coalitions make no sense if b > 0 whatever α ̸= 0. Conversely,

if b tends to zero, and technological progress is nonzero, then coalitions would last forever whatever

α ̸= 0. These mechanisms will play an important role in all the cases we study in the following

sections.

To study the interior situation where splitting happens in finite time, we impose the following

conditions on the parameters:

Assumption 1 The model parameters ensure that the following inequalities hold:

y0 < y < y∗.

Unfortunately, it’s not possible to explore analytically how this condition relates to the deep param-

eters of the model given the expressions of y, y∗, B and C. We shall fortunately obtain interpretable

expressions for the interior splitting conditions (and optimality) in the next section under the above

assumption.

Remark 1 Though it is not easy to clearly see if the parameter domains in which Assumption

1 holds are non-empty, it is not difficult to check it through numerical exercises. For example,

let r = 0.015 and δ = 0.0005. Considering that the damage parameter b is comparable with δ,

we take b ∈ [0.0001, 0.0002]. Furthermore, given that ai and aJ appear in Assumption 1 in the

form of ai + aJ , we set ai + aJ ∈ [0.3, 0.4]. It can be shown that with the above parameters values,

y∗ ∈ [19.7, 32] and y < y∗. Obviously, y0 can be chosen such that Assumption 1 holds. Nevertheless,

as mentioned in the last footnote, for any ai + aJ > 0, lim
b→0

y = +∞ > y∗ =
ai + aJ

δ
. Thus, with a

sufficiently small damage parameter b, Assumption 1 fails to hold. It is also not so difficult to see

that any combination of the parameters such that the numerator in y is negative leads to y < 0 < y0,

and thus violates Assumption 1.

3.2 Optimal strategies in the non-cooperative stage (after T )

Suppose player i quits the coalition at time T , and that after that both players play Markovian.

Consider Markovian subgame perfect strategies: the strategies are such that the choice variables xj

for player j = i, J , depend upon time and the current state: xi(t) = xi(t, y(t)), for all y. Since the

game is autonomous, we can directly study the stationary Markovian perfect equilibrium (MPE)

13



via the stationary HJB equations. If we denote the value functions of player j = i, J as Uj(y), they

must check check the following HJB equations for t ≥ T

rUj(y) = max
xj

[
ajxj −

x2j
2

− b y2

2
+ U ′

j(y) (xi + xJ − δy)

]
, j = i, J.

From these HJB equations, Appendix A.1 demonstrates the following existence results of the MPE.

Proposition 2 Suppose that player i quits the coalition at a finite time T , and that both players

i and J adopt Markovian strategies after the split. Then there exists a stable affine Markovian

subgame perfect Nash equilibrium

(xmi , xmJ ) = (ai +Bm + Cmy, aJ +Bm + Cmy) , ∀y,

with coefficients

Cm =
(r + 2δ)−

√
(r + 2δ)2 + 12b

6
(< 0), Bm =

(ai + aJ)C
m

r + δ − 3Cm
(< 0).

For a given initial condition at T , the corresponding optimal state trajectory is

ym(t) = (y(T )− ŷm)e(2C
m−δ)(t−T ) + ŷm, ∀t ≥ T,

where ŷm =
ai + aJ + 2Bm

δ − 2Cm
(> 0) is the asymptotically stable long-run steady state.

The following corollary can be then obtained.

Corollary 2 Under the assumptions of Propositions 1 and 2, it follows

y∗ < ŷm, ∀r, δ, b > 0.

The proof is detailed at Step 3 of Appendix A.1. Even if the coalition breaks down at T because the

option of staying in the coalition does not provide player i with higher welfare, the coalition does

better in terms of pollution. This a standard outcome in the environmental agreements literature.

Obviously, the decision to split can hardly be in general determined by the steady state pollution

criterion, especially if players go Markovian after the split like in our case. This will be crystal

clear in the next section devoted to the determination of the optimal splitting time.
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4 Optimal splitting time and its drivers with initially committed

coalition members

Under the above Markovian perfect Nash equilibrium, it is easy to obtain player i’s welfare in the

second period

Wm
i,II =

∫ +∞

T
e−rt

(
aixi −

x2i
2

− by2

2

)
dt

=
a2i − (Bm)2

2

∫ +∞

T
e−rtdt−Bm Cm

∫ +∞

T
e−rtym(t)dt− ((Cm)2 + b)

2

∫ +∞

T
e−rt(ym)2dt,

(13)

where ym(t) also depends on the splitting time T . In order to assess how the splitting time affects

player i’s welfare, we compute
dWm

i,II(y(T ))

dT using (13):10

dWm
i,II(y(T ))

dT = {[−rAm
i +Bm(ai + aJ + 2B)] + [Bm(2C − δ − r) + (ai + aJ + 2B)Cm]y(T )

+ [(2C − δ)− r/2]Cmy2(T )
}
e−rT = [â+ b̂y(T ) + ĉy2(T )]e−rT < 0 for 0 ≤ y(T ) < y,

> 0 for y(T ) > y,

(14)

with y the positive root of the second degree polynomial
dWm

i,II(y(T ))

dT = 0 11 and Am
i =

a2i
2r

+

(ai + aJ)B
m

r
+

3(Bm)2

2r
.

If y(T ) > ȳ, then
dWm

i,II(Y (T ))

dT > 0. Hence the later the splitting happens, if there is splitting

at all, the higher player i’s welfare in the second period. If this is the case, then player i would

postpone the splitting as much as possible. In other words, splitting never happens when the stock

of pollution is high enough, namely if y(t) > ȳ.

Recall that Assumption 1 explicitly states the precise condition under which the stock of pollution

is increasing over time. Thus if we assume that players i and J are initially in a coalition and that

y0 > y, then y(t) > y for all t ≥ 0, and there will be no splitting. We conclude in the following

corollary

10See Appendix A.2 for the details.
11The positive root is given by

y =
−b̂−

√
b̂2 − 4âĉ

2â

where â = [−rAm
i +Bm(ai+aJ +2B)] < 0, ĉ = [(2C− δ)− r/2]Cm > 0 and b̂ = Bm(2C− δ− r)+(ai+aJ +2B)Cm.

15



Corollary 3 Suppose Assumption 1 holds and that y0 > y, then splitting will never happen, that

is, T = +∞.

4.1 Optimal finite splitting time

In order to focus on the situation where splitting can happen in finite time, we must complete

Assumption 1 with the following (given the properties established just above):

Assumption 2 Suppose the initial condition and the parameter set check

y0 < y.

Obviously, if y∗ < y, then splitting may happen in finite time. If instead y0 < y < y∗, then splitting

can only take place before the pollution stock reaches the upper limit y. Otherwise, player i cannot

afford the damage cost from the accumulated pollution and would rather stay with player J .

Substituting the first and second periods’ welfare derivatives with respect to T , i.e. (11) and (14),

into the first order condition αdW (T )
dT +

dWm
i,II

dT = 0, it follows that the first-order optimality condition

is equivalent to:

Λ (ymT )2 +Σ ymT + Γ = 0, (15)

where ymT = ym(T ) stands for the stock of pollution at the switching time and the coefficients in

(15) are 
Λ = −α

(
C2 + b

)
+ Cm

(
2C − δ − r

2

)
,

Σ = −2αBC +Bm (2C − δ − r) + Cm (ai + aJ + 2B) ,

Γ = 1
2α

(
a2i + a2J − 2B2

)
− rAm

i +Bm (ai + aJ + 2B) .

(16)

The roots of (15), if they exist, are given by

ymT =
−Σ±

√
Σ2 − 4ΛΓ

2Λ
. (17)

Obviously, the existence of real roots is granted if and only if Σ2 − 4ΛΓ ≥ 0. The last inequality

condition is ensured by Λ ≤ 0 and Γ ≥ 0, which are equivalent to

α ≥ Cm (2C − δ − r/2)

C2 + b
≡ G(b) (18)

and

α ≥
1 +

[
3(Cm)2

(r+δ−3Cm)2
− 4CCm

(r+δ−3Cm)(r+δ−2C)

] (
aJ
ai

+ 1
)2

(
aJ
ai

)2
+ 1−

[
2C2

(r+δ−2C)2

] (
aJ
ai

+ 1
)2 ≡ F

(
aJ
ai

, b

)
. (19)
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In other words, there exists a finite splitting time Tm ∈ (0,∞) if the payoff share is large enough, for

given b. It can be readily shown that G(b) is increasing in b and that G(0) = 1
2 (see the Appendix

for all related computations). Consequently, the larger b, the larger the share α needed to make

finite time splitting possible. Moreover, as function G(.) is increasing, α should be always bigger

than one-half whatever b. As explained below Corollary 1, the larger b, the more reluctant player

i is to stay in the coalition. Only when the payoff share α is large enough, would player i remain

in the coalition (even if she will eventually leave it at some later time).

Again, as for condition (18), finite time splitting is granted if the payoff share is large enough,

although the involved lower bound in this case is different: in contrast to condition (18), the lower

bound also depends on the technological gap, aJ
ai
. We shall examine the implications below.

It should be noted that the above conditions result from the first-order condition, and we now move

to the analysis of the second-order condition. Given that parameters Λ,Σ and Γ are independent

of the switching time T , the second-order sufficient condition, αd2W (T )
dT 2 +

d2Wm
i,II

dT 2 < 0, holds if and

only if

[2Λym(T ) + Σ]
∂ym(T )

∂T
< 0.

Since the pollution stock is increasing over time, we also have that ∂ym(T )
∂T > 0 for any T . Then the

second-order sufficient condition holds if and only if

2ΛymT +Σ < 0. (20)

The above second-order condition is equivalent to

±
√
Σ2 − 4ΛΓ < 0.

If Λ < 0, then the unique optimizer of αW (T ) +Wm
i,II (T ) is at

ymT =
−Σ−

√
Σ2 − 4ΛΓ

2Λ
.

So the optimal finite splitting time, T , is unique. At the minute notice that combining Conditions

(18) and (19) ensures the existence of a unique optimal finite splitting time T . We summarize this

important result in the following proposition, and its detailed proof is reported in Appendix A.3.

Proposition 3 Let Assumptions 1 and 2 hold. Suppose player i quits the coalition at time T , and

after that players i and J adopt MPE given by Proposition 2. Suppose the sharing parameter α

checks

max

{
F

(
aJ
ai

, b

)
, G(b)

}
< α < 1 (21)
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where functions G(b) and F
(
aJ
ai
, b
)

are defined in (18) and (19). Furthermore, suppose that the

pollution quantity

ymT =
−Σ−

√
Σ2 − 4ΛΓ

2Λ
(22)

satisfies

y0 < ymT < y∗,

where Λ, Σ, Γ are given by (16). Then player i optimally quits the coalition at a finite time T:

T =
1

2C − δ
ln

(
ymT − y∗

y0 − y∗

)
. (23)

If Condition (21) fails to hold, then it can happen that either T = 0 and splitting is immediate,

or T = +∞ and there is no splitting at all. We shall pay more attention to the “corner” solution,

T = +∞ in the policy implications part of this section.

Note that Proposition 3 delivers an explicit solution for the optimal splitting time as none of the

terms involved in (23) depends on T . It should also be noted that both the splitting time and the

stock of pollution depend on the sharing parameter. Indeed, the optimal splitting time, given by

(23), depends on α through ymT ; and so do the level of the pollution stock at T and the conditions

that ensure its existence (in short, the second-order optimality conditions). Interestingly enough,

Condition (21) shows that the three fundamental ingredients of our model do matter in the duration

of coalitions: the sharing parameter, the pollution damage parameter, b, and the technological gap,
aJ
ai
.

The economic interpretation of Condition (21) involves the technological gap: for given technolog-

ical gap and pollution damage parameter, the payoff share under coalition is required to be large

enough for player i to engage in a coalition and to stay in for a finite time. Again, the constitutional

parameter α is key in the optimal institutional dynamics: it’s key for the existence of an optimal

finite time splitting, and it’s also key for the duration of the coalition (through the level of pollution

at the splitting time, ymT as explained above). We shall devote the next subsection to the latter

point. Meanwhile, we shall clarify the implications of Proposition 3 by specializing in two cases

depending on the ratio aJ
ai
:12 first, the case of a technologically lagged country i, aJ

ai
> 1, and then

a case where this country is more advanced.

Corollary 4 Under the assumptions of Proposition 3, and provided aJ
ai

> 1 and α > 1
2 , player i

optimally quits the coalition at time T if and only if α > G(b).

A technologically lagged country may remain in the coalition for any value of b provided the reward,

as captured by α, is large enough, and in any case, larger than 1
2 . Notice that this is true whatever

12A more general result is stated and proved in Lemma 1 in the Appendix.
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the value of the technological gap, provided it’s bigger than one. Suppose now that country i is

more advanced than J , what would the outcome be? We provide below a simple illustrative case.

Corollary 5 Let the assumptions of Proposition 3 be satisfied and let α > 1
2 . Assume that

aJ
ai

<

√
3− 2 +

√
12− 2

√
3

2 +
√
3

≈ 0.7, (24)

then

F

(
aJ
ai

, b

)
≥ G (b)

holds for all b ≥ 0. Therefore, (21) holds if and only if

F

(
aJ
ai

, b

)
< α.

Condition (21) is the single most important requirement in Proposition 3 since it provides a range

for α for the player to remain in the coalition, even temporarily. The condition states that player i

needs to retain a sufficiently large share of the total payoff to stay. In the case of a technologically

advanced country i, the technological gap shows up in the existence and optimality Condition (21)

contrary to the case of the lagged player i studied in Corollary 4. This is hardly surprising: a

lagged country will always benefit from a coalition if the pollution damage is small enough, at least

for a while, if her payoff share under coalition is good enough. However, as Corollary 5 shows, the

tradeoffs are more involved if the country is more advanced than the other coalition members (on

average). Suppose that the pollution damage parameter, b, is small, then the benefits for player i to

remain in the coalition are rather thin. In this case one may expect that the more advanced player

i’s technology, that’s the smaller the technological gap aJ
ai
, the larger the payoff share requested

by player i to remain in the coalition. The contrary also holds true, if the pollution damage is

large enough: in such a case, the more advanced the country, the lower the payoff share requested

to remain in the coalition.13 Proposition 3 and its corollaries show that our model is indeed able

to generate finely all the possible institutional configurations depending on three key parameters,

(α, b, aJai ).

4.2 Payoff sharing and the duration of coalitions

This section clarifies how the sharing parameter α affects the duration of a coalition. We already

know that the duration of the coalition is increasing in ymT , the pollution stock at the splitting time,

according to equation (23). A critical point is that the pollution stock at the splitting time, ymT , is

13We refer the reader to Appendix A.4 for a complete description and more general results.
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increasing in α if ymT ≤ y and decreasing in α if ymT > y, where y is defined in (12) and ymT in (22).

We can go a step further, Appendix A.5 shows the following results.

Theorem 2 Suppose there exists α0 ∈ [0, 1], such that, ymT (α0) satisfies 0 ≤ ymT (α0) < y, then

ymT (α) is increasing in α in a neighborhood of α0 in [0, 1]. Similarly, if there exists a value α0 such

that ymT (α0) > y, then ymT (α) is decreasing in α in a neighborhood of α0 in [0, 1].

To better grasp the importance of Theorem 2, let us link Assumption 1 and the last statement in

Proposition 3. Assumption 1 delivers a condition under which a coalition may split in finite time.

The first assumption of Theorem 1 states that if there exists a sharing parameter, α0, such that the

coalition can split in finite time, then increasing player i’s payoff share raises the stock of pollution

upon splitting ymT , leading in turn to a more durable coalition (by Proposition 3). Therefore, when

the stock of pollution generated by the coalition is relatively small, one obtains that the larger the

payoff share of player i, the later splitting (and the larger the subsequent pollution stock at the

splitting time). Recall that postponing T increases the joint payoff in the first stage of the game,

thus lengthening the coalition duration benefits both players i and J .

The opposite also holds true. If the payoff share of player i is such that the stock of pollution ymT
is relatively high, then the coalition is actually no longer beneficial (for player i)14 and an increase

in α fastens the splitting process.

The above results are based on the existence of one particular sharing strategy α0, which may be

difficult to find. The following corollary extends the conditions in Theorem 2 from one particular

point into an interval, which is easier to find and apply. A detailed proof is given in Appendix A.6.

Corollary 6 Suppose ymT (α) is real and nonnegative in a subinterval (α1, α2) ⊂ [0, 1]. Then, either

ymT (α) ≤ y in the entire subinterval (α1, α2), or ymT (α) ≥ y in the entire subinterval (α1, α2). In

particular, if

max

{
Cm (2C − δ − r/2)

C2 + b
,

2 [rAm
i −Bm (ai + aJ + 2B)]

a2i + a2J − 2B2

}
< 1,

then either ymT (α) ≤ y or ymT (α) ≥ y for all α that satisfies (21).

4.3 Policy insights

We shall now point at some potentially interesting policy insights one can extract from our the-

oretical analysis. Let’s first mention that while our model may seem too stylized to tackle “real”

splitting problems, it’s not more stylized than the typical two-stage or repeated games devoted to

14See the discussion after (11).
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this topic, surveyed in the Introduction: while it has some ingredients of differential games, it’s es-

sentially a two-stage game, the first stage being the coalition stage. There are two main differences

with respect to the vast majority of dynamic or two-stage games in this topic. First, the initial

coalition is defined by a profit sharing scheme that is not necessarily an equilibrium of any sort, so

that the coalition is not necessarily stable. And second, the duration of the first stage is itself the

direct result of the individual decision of a particular player. It’s very hard to argue that this latter

trait is unrealistic, this is exactly how the environmental agreements/protocols and other political

coalitions have been unravelled.

Our analysis brings several interesting results along Sections 3, 4.1 and 4.2. Let’s stress one of them:

as clearly stated in Corollaries 4 and 5, only “big” enough countries may under certain conditions

quit the coalition. More precisely, optimal finite time splitting requires α > 1
2 . Recall that the

payoff share is determined by the Constitution of the coalition, reflecting in particular the relative

historical, geographic, demographic and economic weight of the countries. If the Constitution is

also meant to guarantee no-splitting, two avenues can be taken within our framework. One is to

counterbalance the impact of too large payoff share (in the sense of Corollaries 4 and 5) by adding

penalties to the constitution, making sure that penalties are increasing enough in the payoff share

to discourage splitting. The second (non-exclusive) solution is to limit by constitution the payoff

share of all individual players, which guarantees that everlasting coalitions are the unique optimal

institutional arrangement. In our theory, such an arrangement can be possible under the following

conditions summarized in the following proposition.

Proposition 4 Suppose α is chosen according to

α < min

{
G (b) , F

(
aJ
ai

, b

)}
,

thus violating Condition (21). Then, the coalition optimally lasts forever provided the initial pollu-

tion, y0 is large enough.

Technically speaking, Proposition 4 delivers conditions under which the “corner” solution, T = ∞,

is optimal. With respect to the optimal finite time splitting case, not only Condition (21) is violated:

the stability of the everlasting coalition also requires the initial pollution to be large enough,

which indeed also violates the second condition stated in Proposition 3 (that is, y0 < ymT < y∗).15

Therefore, a Constitution which limits the payoff share to the upper bound identified in Proposition

4 depending on the pollution damage and the relative technological position of each country would,

in our model, allow for coalition splitting if the level of pollution is threatening enough. Of course,

if the pollution level is small, then coalitions are much less attractive, and they would not even

exist. That is, the corner solution T = 0 would arise in such a case.

15In the Appendix, we show that yo large enough corresponds indeed to y0 > ym
T .
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Finally, one can show that there is an interval of α on which the coalition lasts forever, without

assuming any lower bound on initial pollution. Instead, we require a lower bound for the share α.

Let

α =
Cm (2C − δ − r/2)

C2 + b

and let α̂ satisfies the linear equation

Λ (α̂) (y∗)2 +Σ(α̂) y∗ + Γ (α̂) = 0

where y∗ is defined by (22). Furthermore, let α̃ be the first root greater than α such that

(Σ (α̃))2 − 4Λ (α̃) Γ (α̃) = 0.

If there is no such α̃, we let α̃ = +∞. Then, it can be shown that

0 < α < min {1, α̂, α̃}

and

Proposition 5 Suppose y0 < y∗. Then T = ∞ if α satisfies

α < α ≤ min {1, α̂, α̃} . (25)

The proof is given in Appendix A.8.

5 The linear-quadratic game with an initially uncommitted coali-

tion member

In this section we consider that player i does not behave as if the coalition would last forever.

That is, the player is forward-looking in what concerns splitting and inherent timing. To unburden

the presentation and get the comparison with the “committed” case at glance, we shall focus on

the identification of the coalition break-up point denoted in this section y∗T , which is indeed the

counterpart of ymT given by (22) in Subsection 4.1. Similarity between the two expressions will

readily show up and confirm our claim in the Introduction.

Without the commitment assumption, the optimal controls (x∗i (t) , x
∗
J (t)) at the cooperative stage

are not given by Proposition 1 because the joint value function at this stage is not a quadratic

function of y. As a consequence the coalition breaks up at a different point. The next Proposition

gives expression of y∗T .
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Proposition 6 Let

λ = −α
(
4 (Cm)2 + b

)
+ Cm

(
4Cm − δ − r

2

)
σ = −8αBmCm +Bm (4Cm − δ − r) + Cm (ai + aJ + 4Bm)

γ = α
2

[
a2i + a2J − 8 (Bm)2

]
− rAm

i +Bm (ai + aJ + 4Bm)

(26)

where Bm, Cm are given in Proposition 2, and Am
i is given in (31) with j = i. Suppose that all

players jointly optimize the utility∫ T

0
e−rt

[
aixi + aJxJ −

x2i + x2J
2

− by2
]
dt

in the coalition stage until the splitting time, T , and that the joint value function W (y) for the

coalition is differentiable. Then, the breaks up point y∗T = y (T ) satisfies the equation

y∗T =
−σ −

√
σ2 − 4λγ

2λ
(27)

provided the right-hand side of (27) falls on the interval (0,∞).

The detailed proof is given in Appendix C. Comparing (26) and (27) with (16) and (22), we see that

ymT becomes y∗T if B and C in (16) are changed to 2Bm and 2Cm, respectively. As a consequence, a

similar sequence of results and implications can be derived with the same constructive approach as

in the “committed” case, starting with a counterpart to the main Proposition 3. By construction

and given the similarity of the algebra, the “uncommitted” and “commited” cases will deliver

similar qualitative results. In particular, for coalitions to break down, the share α has to be large

enough. Of course, the threshold values for α are no longer the same but the policy implications

remain the same.16

6 Conclusion

In this paper, we have presented an alternative view of the coalition breakdown problem. Motivated

by the most recent related events (in particular, unilateral withdrawal of several countries from

institutional or environmental agreements), we have built up an alternative framework in which

the sharing rules under the initial coalitions may not be necessarily optimal, and in which, because

the coalitions are initially viewed as essential or existential, members act as if they will stay for

ever. We have formulated and solved the corresponding, endogenous splitting problem assuming

the renegotiation of the initial coalition consitutional rules are impossible or too costly.

16Comparison of the coalition durations in the two cases is not possible analytically. Our numerical exercises show
however that the coalition survival is higher in the “committed” case, which is far from surprising.
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We have solved the specific two-stage differential game induced by our alternative theory, and

derived several highly nontrivial results on the technological/constitutional characteristics of the

splitting coalitions and on the way the sharing rules could be set in order to prevent coalition

breakdown. We have also solved the counterpart dynamic game where the players do anticipate

splitting from t = 0 and act accordingly in a forward-looking manner. Despite the induced solution

scheme is opposite to our alternative theory, the ultimate optimal splitting problems are shown to

be analogous as well as the main policy (qualitative) implications. That’s, while alternative, our

framework is far from generating crazy outcomes. Of course, our analysis is preliminary in that it

is for example restricted to time-invariant coalition payoff sharing rules. While our methodological

approach can be still applied, analytical tractability is likely to be less conclusive than in our current

benchmark.

A Appendix

A.1 Proof of Proposition 2 and Corollary 2

The proof is completed in three steps: step 1 demonstrates the existence of affine-linear Marvkovian

Nash equilibrium; step 2 shows the stability and step 3 provides steady states comparison.

Step 1. Existence of Markovian Nash equilibrium

Define the Bellman Value function of player j = i, J as Uj(y), which must check the following HJB

equation: for t ≥ T ,

rUj(y) = max
xj

[
ajxj −

x2j
2

− b y2

2
+ U ′

j(y) (xi + xJ − δy)

]
, j = i, J.

Then the first order condition yields

xmj (t) = aj + U ′
j(y(t)). (28)

Guess

Uj(y) = Aj +Bjy +
Cj

2
y2, and j = i, J,

then

U ′
j(y) = Bj + Cjy.

Substituting xi = ai +Bi +Ciy and xmJ (t) = aJ +BJ +CJy(t) into the HJB equations, comparing
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coefficients on both hand sides, it yields
rAi =

(ai+Bi)
2

2 + (aJ +BJ)Bi,

(r + δ − Ci − CJ)Bi = Ci(ai + aJ +BJ),

(r + 2δ)Ci = C2
i + 2Ci CJ − b,

(29)

and 
rAJ = (aJ+BJ )

2

2 + (ai +Bi)BJ ,

(r + δ − Ci − CJ)BJ = CJ(ai + aJ +Bi),

(r + 2δ)CJ = C2
J + 2Ci CJ − b,

(30)

Remark. More generally, if bi ̸= bJ , then the b in the last two equations should be bi and bJ

respectively.

Solving the above two group equations system simultaneously, it follows that the only coefficients

which yields valid Bellman value functions are

Ci = CJ =
(r + 2δ)−

√
(r + 2δ)2 + 12b

6
≡ Cm, and Bi = BJ =

(ai + aJ)C
m

r + δ − 3Cm
≡ Bm,

and

Am
j =

a2j
2r

+
(ai + aJ)B

m

r
+

3(Bm)2

2r
, j = i, J. (31)

Thus the Markovian Nash equilibrium is given by

(xmi , xmJ ) =
(
ai + U ′

i(y), aJU
′
J(y)

)
= (ai +Bm + Cmy, aJ +Bm + Cmy) , ∀y.

Step 2 Stability

The stability is straightforward by substituting the above Markovian Nash equilibrium into the

state equation, it yields

ẏ = (ai + aJ + 2Bm) + (2Cm − δ)y ∀t ≥ T

with y(T ) coming from the first period cooperation and T unknown. The explicit solution is thus

straightforward as given in the Proposition. Furthermore, it is easy to obtain that long-run steady

state

ym(t) = (y(T )− ŷm)e(2C
m−δ)t + ŷm(> 0).

Given 2Cm − δ < 0, for any y(T ), the trajectory asymptotically converges to this steady state.
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Step 3. Proof of Corollary 2

We can easily rewrite two steady states of pollution as

y∗ =
ai + aJ + 2B

δ − 2C
= (ai + aJ)

r + δ

(δ − 2C)(r + δ − 2C)

and

ŷm =
ai + aJ + 2Bm

δ − 2Cm
= (ai + aJ)

r + δ − Cm

(δ − 2Cm)(r + δ − 3Cm)
.

Therefore, in order to compare which steady state yields higher pollution, we only need to compare

h1 ≡
r + δ

(δ − 2C)(r + δ − 2C)
=

r + δ

δ(r + δ)− 2(r + 2δ)C + 4C2

and

h2 ≡
r + δ − Cm

(δ − 2Cm)(r + δ − 3Cm)
=

r + δ − Cm

δ(r + δ)− 2(r + 2δ)Cm + 6(Cm)2 − δCm
.

It is easy to see that

C < Cm < 0, ∀r, δ, b > 0.

Thus,

−C > −Cm > 0, C2 > (Cm)2 > 0,

and

−2C(r + 2δ) + 4C2 > −2Cm(r + 2δ) + 4(Cm)2.

So it is straightforward that

h1 =
r + δ

δ(r + δ)− 2C(r + 2δ) + 4C2
<

r + δ

δ(r + δ)− 2Cm(r + 2δ) + 4(Cm)2
.

Furthermore, simple algebra yields that

r + δ

δ(r + δ)− 2Cm(r + 2δ) + 4(Cm)2
<

r + δ − Cm

δ(r + δ)− 2(r + 2δ)Cm + 6(Cm)2 − δCm
= h2.

Hence,

h1 < h2 and y∗ < ŷm, ∀r, δ, b > 0.

That completes the proof.
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A.2 The first order condition

In this section, we obtained the derivative of second period’s welfare with respect to time, (14),

and the first order condition at the same time.

Suppose rAm
i > Bm (ai + aJ + 2B) and Assumption 1 holds. The switching time T must be given

by the FOC

α
dW (T )

dT
+

dWm
i,II

dT
= 0,

provided the second order sufficient condition holds:

α
d2W (T )

dT 2
+

d2Wm
i,II(T )

dT 2
< 0.

By definition,

Wm
i,II =

∫ +∞

T
e−rt

(
aixi −

x2i
2

− by2

2

)
dt

=

∫ +∞

T

e−rt

2

(
a2i − (Bm)2 − 2BmCmy (t)−

(
(Cm)2 + b

)
y (t)2

)
dt

where y(t) is a function of ym (t), which depends on T . Direct calculation yields:

dWm
i,II

dt
=

e−rT

2

[
−a2i + (Bm)2 + 2BmCmy (T )−

(
(Cm)2 + b

)
y (T )2

]
+

∫ +∞

T

e−rt

2

[
−2BmCm∂ym

∂T
− 2

(
(Cm)2 + b

)
ym

∂ym

∂T

]
dt.

In order to obtain explicit result, we try to get rid of the term ∂ym

∂T in the above first order derivative.

Let V σ
j (y) be the value function of Player j in Mode σ when the value of the state variable is y, for

j = i, J and σ = 1, 2, where σ = 1 represents the mode before splitting, and σ = 2 after splitting.

In Mode 1 the players have the unchangeable Markovian strategies

xj = aj +B + Cy for j = i, J.

In addition, Player i has the impulse control in Mode 1 to exit the coalition. In Mode 2, the players

have the value functions V 2
j (y) = Uj (y) for j = i, J . The optimal strategy of Player i’s impulse

control results in maximization of the value V 1
i (y) for y < ym, where ym is the value of y when

Player i breaks up with the coalition. Hence, we have

V 1
i (ym) = V 2

i (ym) ≡ Ui (y
m) (32)
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and ∂ymV
1
i (y) = 0 for any y < ym. Since in Mode 1, Player i has the instantaneous utility

α

[
aixi + aJxJ −

x2i + x2J
2

− by2
]
= α

[
a2i + a2J −B2 − 2BCy −

(
C2 + b

)
y2
]
,

and the equation of dynamics is

ẏ = xi + xJ − δy ≡ ai + aJ + 2B + (2C − δ) y.

The HJB equation for V 1
i is

rV 1
i = α

[
a2i + a2J −B2 − 2BCy −

(
C2 + b

)
y2
]
+

dV 1
i

dy
[ai + aJ + 2B + (2C − δ) y] for y < ym

subject to the terminal condition (32). The solution can be written in the integral form

V 1
i (y) = Ui (y

m) +

∫ y

ym

dV 1
i (z)

dy
dz

= Ui (y
m) +

∫ y

ym

rV 1
i (z)− α

[
a2i + a2J −B2 − 2BCz −

(
C2 + b

)
z2
]

ai + aJ + 2B + (2C − δ) z
dz

for y < ym. Differentiating both sides with respect to ym and using the condition ∂ymV
1
i (y) = 0

we find

0 = U ′
i (y

m)−
rV 1

i (ym)− α
[
a2i + a2J −B2 − 2BCym −

(
C2 + b

)
(ym)2

]
ai + aJ + 2B + (2C − δ) ym

.

Since

V 1
i (ym) = Ui (y

m) = Am
i +Bmym +

Cm

2
(ym)2 and

U ′
i (y

m) = Bm + Cmym,

we obtain that the first order condition is equivalent to

(Bm + Cmym) [ai + aJ + 2B + (2C − δ) ym] = r

(
Am

i +Bmym +
Cm

2
(ym)2

)
− α

[
a2i + a2J −B2 − 2BCym −

(
C2 + b

)
(ym)2

]
,

and

dWm
i,II

dT
=

{
−r

(
Am

i +Bmy (T ) +
Cm

2
y (T )2

)
+ (Bm + Cmy (T )) (ai + aJ + 2B + (2C − δ) y (T ))} e−rT .
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Combining with (11), we obtain

α
dW (T )

dT
+

dWm
i,II

dT
= e−rT

{
Λym (T )2 +Σym (T ) + Γ

}
where the coefficients are given in (16).

That completes the proof.

A.3 Proof of Proposition 3

In the last subsection, the above first order condition can be rewritten as the following second

degree polynomial in term of y(T ):

Λ ym(T )2 +Σ ym(T ) + Γ = 0.

The roots, if they exist, are given by

ym(T ) =
−Σ±

√
Σ2 − 4ΛΓ

2Λ
. (33)

Given that the parameters Λ,Σ and Γ are independent of switching time T , the second order

sufficient condition holds if and only if

(2Λy(T ) + Σ) y′(T ) < 0.

Given the assumption that pollution accumulation is increasing over time, that is, y′(T ) > 0 is

always true, then the second order sufficient condition holds if and only if

2Λy(T ) + Σ < 0. (34)

Combining the second order condition (34) and the explicit solution (17), it follows that

2Λy(T ) + Σ = ±
√
Σ2 − 4ΛΓ < 0

if and only if the negative sign is taken in the explicit solution (17). Taking into account that only

positive pollution level is possible, then

ym(T ) = −Σ+
√
Σ2 − 4ΛΓ

2Λ
> 0,

which is true if Λ < 0, Γ > 0 (these two inequality implicitly guarantee the existence of a real

29



positive solution from FOC) and regardless the sign of Σ. Condition Λ < 0 is equivalent to

α >
Cm (2C − δ − r/2)

C2 + b
≡ G(b)

and Γ > 0 if and only if

α >
2 [rAm

i −Bm (ai + aJ + 2B)]

a2i + a2J − 2B2
≡ F (aJ , ai, b).

To finish the proof, from the explicit solution,

y(T ) = (y0 − y∗)e(2C−δ)T + y∗ = ym.

rearranging terms, it yields that

T =
1

2C − δ
ln

(
ym − y∗

y0 − y∗

)
.

Recall Assumption 1 guarantees that y0 < y(T ) < y∗, thus, 0 < ym−y∗

y0−y∗ < 1 and

T ∈ (0,+∞).

That completes the proof.

A.4 Profs of Corollaries 4 and 5.

We first prove

Lemma 1 Let the assumptions of Proposition 3 be satisfied. Then the following properties hold.

1. For aJ and ai that satisfies (24), relation

F

(
aJ
ai

, b

)
≥ G (b)

holds for all b ≥ 0.

2. For aJ and ai that satisfies

√
3− 2 +

√
12− 2

√
3

2 +
√
3

<
aJ
ai

< 1, (35)
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there is b∗ (aJ/ai) such that

F

(
aJ
ai

, b

)
> G (b) if and only if b < b∗

(
aJ
ai

)
.

Hence, (21) holds if

F

(
aJ
ai

, b

)
< α for b < b∗

(
aJ
ai

)
and

G (b) < α for b > b∗
(
aJ
ai

)
.

3. For aJ and ai that satisfies
aJ
ai

≥ 1 (36)

relation

F

(
aJ
ai

, b

)
≤ G (b)

holds for all b > 0.

Proof. Part 1. We rewrite F (aJ , ai, b) as

F

(
aJ
ai

, b

)
=

1 +
[

3(Cm)2

(r+δ−3Cm)2
− 4CCm

(r+δ−3Cm)(r+δ−2C)

] (
aJ
ai

+ 1
)2

(
aJ
a1

)2
+ 1−

[
2C2

(r+δ−2C)2

] (
aJ
ai

+ 1
)2 .

For shorter notation, denote x = aJ
ai
, H = 3(Cm)2

(r+δ−3Cm)2
, K = 4CCm

(r+δ−3Cm)(r+δ−2C) and L = 2C2

(r+δ−2C)2
,

then

F (x, b) = F

(
aJ
ai

, b

)
=

1 + (1 + x)2(H −K)

x2 + 1− (1 + x)2L
, (37)

with H −K < 0 and L < 1/2. Thus, the condition on α can be shortened as:

max{G(b), F (x, b)} < α < 1.

Straightforward algebra yields that ∀r, δ > 0,

lim
b→0

G(b) =
1

2
, lim

b→+∞
G(b) =

1√
3
, and

dG(b)

db
> 0, lim

b→0

dG(b)

db
= 0,

thus

G(b) ∈
(
1

2
,
1√
3

)
, ∀b > 0.
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Again straightforward, though cumbersome, algebra yields that

lim
b→0

F (x, b) =
1

x2 + 1
, lim

b→+∞
F (x, b) =

1− (1 + x)2 /3

x2 + 1− (x+ 1)2 /2
. (38)

Furthermore,

∂F (x, b)

∂b
> 0 if x <

√
2

2
,

∂F (x, b)

∂b
< 0 if x >

√
3

5

for all b > 0 and there is b̂ > 0 such that

∂F (x, b)

∂b
=

 > 0, if 0 < b < b̂,

< 0, if b > b̂,
if

√
2

2
≤ x ≤

√
3

5
. (39)

Note that
1− (1 + x)2 /3

x2 + 1− (x+ 1)2 /2
>

1√
3

if and only if (24) holds with x = aJ/ai. Therefore

F (x, b) >
1√
3
≥ G (b) for any b > 0

if (24) holds. This proves Part 1.

Part 2. Since x = aJ/ai satisfies the reversed inequality in (24),

lim
b→∞

F (x, b) =
1− (1 + x)2 /3

x2 + 1− (x+ 1)2 /2
<

1√
3
.

In addition

lim
b→0

F (x, b) =
1

x2 + 1
>

1

2
= lim

b→0
G (b) ,

by the intermediate value theorem, there is a b∗ (x) such that

G (b) = F (x, b∗ (x)) .

We show that b∗ (x) is the only solution to the above equation and{
G(b) < F (x, b), if 0 < b < b∗ (x) ,

G(b) > F (x, b), if b > b∗ (x) .
(40)

Since
1√
2
<

√
3− 2 +

√
12− 2

√
3

2 +
√
3

<

√
3

5
,
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F (x, b) is either decreasing in b for all b or there is a b̂ > 0 such that (39) holds if

x >

√
3− 2 +

√
12− 2

√
3

2 +
√
3

.

In the former case, since G(b) is increasing, it is obvious that b∗ (x) is the only solution and (40)

holds. In the latter case, F (x, b) is bell-shaped. Note that

lim
b→0

F (x, b) =
1

x2 + 1
>

5

8
>

1√
3
= lim

b→∞
G (b) if x <

√
3

5
,

it follows that

F (x, b) ≥ lim
b→0

F (x, b) > lim
b→∞

G (b) if b < b̂.

Therefore, b∗ (x) > b̂. Since F (x, b) is decreasing in b for b > b̂, we again find b∗ (x) is the only

solution and (40) holds.

Part 3. Since x ≥ 1, it follows that

lim
b→0

F (x, b) =
1

x2 + 1
≤ 1

2
= lim

b→0
G (b) .

Furthermore, since x >
√

3/5, F (x, b) is decreasing in b. Hence, since G (b) is increasing in b, we

find

F (x, b) ≤ lim
b→0

F (x, b) ≤ lim
b→0

G (b) ≤ G (b) .

This completes the proof.

Now, Corollary 4 follows directly from Part 3 of Lemma 1, and Corollary 5 follows directly from

Part 1 of Lemma 1.

A.5 Proof of Theorem 2

We first show that y is a positive real number. Since C < 0, it follows that

|B| = (ai + aJ) |C|
r + δ + 2 |C|

<
ai + aJ

2
.

Hence,

a2i + a2J − 2B2 > a2i + a2J − (ai + aJ)
2

2
=

1

2
(ai − aJ)

2 ≥ 0.

Therefore the numerator in (12) is positive. This proves the assertion.

Note that Λ, Σ, Γ and ym all depend on α. We use Λ (α), Σ (α), Γ (α), and ym (α) to indicate the

dependence.
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By Proposition 3, ym (α) is a solution to the quadratic equation

Λ (α) (ym)2 +Σ(α) ym + Γ (α) = 0.

Let

F (y, α) = Λ (α) y2 +Σ(α) y + Γ (α) .

Then, F (ym (α) , α) = 0 and
dym (α)

dα
= −Fα (y

m (α) , α)

Fy (ym (α) , α)
. (41)

By differentiation,

Fα (y
m (α) , α) = Λα (α) (y

m (α))2 +Σα (α) y
m (α) + Γα (α)

= −
(
C2 + b

)
ym (α)2 − 2BCym (α) +

1

2

(
a2i + a2J − 2B2

)
,

Fy (y
m (α) , α) = 2Λ (α) ym (α) + Σ (α) .

It is shown in the Proof of Proposition 3 that 2Λ (α) ym (α) + Σ (α) < 0 (see (20)). Note that y is

the only positive solution to the quadratic equation

−
(
C2 + b

)
y2 − 2BCy +

1

2

(
a2i + a2J − 2B2

)
= 0.

Hence, since ym (α0) < y,

Fα (y
m (α0) , α0) = −

(
C2 + b

)
(ym (α0))

2 − 2BCym (α0) +
1

2

(
a2i + a2J − 2B2

)
> 0.

It follows that dym/dα > 0 at a0. Hence ym (α) is nondecreasing in α in a neighborhood of α0.

This proof for the other case is similar. This completes the proof.

A.6 Proof of Corollary 6

Suppose there are points α̂, α̃ ∈ (α1, α2) such that ym (α̂) < y < ym (α̃). Then ym (α) is increasing

in α at α̂ and it is decreasing in α at α̃. It is not possible that α̃ < α̂ because otherwise there

would exist an ᾱ, α̃ < ᾱ < α̂ such that ym (ᾱ) is the minimum of ym (α) between α̃ and α̂. Thus

dym (ᾱ) /dα = 0.

However, by (41), Fα (y
m (ᾱ) , ᾱ) = 0, which implies that ym (ᾱ) = y. Therefore, ym (ᾱ) = y >

ym (â), which is a contradiction. So it is necessary that α̂ < α̃. In this case there is ᾱ such that

α̂ < ᾱ < α̃ and ym (ᾱ) is the maximum of ym (α) between α̂ and α̃. Hence, again dym (ᾱ) /dα = 0

and we have ym (ᾱ) = y < ym (α̃). This is again a contradiction. Therefore no such points α̂ and

α̃ exist.
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This completes the proof.

A.7 Optimal splitting time: interior vs corner solutions

The optimal splitting time, T , satisfies the equation

α
dW (T )

dT
+

dWm
i,II (T )

dT
= 0.

By (11) and (14), the left-hand side can be written as

e−rT
[
Λym (T )2 +Σym (T ) + Γ

]
where Λ, Σ, and Γ are given by (16). We define

η (y) = Λy2 +Σy + Γ.

In the case where Λ ̸= 0, η (y) has two roots

ym1 =
−Σ−

√
Σ2 − 4ΛΓ

2Λ
, ym2 =

−Σ+
√
Σ2 − 4ΛΓ

2Λ

which are real if

Σ2 ≥ 4ΛΓ,

and in the case where Λ = 0, η (y) has one root

ym0 = −Γ/Σ

provided that Σ ̸= 0.

Using G (b) and F (aJ/ai, b) defined in (18) and (19),

Λ < 0 ⇐⇒ α > G (b) , Γ > 0 ⇐⇒ α > F

(
aJ
ai

, b

)
.

There are four possible cases.

Case 1:

α > max {G (b) , F (aJ/ai, b)} .

In this case, Λ < 0 and Γ > 0. So η has one positive root, ym1 . Furthermore, η (y) > 0 if y < ym1
and η (y) < 0 if y > ym1 . So if y (0) < ym1 , coalition can be formed and lasts until y (T ) = ym1 , and

if y (0) ≥ ym1 , coalition cannot be formed.
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Case 2:

F (aJ/ai, b) ≤ α ≤ G (b) .

In this case, Γ ≥ 0 and Λ ≥ 0. There are four subcases, (1) Λ = 0 and Σ < 0, (2) Λ = 0 and Σ ≥ 0,

(3) Λ > 0 and Σ2 ≤ 4ΛΓ, and (4) Λ > 0 and Σ2 > 4ΛΓ.

In subcase (1), η (y) is linear and has one positive root, ym0 . Also, η (y) > 0 if y < ym0 and η (y) < 0

if y > ym0 . So if y (0) < ym0 , the coalition lasts until y (T ) = ym0 , and if y (0) ≥ ym0 , a coalition

cannot be formed.

In subcases (2) and (3), η (y) ≥ 0 for all y > 0. Therefore, coalition lasts forever.

In subcase (4), η (y) has two positive roots ym1 and ym2 if Σ < 0. It is clear that ym1 < ym2 , and

η (y) > 0 for y < ym1 or y > ym2 , and η (y) < 0 for ym1 < y < ym2 . So if y (0) < ym1 , coalition

continues until pollution reaches ym1 . If ym1 ≤ y (0) ≤ ym2 , a coalition cannot be formed, and if

y (0) > ym2 , the coalition lasts forever.

Case 3:

G (b) ≤ α ≤ F (aJ/ai, b) .

In this case Λ ≤ 0 and Γ ≤ 0. There are four subcases, (1) Λ = 0 and Σ ≤ 0, (2) Λ = 0 and Σ > 0,

(3) Λ < 0 and Σ2 ≤ 4ΛΓ, and (4) Λ < 0 and Σ2 > 4ΛΓ.

In subcases (1) and (3), η (y) is nonpositive for all y > 0. So a coalition cannot be formed.

In subcase (2) η (y) < 0 if y < ym0 and η (y) > 0 if y > ym0 . So if y (0) < ym0 , a coalition cannot be

formed, and if y (0) > ym0 , the coalition lasts forever.

In subcase (4), both ym1 and ym2 are nonnegative, and η (y) < 0 for y < ym1 or y > ym2 and

η (y) > 0 for ym1 < y < ym2 . So if y (0) < ym1 or y (0) > ym2 , a coalition cannot be formed, and If

ym1 ≤ y (0) ≤ ym2 , the coalition continues until y (T ) = ym2 .

Case 4:

α < min {G (b) , F (aJ/ai, b)} .

In this case Γ < 0 and Λ > 0. So η has one positive root, ym2 . Also, η (y) changes from negative to

positive as y passes through ym2 . So if y (0) < ym2 , a coalition cannot be formed, and if y (0) ≥ ym2 ,

the coalition lasts forever.

Note that Proposition 4 follows from this conclusion.
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A.8 Proof of Proposition 5

By computation,

α =
r + 2δ +

√
(r + 2δ)2 + 16b

2

[
r + 2δ +

√
(r + 2δ)2 + 12b

] . (42)

It can be shown that the right-hand side is increasing in b. Hence

1

2
< α <

1√
3
< 1.

We show that Σ (α) > 0. This is equivalent to showing that

Bm (2C − δ − r) + Cm (ai + aJ + 2B) > 2α̂BC. (43)

By computation

Bm (2C − δ − r) =

2b (ai + aJ)

[
r +

√
(r + 2δ)2 + 16b

]
[
r +

√
(r + 2δ)2 + 12b

] [
r + 2δ +

√
(r + 2δ)2 + 12b

] ,
Cm (ai + aJ + 2B) =

−4b (ai + aJ) (r + δ)[
r +

√
(r + 2δ)2 + 16b

] [
r + 2δ +

√
(r + 2δ)2 + 12b

] ,
BC =

32b2 (ai + aJ)[
r +

√
(r + 2δ)2 + 16b

] [
r + 2δ +

√
(r + 2δ)2 + 16b

]2 .
Substituting the above and (42) into (43) and cancel common factors, the inequality is equivalent

to (
r +

√
(r + 2δ)2 + 16b

)2

r +
√

(r + 2δ)2 + 12b
− 16b

r + 2δ +
√
(r + 2δ)2 + 16b

> 2 (r + δ) . (44)

Note that

− 16b

r + 2δ +
√
(r + 2δ)2 + 16b

= r + 2δ −
√
(r + 2δ)2 + 16b.

The left-hand side of (44) can be written as(
r +

√
(r + 2δ)2 + 16b

)2

+

[
r + 2δ −

√
(r + 2δ)2 + 16b

] [
r +

√
(r + 2δ)2 + 12b

]
r +

√
(r + 2δ)2 + 12b

. (45)
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Since

r + 2δ −
√

(r + 2δ)2 + 16b < 0,

√
(r + 2δ)2 + 12b <

√
(r + 2δ)2 + 16b,

it follows that [
r + 2δ −

√
(r + 2δ)2 + 16b

] [
r +

√
(r + 2δ)2 + 12b

]
>

[
r + 2δ −

√
(r + 2δ)2 + 16b

] [
r +

√
(r + 2δ)2 + 16b

]
=

[
r2 − (r + 2δ)2 − 16b

]
+ 2δ

[
r +

√
(r + 2δ)2 + 16b

]
.

Thus, the numerator of the quotient in (45) is greater than

r2 + (r + 2δ)2 + 16b+ 2r

√
(r + 2δ)2 + 16b+

[
r2 − (r + 2δ)2 − 16b

]
+ 2δ

√
(r + 2δ)2 + 16b

= 2r2 + 2 (r + δ)

√
(r + 2δ)2 + 16b+ 2δr = 2 (r + δ)

[
r +

√
(r + 2δ)2 + 16b

]
> 2 (r + δ)

[
r +

√
(r + 2δ)2 + 12b

]
.

As a result, the quotient in (45) is greater than 2 (r + δ). This proves (44), which is equivalent to

Σ (α) > 0.

Since Σ (α) > 0, Λ (α) = 0 and Λ (α) < 0 for α > α, it follows from (22) that ymT (α) exists for

α > α and is near α. In addition,

lim
α→α+

ymT (α) = ∞.

Hence, for α > α and is near α, ymT (α) > y. By Theorem 2 and Corollary 6, ymT (α) is decreasing

in α for all α > α at which ymT (α) exists. As α increases, ymT (α) continues to exists until either α

reaches α̃ if α̃ is finite, or α reaches α̂, or α reaches 1, whichever arrives earlier. If α̃ ≤ min {α̂, 1},
then for any α ∈ (α, α̃)

ymT (α) > y∗. (46)

By Proposition 3, T = ∞. If α̂ ≤ min {α̃, 1}, then (46) holds for α ∈ (α, α̂). Hence, T = ∞.

Finally, if 1 ≤ min {α̂, α̃}, (46) holds for α ∈ (α, 1). So, T = ∞.

This completes the proof.

B Heterogeneous strategies

In this section, we illustrate one “out of equilibrium” outcome in which one player re-optimizes

its behaviour after the fall of a coalition but the remaining members don’t. The motivation draws
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from the facts that Canada withdrew from Kyoto Protocol on December 13, 2011, the U.S. ceased

its participation in the 2015 Paris Agreement on climate change mitigation in 2017 and the United

Kingdom withdrew from the European Union on January 31, 2020. In all three examples, the

remaining coalition did not change its strategy: neither did so the CO2 emission targets in the

Kyoto or Paris agreements, nor the trading rules within the EU.

More precisely, suppose player J stays with her original commitment to the coalition after T i,

x∗J(t). Thus, the differential game is reduced after T i to a standard optimal control problem for

player i:

max
xi

W i
II ≡

∫ +∞

T i

e−rt

(
aixi −

x2i
2

− b y2

2

)
dt,

subject to

ẏ = xi + x∗J − δy, ∀t ≥ T i,

with y(T i) = (y0−y∗)e(2C−δ)T i
+y∗ and x∗J(y) = aJ+B+Cy given. The system is still autonomous

and it is defined over an infinite time horizon. The same calculation as above yields the following:

Proposition 7 Suppose that player i quits the coalition at time T i, and that player J keeps her

initial commitment. Then for any t ≥ T i, the optimal Markovian strategy of player i is

xii(y) = ai +Bi + Ciy, ∀y. (47)

Furthermore, given the initial condition y(T i), the corresponding state variable yi(t) is given by

yi(t) =
[
y(T )− ŷi

]
e(C

i+C−δ)(t−T i) + ŷi ∀t ≥ T i,

where ŷi is the asymptotically stable long-run steady state and it is given by

ŷi =
ai + aJ +B +Bi

δ − C − Ci
,

and parameters

Ci =
−2(C − δ)−

√
4(C − δ)2 + 4b(1− r)

2(1− r)
(< 0),

Bi =
(ai + aJ +B)Ci

r + δ − C − Ci
(< 0).

Obviously, since player J does not update her choice after the collapse of the coalition, the pair

(x∗J , x
i
i) may not be a Nash equilibrium given that x∗J may not be the optimal response from player

J ’s point of view, after the collapse of the coalition. Nonetheless, as discussed in Section 1, this is
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one possible choice among others.

Straightforwardly, the separation time T i can be obtained via the same technique as the one of

Proposition 3 with similar, though different, parameter conditions.

The detailed calculations of the separation time T i, as well as the comparison between T i and the

Markovian splitting time, T , together with their respective impacts on welfare can be found in

Boucekkine et al (2023).

C Proof of Proposition 6

To derive (26) and (27), we use dynamic programming to obtain the equation

rW (y) = max
xi,xJ

{
aixi + aJxJ −

x2i + x2J
2

− by2 +W ′ (y) [xi + xJ − δy]

}
. (48)

It is straighforward that the maximizers x∗i and x∗J of the right-hand side take the form

x∗j (y) = aj +W ′ (y) for j = i, J. (49)

If the breaking up point y∗T ∈ (0,∞) exists, W also satisfies the transition condition

W (y∗T ) = Ui (y
∗
T ) + UJ (y

∗
T ) .

Since W , Ui and UJ are all differentiable, we also have

W ′ (y∗T ) = U ′
i (y

∗
T ) + U ′

j (y
∗
T ) . (50)

To find the optimal breaking up point for Player i, we let W (y; y∗) to denote the solution of

(48)-(49) for y ∈ (0, y∗) and the boundary condition

W (y∗; y∗) = Ui (y
∗) + UJ (y

∗) . (51)

Consider a time t before breaking up when the stock of pollution is y. Let t∗ be the time when the

breaking up occurs. Then t∗ > t. By dynamic programming,

W (y; y∗) =

∫ t∗

t
e−r(τ−t)g (y (τ) , x∗i (y (τ)) , x

∗
J (y (τ))) dτ + e−r(t∗−t) [Ui (y

∗) + UJ (y
∗)] (52)

where

g (y, xi, xJ) = aixi + aJxJ −
x2i + x2J

2
− by2 (53)
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and x∗i (y) and x∗J (y) are given by (49). On the other hand, the total discounted benefit that Player

i receives for the time interval (t,∞) is

α

∫ t∗

t
e−r(τ−t)

[
aix

∗
i (τ) + aJx

∗
J (τ)−

x∗i (τ)
2 + x∗J (τ)

2

2
− by (τ)2

]
+ e−r(t∗−t)Ui (y

∗) .

We let Wi (y; y
∗) to denote this quantity. Using (52) we find

Wi (y; y
∗) = αW (y; y∗) + e−r(t∗−t) [(1− α)Ui (y

∗)− αUJ (y
∗)] . (54)

Clearly, if y∗T is the optimal breaking up point for Player i, and if 0 < y∗T < ∞, then the first and

second order conditions
∂Wi

∂y∗
(y; y∗T ) = 0,

∂2Wi

∂y∗2
(y; y∗T ) ≤ 0 (55)

both hold, since Wi is smooth.

We find ∂Wi/∂y
∗ as follows. Differentiating both sides of (54) with respect to t∗, we obtain

∂Wi
∂y∗

dy∗

dt∗ = α∂W
∂y∗

dy∗

dt∗ − re−r(t∗−t) [(1− α)Ui (y
∗)− αUJ (y

∗)]

+e−r(t∗−t) [(1− α)U ′
i (y

∗)− αU ′
J (y

∗)] dy
∗

dt∗ .
(56)

Also, by differentiating both sides of (52) with respect to t∗, we find

∂W
∂y∗

dy∗

dt∗ = e−r(t∗−t) {g (y∗, x∗i (y∗) , x∗J (y∗))− r [Ui (y
∗) + UJ (y

∗)]}
+e−r(t∗−t) [U ′

i (y
∗) + U ′

J (y
∗)] dy

∗

dt∗

(57)

where dy∗/dt∗ follows from the system of dynamic equations

dy∗

dt∗
= x∗i (y

∗) + x∗J (y
∗)− δy∗. (58)

We denote the right-hand side as f (y∗). At y∗ = y∗T , the first order condition in (55) and the above

two equations lead to

αg (y∗T )− rUi (y
∗
T ) + U ′

i (y
∗
T ) f (y∗T ) = 0 (59)

where g (y∗) denotes g (y∗, x∗i (y
∗) , x∗J (y

∗)). Note that Ui and UJ are quadratic functions

Uj (y) = Am
j +Bmy +

Cm

2
y2, (60)

By (49) and (50),

x∗j (y
∗
T ) = aj +W ′ (y∗T ) = aj + U ′

i (y
∗
T ) + U ′

J (y
∗
T ) for j = i, J (61)

are linear functions of y∗T . Hence, f (y∗T ) is a linear function of y∗T and g (y∗T ) is a quadratic function
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of y∗T . This implies that equation (59) is quadratic in y∗T . Thus we can write the equation in the

form

λ (y∗T )
2 + σy∗T + γ = 0,

and find the coefficients λ, σ, and γ using (60) and (61). The result is (26). This leads to

y∗T =
−σ ±

√
σ2 − 4λγ

2λ
. (62)

It remains to show that the sign in front of the square root is negative. For this purpose we use

the second order condition in (55). Using (58) we write (56) and (57) in the form

∂Wi

∂y∗
f = α

∂W

∂y∗
f − re−r(t∗−t) [(1− α)Ui − αUJ ] + e−r(t∗−t)

[
(1− α)U ′

i − αU ′
J

]
f. (63)

and
∂W

∂y∗
f = e−r(t∗−t) {g − r [Ui + UJ ]}+ e−r(t∗−t)

[
U ′
i + U ′

J

]
f, (64)

respectively. Differentiating the two sides of (63) and (64) with respect to t∗, and using (55), we

obtain

0 ≥ α

[
∂2W

∂y∗2
f2 +

∂W

∂y∗
f ′f

]
+ r2e−r(t∗−t) [(1− α)Ui − αUJ ]− 2re−r(t∗−t)f

[
(1− α)U ′

i − αU ′
J

]
+e−r(t∗−t)

{[(
1− αU ′′

i − αU ′′
J

)]
f2 +

[
(1− α)U ′

i − αU ′
J

]
f ′f

}
and

∂2W

∂y∗2
f2 +

∂W

∂y∗
f ′f = −re−r(t∗−t)g + e−r(t∗−t)g′f + r2e−r(t∗−t) [Ui + UJ ]

−2re−r(t∗−t)
[
U ′
i + U ′

J

]
f + e−r(t∗−t)

{[
U ′′
i + U ′′

J

]
f2 +

[
U ′
i + U ′

J

]
f ′f

}
at y∗ = y∗T , where f ′ = f ′ (y∗), g′ = g′ (y∗). These two relations lead to

α
[
−rg + g′f

]
+ r2Ui + U ′

if
[
−2r + f ′]+ U ′′

i f
2 ≤ 0

at y∗ = y∗T . We can write the left-hand side as

−r
[
αg − rUi + U ′

if
]
+ f

[
αg − rUi + U ′

if
]′

Using (59) and assuming

f (y∗T ) > 0,

it follows that [
αg (y∗)− rUi (y

∗) + U ′
i (y

∗) f (y∗)
]′ ≤ 0 (65)
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at y = y∗T . In terms of coefficients λ, σ, and γ, the left hand side is the same as

d

dy∗

[
λ (y∗)2 + σy∗ + γ

]
.

Hence,

2λy∗T + σ ≤ 0.

This proves that the sign of the square root in (62) is negative.

The proof is complete.
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