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Exotic traveling waves for a quasilinear Schrödinger equation
with nonzero background

André de Laire∗ Erwan Le Quiniou∗

Abstract

We study a defocusing quasilinear Schrödinger equation with nonzero conditions at infin-
ity in dimension one. This quasilinear model corresponds to a weakly nonlocal approximation
of the nonlocal Gross–Pitaevskii equation, and can also be derived by considering the effects
of surface tension in superfluids. When the quasilinear term is neglected, the resulting equa-
tion is the classical Gross–Pitaevskii equation, which possesses a well-known stable branch
of subsonic traveling waves solution, given by dark solitons.

Our goal is to investigate how the quasilinear term affects the traveling-waves solutions.
We provide a complete classification of finite energy traveling waves of the equation, in terms
of the two parameters: the speed and the strength of the quasilinear term. This classification
leads to the existence of dark and antidark solitons, as well as more exotic localized solutions
like dark cuspons, compactons, and composite waves, even for supersonic speeds. Depending
on the parameters, these types of solutions can coexist, showing that finite energy solutions
are not unique. Furthermore, we prove that some of these dark solitons can be obtained as
minimizers of the energy, at fixed momentum, and that they are orbitally stable.

Keywords: Quasilinear Schrödinger equation, Gross–Pitaevskii equation, traveling waves, dark
solitons, dark cuspons, nonzero conditions at infinity, orbital stability.

2020 MSC: 35Q55, 35J62, 35C07, 35C08, 34A05, 35J20, 35B35, 35D35, 35Q60, 82D50, 34A12.

Contents
1 Introduction 2

1.1 The quasilinear equation and related models . . . . . . . . . . . . . . . . . . . . . 2
1.2 Classification of finite energy traveling waves . . . . . . . . . . . . . . . . . . . . 4
1.3 Energy and momentum of solitons and cuspons . . . . . . . . . . . . . . . . . . . 13
1.4 Variational characterization and stability . . . . . . . . . . . . . . . . . . . . . . 15

2 Equations for the intensity profile 17
3 Classification of smooth traveling waves 21
4 Classification of singular traveling waves 28

4.1 Properties of singular solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Construction of singular solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Energy and momentum of traveling waves 40
6 Variational characterization of dark solitons 45

6.1 The minimization curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2 Compactness of minimizing sequences . . . . . . . . . . . . . . . . . . . . . . . . 48

∗Univ. Lille, CNRS, Inria, UMR 8524 - Laboratoire Paul Painlevé, Inria, F-59000 Lille, France.
Emails: andre.de-laire@univ-lille.fr, erwan.lequiniou@univ-lille.fr

1



6.3 Some additional properties of the energy . . . . . . . . . . . . . . . . . . . . . . . 51
7 Local well-posedness of (QGP) and orbital stability 52
A Orbital stability of bright solitons 55

1 Introduction

1.1 The quasilinear equation and related models

We consider the following defocusing quasilinear Gross–Pitaevskii equation in dimension one

i∂tΨ = ∂xxΨ + Ψ(1 − |Ψ|2) + κΨ∂xx(1 − |Ψ|2), in R × R, (QGP)

where κ is a real parameter, and Ψ : R × R → C, satisfies the nonzero conditions at infinity

lim
|x|→∞

|Ψ(x, ·)| = 1, (1.1)

representing a (normalized) nonzero background.
Let us notice that the equation is recast as in (QGP) for practical purposes. Indeed, we can

write a more general Shrödinger equation as

i∂tΦ = ∂xxΦ + sΦ
(
|Φ|2 + κ∂xx|Φ|2)). (1.2)

When κ = 0, it corresponds to the cubic NLS equation, a classical model for Bose–Einstein
condensates, superfluidity, and nonlinear optical fibers, depending on the sign of s, and on the
background conditions [22,28]. For instance, in Bose–Einstein condensates, the term in s models
attractive interatomic interactions if s > 0, and repulsive interactions if s < 0. In nonlinear
optics, it corresponds to the Kerr effect in a focusing fiber if s > 0, and to ionization effects in a
defocusing one if s < 0. Equation (1.2) enables the description of significant and experimentally
pertinent nonlinear phenomena such as solitons. Solitons are particular types of solutions that
travel with constant speed and with a profile that remains unchanged. They provide important
information for the analysis of dispersive equations. Although the most common solitons are
bright and dark solitons, there are more exotic solitons for other PDE, that are not smooth,
such as the cupsons and compactons [1, 37], that we will discuss below.

Bright solitons are characterized by having a localized amplitude peak, decaying quickly to
zero. The existence and properties of these solutions are a classical subject for the focusing NLS
equation, that has received much attention [14, 41, 42] in the case κ = 0. In the case κ ≥ 0,
Krówlikowski and Bang obtained in [30] an explicit formula for the bright solitons to (1.2) with
s = 1, taking the form of a standing wave

Φ(x, t) = vω,κ(x)e−iωt, (1.3)

for every ω > 0, with vω,κ a real-valued profile given by vω,κ(x) = F −1
ω,κ(|x|), for all x ∈ R, where

Fω,κ(y) = 1√
ω

atanh
( 1√

2ω

√
2ω − y2

1 + 2κy2

)
+ 2

√
κ atan

(√
2κ

√
2ω − y2

1 + 2κy2

)
. (1.4)

These bright solitons are unique for up to invariances (translation by a constant and multipli-
cation by a phase shift). Letting κ → 0 in (1.4), we recover the profile of the cubic NLS bright
soliton

vω,0(x) =
√

2ω sech(
√

ωx).

On the other hand, Colin, Jeanjean, and Squassina [13] showed the existence of bright solitons
for (1.2), with s = 1 and κ > 0, in any dimension. Also, they obtained some conditional results
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for their orbital stability. However, they do not have formula (1.4) in the one-dimensional case.
To fill this gap, we check in Appendix A that their conditions are fulfilled, so that these bright
solitons are orbitally stable solutions to (1.2).

On the other hand, in the defocusing case, there are no bright solitons, but the existence
of dark solitons is expected [29]. Dark solitons have a localized amplitude dip or notch (of
their absolute value) on a nonzero background density. Although these solutions are physically
relevant, they have been less studied in the literature. They can be obtained explicitly for the
cubic defocusing NLS equation (i.e. (1.2) with s = −1 and κ = 0), and they are given, up to
invariances, by

Φ(x, t) = uc(x − ct)eit,

for c ∈ [0,
√

2), where

uc(x) =

√
2 − c2

2 tanh
(√

2 − c2

2 x
)

− i
c√
2

. (1.5)

Notice that this branch of dark solitons satisfies the nonzero background condition |Φ(x, ·)| → 1,
as |x| → ∞. We refer to [4, 6] for more details and stability results for these dark solitons, and
to [9] for some generalizations.

Since dark solitons can only exist in the defocusing case, from now on, we only consider the
case s = −1. To avoid the dependence on t of the solitary waves, it is usual to perform the
change of variables

Ψ(x, t) = Φ(x, t)e−it,

which transforms equation (1.2) into (QGP), and so that the nontrivial condition at infinity
appears more explicitly in the equation.

To our knowledge, the only result concerning dark solitons for (QGP) with κ ̸= 0, is the
branch of explicit dark solitons found in [30] for κ ∈ [0, 1/2). The present work extends their
result for a wide range of κ ∈ R, and provides a complete classification of localized solutions,
exhibiting some exotic solitons for this equation, as seen below.

We end this subsection by giving some physical motivations for the quasilinear model (QGP),
with the nonzero condition (1.1). The evolution of a one-dimensional optical beam of intensity
|Ψ|2 in a defocusing nonlocal Kerr-like medium is given by the nonlocal Gross–Pitaevskii equation

i∂tΨ = ∂xxΨ + Ψ(W ∗ (1 − |Ψ|2)), (1.6)

where W characterizes the nonlocal response of the medium [15,16,30,36]. As explained in [30],
in a weakly nonlocal medium we can replace W by Wε(·) = W(·/ε)/ε, for a small positive ε.
Then, performing a Taylor expansion of η(x − y) = (1 − |Ψ|2)(x − y, t) near x, for fixed t, we
have

η(x − y) = η(x) − yη′(x) + y2

2 η′′(x) + O(y3),

hence, using that Wε is even, the convolution product in (1.6) can be formally computed as

(Wε ∗ η)(x) =
∫
R

Wε(y)η(x − y)dy = η(x) + κεη′′(x) + O(ε3), with κε = ε2

2

∫
R

y2W(y). (1.7)

Therefore, equation (QGP) follows from (1.6) and (1.7), in the regime ε small, neglecting the
term O(ε3). For this reason, (QGP) is known as the weakly nonlocal Gross–Pitaevskii equation
in the nonlinear optics literature.

Formally, we can also see a connection between (1.6) and (QGP) by considering the potential
given with its Fourier transform

Ŵκ(ξ) = 1 − κξ2, (1.8)

3



that can be seen as a limit case for the results of the existence of dark solitons for (1.6) (see
Remark 1.13).

In addition, (QGP) was also obtained using the least action principle by Kurihara in [31], in
order to describe a superfluid 4He film, where κ ≤ 0 and |κ| measures the surface tension of the
superfluid.

1.2 Classification of finite energy traveling waves

Equation (QGP) has a Hamiltonian structure, and its energy, given by

Eκ(Ψ(·, t)) = 1
2

∫
R

|∂xΨ(x, t)|2dx + 1
4

∫
R

(
1 − |Ψ(x, t)|2

)2
dx − κ

4

∫
R

(
∂x|Ψ(x, t)|2

)2
dx, (1.9)

is formally conserved, as well as the (renormalized) momentum

p(Ψ(·, t)) = 1
2

∫
R

⟨i∂xΨ(x, t), Ψ(x, t)⟩
(
1 − 1

|Ψ(x, t)|2
)
dx, (1.10)

whenever infx∈R |Ψ(x, t)| > 0, where we used the inner product ⟨z1, z2⟩ = Re(z1) Re(z2) +
Im(z1) Im(z2), for z1, z2 ∈ C.

We are interested in solutions to (QGP) of the form

Ψc(x, t) = u(x − ct),

which represents a traveling wave with profile u : R → C propagating at speed c ∈ R. Hence,
the profile u satisfies

icu′ + u′′ + u(1 − |u|2) + κu
(
1 − |u|2

)′′ = 0. (TW(c, κ))

Notice that taking the complex conjugate of u in equation (TW(c, κ)), we are reduced to the
case c ≥ 0. To study physically relevant solutions to (TW(c, κ)) in function of κ, we define
energy space

X (R) = {v ∈ H1
loc(R) : 1 − |v|2 ∈ L2(R), v′ ∈ L2(R)}.

Let us recall that X (R) ⊂ L∞(R) ∩ C(R), and that any function in X (R) satisfies the nontrivial
condition at infinity (1.1) (see Lemma 2.1). We will use extensively, as a new variable, the
intensity profile of u, given by

ηu = 1 − |u|2,

so that the condition at infinity (1.1) becomes ηu(x) → 0, as |x| → ∞. Omitting the subscript
of ηu for notational simplicity, we can recast the energy functional as

Eκ(u) = 1
2

∫
R

|u′|2 + 1
4

∫
R

η2 − κ

4 (η′)2, for all u ∈ X (R). (1.11)

Moreover, the momentum is well-defined in the nonvanishing energy space defined by

N X (R) = {v ∈ X (R) : inf
R

|v| > 0}, (1.12)

and writing the lifting u =
√

1 − ηeiθ ∈ N X (R) (see Lemma 2.2), we have

p(u) = −1
2

∫
⟨iu′, u⟩ η

1 − η
= 1

2

∫
R

ηθ′. (1.13)

Furthermore, the energy can be written in this case as

Eκ(u) = 1
8

∫
R

(η′)2(1 − 2κ + 2κη)
1 − η

+ 1
2

∫
R

(1 − η)(θ′)2 + 1
4

∫
R

η2. (1.14)
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As seen in Proposition 6.9, the energy space X (R) is equal to the domain of Eκ if κ ≤ 0, and is
strictly included in the domain of Eκ if κ > 0.

In the sequel, we say that u is a finite energy solution to (TW(c, κ)), if u belongs to X (R)
and satisfies the weak formulation, for all ϕ ∈ C∞

0 (R;C),∫
R

⟨icu′ + u(1 − |u|2), ϕ⟩ − ⟨u′, ϕ′⟩ + 2κ⟨u, u′⟩⟨u, ϕ⟩′ = 0, (1.15)

where we used that (1 − |u|2)′ = −2⟨u, u′⟩.
To obtain analytical solutions, we will show that if u is a finite energy solution to (1.15),

then its intensity profile η = 1 − |u|2 satisfies the ODE

(1 − 2κ + 2κη)(η′)2 = η2(2 − c2 − 2η), (1.16)

as long as u is smooth enough. Thus, the rest of the analysis relies on the study of possible
singularities, combined with the computation of the primitives of

f(y) = −y

√
2 − c2 − 2y

1 − 2κ + 2κy
,

according to the parameters c and κ. As explained in Section 3, taking x large enough in (1.16),
we expect that

0 < (2 − c2)(1 − 2κ) (1.17)

is a necessary condition for the existence of nontrivial solutions. From (1.17), we see that
c =

√
2 and κ = 1/2 are critical values, as shown below in our results. In fact, the value

c =
√

2 corresponds to the speed of sound for (1.2) (see the explanations in [16, 18] applied to
(1.8)), while the value κ = 1/2 corresponds to the critical case, for which the linear dispersion
and the nonlinear dispersion (i.e. the quasilinear terms of order 2) cancel as the intensity |Ψ|2
approaches 1 [1,32,37]. Therefore, we split the set of parameters according to the critical values,
as represented in Figure 1, by defining the following regions

D1 = {(c, κ) : 0 ≤ c <
√

2 and 0 < κ < 1/2}, D2 = {(c, κ) : 0 ≤ c <
√

2 and κ ≤ 0}, (1.18)
D3 = {(c, κ) : c >

√
2 and κ > 1/2}, and, D = D1 ∪ D2 ∪ D3; (1.19)

the boundary sets associated with the sonic speed

B− = {(c, κ) : c =
√

2 and 0 < κ < 1/2}, B+ = {(c, κ) : c =
√

2 and κ > 1/2}, (1.20)

and the boundary set associated with the critical value for κ

C = {(c, κ) : c ≥ 0 and κ = 1/2}. (1.21)

Our main classification result shows the existence of multiple branches of localized traveling
waves indexed by κ and c, that can coexist at fixed parameters, showing the nonuniqueness of
finite energy solutions. Before stating our results, we give some vague definitions used in the
literature, to understand the nature of these different types of solitons u for (TW(c, κ)). The
adjective dark refers to the nonzero constant background condition |u(x)| → 1, as |x| → ∞.
Moreover, u is a:

(i) dark soliton if u is smooth and |u|2 has a localized dip.
(ii) antidark soliton if u is smooth and |u|2 has a localized bump.
(iii) black soliton if u is smooth and u vanishes at some point.
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0
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√
2 c

κ

D1
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D3

C
B+

B−

Figure 1: Sets of parameters to classify the solutions of (TW(c, κ)).

(iv) dark cuspon if u is continuous and has a localized cusped dip, u′ is unbounded at the cusp
but is smooth elsewhere.

(v) antidark cuspon if u is continuous and has a localized cusped bump, u′ is unbounded at
the bump but is smooth elsewhere.

(vi) compacton if u is continuous and 1 − |u|2 is compactly supported.
(vii) composite wave if u is continuous, built using pieces of the solitons mentioned above over

different intervals, and the gluing is not C2.
With these formal definitions at hand, we can schematically summarize our results on the ex-
istence and uniqueness (up to invariances) of nontrivial finite energy solution to (TW(c, κ)), in
the following table.

In D1 There exist a unique dark soliton, a unique antidark cuspon,
and composite waves.

In D2 There exists a unique dark soliton.
In D3 There exist a unique antidark soliton, a unique dark cuspon,

and composite waves.
In B− There exist a unique antidark cuspon, and composite waves.
In B+ There exist a unique dark cuspon, and composite waves.
In C There exist composite waves built from compactons.
Elsewhere There is no nontrivial finite energy traveling wave.

To give the explicit formulas for the dark and antidark soliton solutions to (TW(c, κ)), which
we will denote by uc,κ, we introduce the following intervals

Ic = (0, 1 − c2/2], I◦
c = (0, 1 − c2/2) if c <

√
2,

Jc = [1 − c2/2, 0), J ◦
c = (1 − c2/2, 0) if c >

√
2.

Indeed, these intervals will correspond to the image set of ηc,κ := 1−|uc,κ|2. Then, we will check
that the following functions are well-defined depending on the set of parameters (1.18)–(1.19)
(see Lemmas 3.5 and 3.6). (i) For (c, κ) ∈ D1, we set Fc,κ : Ic → R the function defined, for all
y ∈ Ic, by

Fc,κ(y) = 2
√

κ atan
(√

κ

√
2 − c2 − 2y

1 − 2κ + 2κy

)
+ 2

√
1 − 2κ

2 − c2 atanh
(√ (1 − 2κ)(2 − c2 − 2y)

(2 − c2)(1 − 2κ + 2κy)
)
.

(1.22)
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(ii) For (c, κ) ∈ D2, we set Gc,κ : Ic → R the function defined, for all y ∈ Ic, by

Gc,κ(y) = −2
√

−κ atanh
(√

−κ

√
2 − c2 − 2y

1 − 2κ + 2κy

)
+ 2

√
1 − 2κ

2 − c2 atanh
(√ (1 − 2κ)(2 − c2 − 2y)

(2 − c2)(1 − 2κ + 2κy)
)
.

(1.23)
(iii) For (c, κ) ∈ D3, we set Hc,κ : Jc → R the function defined, for all y ∈ Jc, by

Hc,κ(y) = Fc,κ(y). (1.24)

We will prove that the functions (1.22)–(1.24) are injective and take their values in (0, ∞). Thus,
we can define their inverse as follows

Fc,κ = F −1
c,κ , for (c, κ) ∈ D1; Gc,κ = G−1

c,κ, for (c, κ) ∈ D2; Hc,κ = H−1
c,κ , for (c, κ) ∈ D3. (1.25)

Also, we can extend Fc,κ, Gc,κ and Hc,κ to even C∞-functions on R, which we still denote by
Fc,κ, Gc,κ and Hc,κ.

We can now state our first classification result for smooth solutions. Using the sets defined in
(1.18)–(1.19), we first show that the only finite energy smooth solution to (TW(c, κ)) in Dc are
the trivial ones, i.e. the constants of modulus one. Then, for (c, κ) ∈ D, the description of dark
solitons is explicitly provided in terms of Fc,κ and Gc,κ, while antidark solitons are described by
Hc,κ. Moreover, we establish their uniqueness among smooth solutions, up to invariances, i.e.
up to a translation and a phase shift.

Theorem 1.1. (i) If (c, κ) /∈ D and uc,κ ∈ X (R) ∩ C2(R) is a solution to (TW(c, κ)), then
there exists ϕ ∈ R such that uc,κ(x) = eiϕ, for all x ∈ R.

(ii) For (c, κ) ∈ D, we set

ηc,κ = Fc,κ, if (c, κ) ∈ D1; ηc,κ = Gc,κ, if (c, κ) ∈ D2; ηc,κ = Hc,κ, if (c, κ) ∈ D3. (1.26)

If c > 0, then ηc,κ < 1 on R, and uc,κ = ρc,κeiθc,κ is the unique nontrivial solution to
(TW(c, κ)) in C2(R) ∩ X (R), up to invariances, where

ρc,κ(x) =
√

1 − ηc,κ, and θc,κ(x) = c

2

∫ x

0

ηc,κ(y)
1 − ηc,κ(y)dy. (1.27)

If c = 0, then the real-valued odd function

u0,κ(x) = ±
√

1 − η0,κ(x), for all ± x ≥ 0, (1.28)

is the unique nontrivial solution to (TW(c, κ)) in C2(R) ∩ X (R), up to invariances.
In addition, for any (c, κ) ∈ D, uc,κ belongs to C∞(R), and ηc,κ is even, reaching a global

extremum at the origin with
ηc,κ(0) = 1 − c2/2. (1.29)

Moreover, we have ηc,κ > 0 and η′
c,κ < 0 on (0, ∞) if (c, κ) ∈ D1 ∪ D2, while ηc,κ < 0 and

η′
c,κ > 0 on (0, ∞) if (c, κ) ∈ D3. Finally, there exist constants A, C > 0 such that for all k ∈ N,

the following exponential decay holds

|Dku′
c,κ(x)| + |Dkηc,κ(x)| ≤ Ae−C|x|, for all x ∈ R. (1.30)

Notice that (1.29) implies that the solutions uc,κ in Theorem 1.1 correspond to dark solitons
that do not vanish if c ̸= 0 (gray solitons) and to black solitons if c = 0.

In Figure 2, we depict the intensity profile ηc,k given by (1.26) in Theorem 1.1 for several
values of (c, κ) ∈ D. In the left and center panels, we plotted ηc,κ for parameters in D1 and
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-κ = 1 � κ = 0.6

��*
κ = 5

Figure 2: Plot of intensity profiles ηc,k in Theorem 1.1 for several values of (c, κ). The left panel
displays profiles for (1, 0), (1, 0.2), (1, 0.4) ∈ D1 associated with dark solitons. In the center,
profiles for (1, −30), (1, −5), (1, 0) ∈ D2 associated also with dark solitons. On the right, profiles
for (2, 0.6), (2, 1), (2, 5) ∈ D2, associated with antidark solitons.

D2, respectively, associated with dark solitons; while plots for parameters in D3, associated with
antidark solitons, are shown in the right panel. The case κ = 0 corresponds to the dark soliton
(1.5), so that the intensity profile is given by

ηc,0(x) = 1 − |uc,κ|2 = (2 − c2)
2 sech2

(√
2 − c2

2 x
)
, for all x ∈ R.

From the left and center panel, we deduce that, at a fixed speed, the profile wavelength of the
dark soliton narrows when κ increases from −∞ to 1/2. We notice the same effect for the
antidark solitons in the right panel when κ decreases from ∞ to 1/2.

In addition, we show in Proposition 3.8 smooth dependence of the dark soliton uc,κ, with
respect to (c, κ) in D. Consequently, the dark solitons uc,κ in Theorem 1.1 converge to the dark
soliton (1.5), as κ → 0, in Hs(R), for all s ∈ N.

Notice that the uniqueness stated in Theorem 1.1 is in the set X (R)∩C2(R). This restriction
is due to the existence of finite energy weak solutions that are not of class C2(R) in the new set
of parameters

D̃ = D1 ∪ D3 ∪ B− ∪ B+,

and also in C. We argue that these sets are well-suited for studying weak solutions. Indeed, the
next result shows that there are no solutions outside D̃ ∪ C.
Theorem 1.2. Let c ≥ 0 and κ ∈ R. Assume that uc,κ ∈ X (R) is a solution to (TW(c, κ)).
If (c, κ) /∈ (D̃ ∪ C), then either (c, κ) ∈ D2 and uc,κ ∈ C2(R) so that it is explicitly given by
Theorem 1.1, or uc,κ is a constant function of modulus one.

We call a weak solution that is not C2(R), a singular solution. The rest of this subsection is
devoted to explaining our results for singular solutions. This first result simplifies the analysis.
It guarantees that the solutions are nonvanishing if c > 0, while if c = 0, the problem (TW(c, κ))
reduces to one real differential equation.
Proposition 1.3. Let (c, κ) ∈ D̃ ∪ C and uc,κ ∈ X (R) be a solution to (TW(c, κ)). If c > 0,
then u ∈ N X (R). On the other hand, if c = 0, then there exists ϕ ∈ R such that eiϕuc,κ(x) ∈ R
for all x ∈ R.

We show that if uc,κ ∈ X (R) is a singular solution, then the function |uc,κ|2 must reach the
value 1/(2κ) at some point. Thus, we call the singular set of uc,κ the nonempty set given by

Γ(uc,κ) =
{

x ∈ R : |uc,κ(x)|2 = 1
2κ

}
. (1.31)
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This condition comes from the following observation: Given a solution uc,κ = u1 + iu2 ∈ X (R)
to (TW(c, κ)), with u1 = Re(uc,κ), u2 = Im(uc,κ), and recalling that uc,κ is continuous (see
Lemma 2.1), we can show that (1.15) can be recast as a system of two real equations, satisfied
in the weak sense,

A(uc,κ)
(

u1
u2

)′′

= c

(
u1
u2

)′

+ (ηc,κ − 2κ|u′
c,κ|2)

(
u2

−u1

)
, with A(uc,κ) =

(
2κu2u1 −1 + 2κu2

2
1 − 2κu2

1 −2κu1u2

)
,

(1.32)
so that

det(A(u)) = 1 − 2κ|uc,κ|2 = 1 − 2κ + 2κηc,κ. (1.33)
Thus, the set Γ(uc,κ) corresponds to the points where det(A(uc,κ)) vanishes, so that the disper-
sion part of equation (1.32) is singular. In this manner, as proved in Lemma 4.2, uc,κ is smooth
on the complement of Γ(uc,κ), denoted by Ω(uc,κ) = Γ(uc,κ)c. Also, if we define the set of points
where uc,κ is not differentiable (in the classical sense)

N (uc,κ) = {x ∈ R : uc,κ is not differentiable in x},

then N (uc,κ) ⊆ Γ(uc,κ). We want to focus now on the case where Γ(uc,κ) is not empty and
bounded so that we can define the real numbers

ac,κ = inf Γ(uc,κ) and bc,κ = sup Γ(uc,κ). (1.34)

For instance, by condition (1.1), the set Γ(uc,κ) is bounded for any singular solution in the
case κ ̸= 1/2. To give explicit formulas for singular solutions, we use the same approach as in
Theorem 1.1, introducing the intervals

Tκ = [1 − 1/(2κ), 0), T◦
κ = (1 − 1/(2κ), 0), if κ ∈ (0, 1/2),

Jκ = (0, 1 − 1/(2κ)], J◦
κ = (0, 1 − 1/(2κ)), if κ ∈ (1/2, ∞),

and the following functions (see Lemma 4.5).
(i) For (c, κ) ∈ D1, we set fc,κ : Tκ → R the function defined, for all y ∈ Tκ, by

fc,κ(y) = 2
√

κ atan
(√

κ

√
2 − c2 − 2y

1 − 2κ + 2κy

)
+ 2

√
1 − 2κ

2 − c2 atanh
(√(2 − c2)(1 − 2κ + 2κy)

(1 − 2κ)(2 − c2 − 2y)
)

− π
√

κ.

(1.35)

(ii) For (c, κ) ∈ D3, we set hc,κ : Jκ → R the function defined, for all y ∈ Jκ, by

hc,κ(y) = fc,κ(y). (1.36)

(iii) For (
√

2, κ) ∈ B−, we set gκ : Tκ → R the function defined, for all y ∈ Tκ, by

gκ(y) = 2
√

κ atan(
√

−2κy

1 − 2κ + 2κy
) +

√
2
√

−1 − 2κ + 2κy

y
− π

√
κ, (1.37)

(iv) For (
√

2, κ) ∈ B+, we set g̃κ : Jκ → R the function defined, for all y ∈ Jκ, by

g̃κ(y) = gκ(y). (1.38)

By Lemma 4.5, the functions (1.35)–(1.38) are injective and positive-valued, and their inverse
functions f−1

c,κ , h−1
c,κ, g−1

κ , g̃−1
κ are well-defined on (0, ∞). Notice that the functions f−1

c,κ and g−1
κ

will describe antidark cuspons, while h−1
c,κ and g̃−1

κ will describe dark cuspons (see Figure 3). Let
(c, κ) ∈ D̃ and uc,κ ∈ X (R) be a singular solution, so that ac,κ and bc,κ given by (1.34) are reals.
The next result establishes that uc,κ is smooth outside the interval [ac,κ, bc,κ], that ac,κ and bc,κ

belong to N (uc,κ), and that uc,κ is explicitly given by one of the functions in (1.35)–(1.38), i.e.
that it has a dark or antidark cuspon profile on R \ [ac,κ, bc,κ].
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Theorem 1.4. Let (c, κ) ∈ D̃, if uc,κ ∈ X (R) is a singular solution for (TW(c, κ)) so that uc,κ

is nontrivial and the critical set Γ(uc,κ) is not empty and bounded. Let a = ac,κ and b = bc,κ be
defined as in (1.34) and assume without loss of generality that b = 0. Then ηc,κ = 1 − |uc,κ|2
satisfies, for all x ≥ 0,

ηc,κ(x) = f−1
c,κ (x), if (c, κ) ∈ D1, ηc,κ(x) = h−1

c,κ(x), if (c, κ) ∈ D3,

ηc,κ(x) = g−1
κ (x), if (c, κ) ∈ B−, ηc,κ(x) = g̃−1

κ (x), if (c, κ) ∈ B+.
(1.39)

For all x ≤ a, ηc,κ is obtained by reflection as ηc,κ(x) = ηc,κ(a − x). Additionally, for all
x ∈ (−∞, a) ∪ (0, ∞), we have

1− 1
2κ

< ηc,κ(x) < 0, if (c, κ) ∈ D1 ∪B−, whereas 0 < ηc,κ(x) < 1− 1
2κ

, if (c, κ) ∈ D3 ∪B+,

and uc,κ is explicitly given by

uc,κ(x) =
√

1 − ηc,κ(x)eiθc,κ(x), with θ′
c,κ(x) = cηc,κ(x)/(2 − 2ηc,κ(x)). (1.40)

Also, uc,κ ∈ C∞((−∞, a) ∪ (0, ∞))) ∩ C(R). Moreover, η′
c,κ(a−) = −∞ and η′

c,κ(0+) = ∞, if
(c, κ) ∈ D1 ∪ B−, while η′

c,κ(a−) = ∞ and η′
c,κ(0+) = −∞, if (c, κ) ∈ D3 ∪ B+.

Finally uc,κ satisfies the following decay estimates: for all j ∈ N, there exist C1, C2, C3 >
0 such that, for all x ≥ 1, |Dju′

c,κ(x)| + |Djηc,κ(x)| ≤ C1e−C2x, if (c, κ) ∈ D1 ∪ D3, and
|Dju′

c,κ(x)| + |Djηc,κ(x)| ≤ C3x−(2+j), if (c, κ) ∈ B+ ∪ B−.

In Figure 3, we place ourselves in the case ac,κ = bc,κ = 0 to illustrate the antidark cuspon
intensity profile given by the function f−1

c,κ , and the dark cuspon intensity profile given by h−1
c,κ.

We show in Lemma 4.6 that if κ = 1/2, then ac,κ = −∞ and bc,κ = ∞, so that there are
infinitely many points in Γ(uc,κ). Therefore, Theorem 1.4 allows us to complete the analysis if
uc,κ has only one singular point, as explained in the following result.

Corollary 1.5 (Cuspons). Let (c, κ) ∈ D̃. Assume that uc,κ ∈ X (R) is a nontrivial solution for
(TW(c, κ)) such that Γ(uc,κ) = {0}. Then, up to phase shift, the solution uc,κ is explicitly given
by uc,κ =

√
1 − ηc,κeiθc,κ , where ηc,κ is the function in (1.39), and θc,κ(x) = c

2
∫ x

0
ηc,κ(y)

1−ηc,κ(y) . In
particular N (uc,κ) = {0}.

Classification of solutions with two or more singular points

We have provided the classification of solutions in the cases card(Γ(uc,κ)) = 0 and card(Γ(uc,κ)) =
1. Now we will focus on the case

card(Γ(uc,κ)) ≥ 2,

i.e. when uc,κ has at least two singular points, and we do not require Γ(uc,κ) to be bounded
anymore. Between two singular points a, b ∈ Γ(uc,κ), the function |uc,κ|2 may exhibit one of the
following behaviors:
(i) It remains constant so that |uc,κ(x)|2 = 1/(2κ), for all x ∈ (a, b).
(ii) It reaches a non-singular local extremum at some x0 ∈ (a, b), so that |uc,κ(x0)|2 ̸= 1/(2κ).
The solution obtained in case (i) is sometimes referred to as a stumpon [32]. However, the
following proposition establishes that case (i) cannot occur unless κ = 1/2, in which case we
have |u(x)|2 = 1 for all x ∈ (a, b).

Proposition 1.6. Let (c, κ) ∈ D̃ ∪ C. Assume that uc,κ ∈ X (R) is a solution to (TW(c, κ)). If
there exist real numbers a < b such that

|uc,κ(x)|2 = 1/(2κ), for all x ∈ (a, b), (1.41)

then κ = 1/2.
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Figure 3: Plots of the antidark cuspon intensity profile in Corollary 1.5. The right panel displays
antidark cuspons for the parameters (0, 0.4), (1, 0.4) and (1.3, 0.4) in D1. On the left, dark
cuspons for the parameters (1.5, 0.6), (2, 0.6) and (5, 0.6) in D3.

In view of Proposition 1.6, one would expect that case (i) implies that uc,κ is a constant
function on R, with |uc,κ| ≡ 1. However, the critical case κ = 1/2 is degenerate, and there
are many more possibilities for the solutions. The most remarkable singular solutions are dark
compactons, i.e. such that the intensity profile ηc,κ = 1 − |uc,κ|2 has compact support; some of
them are explicitly given in Proposition 1.9.

Now assume that case (ii) holds, so that there exists x0 ∈ (a, b) belonging to the set

Z(uc,κ) = {x ∈ R\Γ(uc,κ) : x is a local extremum of 1 − |uc,κ|2}. (1.42)

When (c, κ) ∈ D̃, we know, by Theorem 1.4, that ηc,κ coincides with a cuspon-like solution
outside the bounded set (ac,κ, bc,κ), so that it is monotonous on R \ (ac,κ, bc,κ). Therefore, we
deduce that Z(uc,κ) ⊂ (ac,κ, bc,κ). In conclusion, for every (c, κ) ∈ D̃, we can define the closest
singular points to any x0 ∈ Z(uc,κ) as the real numbers

a0
c,κ = sup{x ∈ [ac,κ, x0) : x ∈ Γ(uc,κ)}, and b0

c,κ = inf{x ∈ (x0, bc,κ] : x ∈ Γ(uc,κ)}. (1.43)

In the case, κ = 1/2, by Lemma 4.6, we have ac,κ = −∞ and bc,κ = ∞, and we can still define
a0

c,κ and b0
c,κ as above, with the obvious modifications. In particular, for any (c, κ) ∈ D̃ ∩ C, by

Lemma 4.2, uc,κ is smooth on (a0
c,κ, b0

c,κ), and η′
c,κ(x0) = 0. Letting η0 = ηc,κ(x0), we establish

in Lemma 4.7 that there exist K0 ≥ 0 and K1 ∈ R such that η = ηc,κ satisfies the following
ODEs in (a0

c,κ, b0
c,κ):

2(1 − 2κ + 2κη)η′′ + 2κ(η′)2 = P (η) + (η − η0)P ′(η), (1.44)
(1 − 2κ + 2κη)(η′)2 = (η − η0)P (η), (1.45)

where

P (y) = −2y2 + (2 − c2 − 2η0)y + (2 − c2)η0 − 4K0 − 4cK1, for all y ∈ R. (1.46)

Using (1.44)–(1.45), we establish that for any x0 ∈ Z(uc,κ), ηc,κ must be symmetric on (a0
c,κ, b0

c,κ)
with respect to x0, and strictly monotone on (x0, b0

c,κ), as follows.
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Theorem 1.7. Let (c, κ) ∈ D̃ ∪ C. Assume that uc,κ ∈ X (R) is a solution to (TW(c, κ)) and
let ηc,κ = 1 − |uc,κ|2. Suppose that card(Γ(uc,κ)) ≥ 2 and that there exists x0 ∈ Z(uc,κ), and
consider its closest singular points a0

c,κ and b0
c,κ, as in (1.43). Then a0

c,κ = 2x0 − b0
c,κ and

ηc,κ(x) = ηc,κ(2x0 − x), for all x ∈ (a0
c,κ, x0). Moreover, if 0 < |uc,κ(x0)|2 < 1/(2κ), then

η′
c,κ < 0 in (x0, b0

c,κ), while if |uc,κ(x0)|2 > 1/(2κ), then η′
c,κ > 0 in (x0, b0

c,κ).

Since (η′
c,κ)2 ≥ 0, equation (1.45) yields algebraic constraints on P , for instance, we establish

in the proof of the Theorem 1.7 that P (ηc,κ) < 0, for all x ∈ [x0, b0
c,κ). Using the monotonicity

of ηc,κ, we conclude that

−2y2 + (2 − c2 − 2η0)y + (2 − c2)η0 − 4K0 − 4cK1 < 0, for all y ∈ [η0, 1 − 1/(2κ)). (1.47)

Also, if uc,κ is a singular solution, then we infer that K0 = |u′
c,κ(x0)|2. when η0 < 1, we show in

Lemma 4.8 that K1 = 0 so that, (1.47) reduces to

−2y2 + (2 − c2 − 2η0)y + (2 − c2)η0 − cη2
0/(1 − η0) < 0, for all y ∈ [η0, 1 − 1/(2κ)), (1.48)

whereas if η0 = 1 (and thus c = 0), then (1.47) becomes

y2 + 2K0 − 1 > 0, for all y ∈ (1 − 1/(2κ), 1]. (1.49)

We show in Propositions 4.12–4.14 that conditions (1.48)–(1.49) are sufficient to construct local
solutions to (TW(c, κ)). More precisely, if η0 < 1 is such that (1.48) holds, then there exists
a0

c,κ < b0
c,κ and a unique η ∈ C2((a0

c,κ, b0
c,κ))∩H1((a0

c,κ, b0
c,κ)) satisfying (1.44)–(1.45) with η(0) =

η0 and K0 = (cη0)2/(4 − 4η0) so that

u =
√

1 − ηeiθ, with θ′ = cη

2(1 − η) , (1.50)

is a C2((a0
c,κ, b0

c,κ))-solution to (TW(c, κ)). Similarly, if η0 = 1 and K0 ≥ 0 is such that (1.49)
holds, then there exists a0

c,κ < b0
c,κ and a unique η ∈ C2((a0

c,κ, b0
c,κ)) ∩ H1((a0

c,κ, b0
c,κ)) satisfying

(1.44)–(1.45) with η(0) = 1 so that

u(x) = ±
√

1 − η(x), for all ± x ∈ [0, b0
0,κ), (1.51)

is a C2((a0
c,κ, b0

c,κ))-solution to (TW(c, κ)) with c = 0. We also get in both cases that the intensity
profile of u satisfies the boundary conditions η(a0

c,κ) = η(b0
c,κ) = 1 − 1/(2κ).

These local solutions allow us to build every possible solution such that card(Z(uc,κ)) < ∞.
Using Lemma 4.9 to continuously glue together finitely many local solutions and extending
them on R with a cuspon-like solution (respectively with constants of modulus one if κ = 1/2),
one obtains a composite wave solution (respectively a compacton). This ends the classification
in the case 2 ≤ card(Γ(uc,κ)) < ∞, since in this case, as explained in Lemma 4.15, we have
card(Z(uc,κ)) = card(Γ(uc,κ)) − 1.

We can explicitly compute the set of admissible η0 in terms of (c, κ) ∈ D̃ ∪ C using (1.48)–
(1.49), however, for the sake of simplicity, we only show that singular solutions u ∈ X (R) such
that Z(u) = {0} exists when η0 is negative enough.

Proposition 1.8 (Composite waves). For any (c, κ) ∈ D̃ ∪ C, there exists a negative constant
A < 1 − 1/(2κ), such that if η0 ∈ (−∞, A), then there exists a unique solution uc,κ ∈ X (R), up
to phase shift, to (TW(c, κ)) satisfying

Z(uc,κ) = {0} and ηc,κ(0) = η0.

Also, u ∈ N X (R), η0 is the global minimum of ηc,κ, and card(N (uc,κ)) = 2. In addition, if
(c, κ) ∈ D̃, then Γ(uc,κ) = N (uc,κ), whereas if (c, κ) ∈ C, then uc,κ is a compacton (i.e. ηc,κ is
compactly supported).
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The left panel in Figure 4 displays a numerical approximation of the solution ηc,κ to (1.44)–
(1.45), with η0 = −10, c = 1, κ = 1/2 and K0 = cη0/(4 − 4η0) (and K1 = 0), given by
Proposition 1.8. On the other hand, in the critical case κ = 1/2, we can also give a family
of explicit compactons by solving (1.44)–(1.45), with η0 = 1 − c2/2, K0 = (2 − c2)2/8 (and
K1 = 0). In fact, with this choice of parameters, equation (1.45) becomes (1.16) with κ = 1/2,
so we recover the explicit solution computed in Proposition 3.2 with b0

c,κ = π/
√

2, as follows.

Proposition 1.9 (Compactons). Let (c, κ) ∈ C with c ̸=
√

2. For j ≥ 1 an odd integer, set the
interval Ij = (−jπ/

√
2, jπ/

√
2). If c = 0, we define

u
(j)
c,1/2(x) = sin(x/

√
2), for all Ij ,

whereas if c > 0 with c ̸=
√

2, we define, for all x ∈ Ij,

u
(j)
c,1/2(x) =

√
1 − (2 − c2)

2 cos2
( x√

2

)
eiθ(x), with θ(y) = π

2 + kπ − cy

2 − atan
( c√

2
cot

( y√
2

))
,

for y ∈ (k
√

2π, (k + 1)
√

2π) ∩ Ij, for all k ∈ Z. In both cases, we extend u
(j)
c,1/2 to R as a

continuous function, which is constant outside Ij. Then u
(j)
c,1/2 ∈ X (R) and is a weak solution

to (TW(c, κ)).

Notice that the family of compactons (u(j))j∈N∗ given by Proposition 1.9, satisfies Z(u(j)
c,κ) =

{k
√

2π | k ∈ Z, |k| < |j|} and N (uc,κ) = ∅, yet (u(j))j∈N∗ is not a family of C2(R)-solutions
because the second order derivative is discontinuous at x = ±jπ/

√
2. In Figure 4, we also plot

the intensity profile of the compacton u3
1,1/2 in the center panel, and its phase in the right panel.

Figure 4: On the left, the intensity profile of the compacton given by Proposition 1.8 with
η0 = −10, c = 1 and κ = 1/2. The center and the right panel display, respectively, the intensity
profile and the phase of the compacton u

(3)
1,1/2 in Proposition 1.9.

1.3 Energy and momentum of solitons and cuspons

A crucial application of the formulas for the solitons and the cuspons given by Theorem 1.1
and Corollary 1.5, respectively, is that we can compute explicitly their energy and momentum.
This information is very useful to determine the stability of solutions, as shown by Lin in [33]
in the case κ = 0. The idea relies on the general Grillakis–Shatah–Strauss theory [24], which
reduces the stability of solitons to the study of the second derivative of the action d(c) =
Eκ(uc,κ) − cp(uc,κ), in addition to some spectral conditions. More precisely, if d′′(c) < 0, then
one could conclude that the soliton uc,κ is orbitally stable. Given the Hamiltonian group property
(see Lemma 5.5)

d

dc
Eκ(uc,κ) = c

d

dc
p(uc,κ). (1.52)
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we have d′′(c) = − d
dcp(uc,κ), so that d′′(c) < 0 is equivalent to

d

dc
p(uc,κ) < 0, (1.53)

This condition is also called the Vakhitov–Kolokolov stability criterion. In the literature, the
energy-momentum (E, p) diagram is sometimes preferred to depict the local branch of solitons
as an implicit curve parametrized by c. In view of (1.52), each point of the branch represents a
traveling wave whose speed is given by the slope of the curve, and condition (1.53) is equivalent
to the strict concavity of the curve (see [10]).

To plot the energy-momentum diagrams and to check the condition (1.53), we compute
explicitly in Section 5 the energy and the momentum of solitons and cuspons. To simplify the
notation, we set

Eκ(c) := Ek(uc,k) and pκ(c) := p(uc,k), if (c, κ) ∈ D, with uc,κ given by Theorem 1.1, (1.54)
Ẽκ(c) := Ek(uc,k) and p̃κ(c) := p(uc,k), if (c, κ) ∈ D̃, with uc,κ given by Corollary 1.5, (1.55)

where we exclude the value c = 0 for the definition of the momenta.
Note that (1.53) is a necessary condition for stability in the Grillakis–Shatah–Strauss theory,

so that it is not enough to conclude the stability of uc,κ in our context.
Figure 5 displays on the same plots Eκ and Ẽκ for different values of (c, κ). We observe

that the least energy solution does not remain on the same branch of solutions as c varies. In
view of (1.52), the energy and the momentum have the same monotony, as functions of c. To
exemplify the behavior of the solutions in D1, we take κ = 0.4 in the left panel, and we see that
the energy of dark solitons is decreasing, which leads to conjecturing their stability. Concerning
the antidark cuspons, we see that their energy is increasing, but since they have a singularity, it
is not clear that they are unstable. In the right panel, we illustrate the behavior of the solutions
in D3 taking κ = 0.6. We see that the energy of antidark solitons is increasing, so they are
probably unstable, while the energy of dark cuspons is decreasing. In this paper, we will not
study the stability of traveling waves for parameters in D1 ∪ D3, but we plan to continue their
study in future works.

√
2
c

0.005

0.017

c

0.008

0.015

Figure 5: Plot of Eκ(c) in black and Ẽκ(c) in orange. On the left panel, we take parameters
in D1, with κ = 0.4 and 0 ≤ c <

√
2. On the right panel, the parameters belong to D3, with

κ = 0.6 and
√

2 < c ≤ 2.

Finally, we consider the dark solitons with parameters in D2, so that κ < 0. The energy-
momentum diagram has two behaviors, depending on the critical value κ0 ≈ −3.636 given by
Lemma 5.7. For κ ∈ (κ0, 0), the shape of the energy-momentum diagram is a concave increasing
curve, as the one depicted in the left panel in Figure 6 for κ = −3. For κ < κ0, there is a cusp
in the diagram, as seen in the right panel in Figure 6 for κ = −50. In this plot, we also see that
there is a dark soliton with a speed c∗

κ ∈ (0,
√

2), having the same energy as the black soliton,
with momentum q∗

κ. These values defined in (1.59)–(1.61), will be key to rigorously establish the
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orbital stability of solitons with speeds in the interval (0, c∗
κ), based on a variational approach,

as explained in the next subsection,

1.347
��3

c → 0

��) c →
√

2 p(uc,κ)

Eκ(uc,κ)

π
2

��1c → 0

��) c →
√

2

PPi c∗
κ

q∗
κ

3.748

p(uc,κ)

Eκ(uc,κ)

π
2

Figure 6: Energy-momentum diagram of dark solitons with parameters in D2, with κ = −3
(left) and κ = −50 (right).

1.4 Variational characterization and stability

We explain now the strategy to study the orbital stability of solitons associated with parameters
in D2. by using a variational characterization. Since equation (TW(c, κ)) can be recast in terms
of the energy Eκ and the momentum p as

dEκ(u) = c dp(u), (1.56)

as shown in Lemma 6.1, it is natural to consider the following minimization problem

Eκ(q) = inf{Eκ(u) : u ∈ N X (R), p(u) = q}. (1.57)

Hence, if a minimizer is reached, it satisfies the Euler–Lagrange equation (1.56), and thus
(TW(c, κ)), where c appears as a Lagrange multiplier.

We will show in Proposition 6.2, that Eκ(q) = −∞, for all κ > 0, so that we restrict ourselves
to the case κ ≤ 0. This minimization problem was studied for κ = 0 in [4,19], where the authors
showed that the curve q 7→ E0(q) is a well-defined function on R, that is even and continuous,
so it suffices to consider q ≥ 0. Moreover, for q ∈ (0, π/2), the minimizer is attained, and
corresponds, up to invariances, to the dark soliton uc,0 in (1.5), where the speed c ∈ (0,

√
2) is

given by the equation
π/2 − atan(c/

√
2 − c2) − c

√
2 − c2/2 = q.

Also, the energy of the solution is E0(q) = E(uc,0) = (2 − c2)3/2/3. For q > π/2, the curve E0 is
constant, and the minimizers are not reached.

Therefore, we focus now on the case κ < 0. In view of Theorems 1.1 and 1.2, if a minimizer
of Eκ is attained, then it is given, for c ∈ (0,

√
2), by the dark soliton in (1.27), i.e.

uc,κ(x) =
√

1 − Gc,κ(x) eiθc,κ(x), with θc,κ(x) = c

2

∫ x

0

Gc,κ(y)
1 − Gc,κ(y)dy, for all x ∈ R, (1.58)

depicted in the center panel of Figure 2.
A complete study of the function Eκ is done in Section 6. In particular, we will prove that Eκ

is even and continuous on R, and also that it is nondecreasing, concave, and strictly subadditive
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on R+. These characteristics will enable us to apply the concentration-compactness argument
to study the minimizers of Eκ. However, when considering the case κ < κ0, depicted for instance
in the right panel of Figure 6, we infer that not all solitons in (1.58) can be minimizers for Eκ.

On the other hand, the definition of Eκ is not well-adapted to study solitons that vanish at
some point, such as the black solitons. Indeed, their analysis is much more involved, as explained
in [5, 23]. Hence, we only consider here nonvanishing solitons. Moreover, to prove the existence
of minimizers, we need to guarantee that the limit of the minimizing sequences can be lifted, so
that the momentum of the limit function is well-defined. For this purpose, we follow the method
developed by de Laire and Mennuni in [21], by introducing the following the critical value for
the momentum

q∗
κ = sup{q > 0 : ∀v ∈ E(R), Eκ(v) ≤ Eκ(q) ⇒ inf

R
|v| > 0}. (1.59)

We show that q∗
κ is related to the energy of the black soliton u0,κ,

u0,κ(x) = ±
√

1 − G0,κ(x), for all ± x ≥ 0. (1.60)

Indeed, it will be key to introduce the critical value for the speed

c∗
κ = max{c ∈ [0,

√
2) : Eκ(uc,κ) = Eκ(u0,κ)}, (1.61)

that enables us to characterize q∗
κ in the following manner:

q∗
κ = p(uc∗

κ,κ), if c∗
κ > 0, and q∗

κ = π/2, if c∗
κ = 0. (1.62)

We establish in Corollary 5.9, that there is κ0 < 0 such that c∗
κ = 0 if κ ∈ [κ0, 0), and c∗

κ ∈ (0,
√

2)
if κ < κ0. Moreover, using also Theorem 6.8, we will deduce that the function pκ : [c∗

κ,
√

2] →
[0, q∗

κ], given by pκ(c) = p(uc,κ), is continuous, bijective, and strictly decreasing, so its inverse is
well-defined, and we denote it by cκ : [0, q∗

κ] → [c∗
κ,

√
2].

With these definitions, we can state now our main result concerning the variational charac-
terization of the dark solitons in the region D2.

Theorem 1.10. Let κ ≤ 0 and q ∈ (0, q∗
κ). Then the infimum for the minimization problem

(1.57) is attained at the dark soliton uc(q),κ in (1.58), i.e. Eκ(q) = Eκ(uc(q),κ), and is the only
minimizer, up to invariances. Moreover, Eκ(q) = Eκ(u0,κ) for all q > q∗

κ and this infimum is
not attained.

We will see in Section 7 that the Cauchy problem for (1.63), with k < 0, is locally well-posed
in uc,κ + Hs(R), for s ≥ 3 as stated in Corollary 7.2, including the conservation of energy and
momentum by the flow. Therefore, by using the Cazenave–Lions argument [8], and endowing
X (R) with the pseudo-metric:

d(u1, u2) = ∥u′
1 − u′

2∥L2(R) + ∥|u1| − |u2|∥L2(R),

we will deduce that the variational characterization leads to the orbital stability of the dark
solitons, as follows.

Theorem 1.11. Let κ < 0 and c ∈ (c∗
κ,

√
2), then the dark soliton uc,κ in (1.58) is orbitally

stable in (X (R), d), in the following sense. For all ε > 0, there exists δ > 0 such that if
Ψ0 ∈ uc,κ + Hs(R), s > 5/2, satisfies infR |Ψ0| > 0 and

d(Ψ0, uc,κ) ≤ δ,

then, for all t ∈ [0, TΨ0),
inf

(y,ϕ)∈R2
d(Ψ(·, t), eiϕuc,κ(· − y)) ≤ ε,

where Ψ ∈ C([0, TΨ0); uc,κ + Hs) is the solution in Corollary 7.2, with initial condition Ψ0,
described in Section 7.
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Remark 1.12. Equation (1.2) can be written in a more general form as

i∂tΦ = ∆Φ + V (x)Φ + sΦ(f(|Φ|2)Φ + κh′(|Φ|2)∆h(|Φ|2)), in Rd × R, (1.63)

with f(y) = h(y) = y for all y ∈ R and V ≡ 0. Considering vanishing conditions at infinity with
focusing nonlinearities s = 1 and κ ≤ 0, the existence and orbital stability of bright solitons
for equation (1.63) has been addressed in [12, 13] for V ≡ 0 , and in [34, 38] for wide classes of
V ∈ C(R,R) bounded from below. After a phase shift, these solutions are real-valued, which
simplifies the problem. This fact is key to using the duality method in [12, 13], which enables
the transformation of the elliptic quasilinear problem into a semilinear one. As explained by
Selvitella [39], the dual method does not work for complex-valued functions, thus it is not
well-suited for the study of (TW(c, κ)) for c ̸= 0.

Remark 1.13. The global well-posedness in the energy space and the properties of dark soliton
for (1.6) have been addressed by the first author in [15,21]. Assuming that Ŵ is bounded, with
Ŵ(ξ) ≥ (1−κξ2)+, for all ξ ∈ R, with κ ∈ [0, 1/2], and some additional conditions, it was shown
that there exists a branch of dark solitons to (1.6). Even though there is no analytical formula
for these dark solitons, it was proven in [21] that some of them can be obtained by minimization
at fixed momentum, using the value q∗

κ in (1.59). However, obtaining good estimates for q∗
κ in

the nonlocal case remains an open problem.

The outline of this paper is the following. In Section 2, we deduce the ODEs for the intensity
profile. Section 3 is devoted to the classification and construction of smooth solutions for the
ODEs, while the analysis of weak solutions is done in Section 4. In Section 5, we provide some
formulas for the energy and momentum of traveling waves. We study the minimization of the
energy at fixed momentum in Section 6. in Section 7, we show the local well-posedness of (QGP)
and the stability of dark solitons. Finally, we briefly discuss the stability of bright solitons in
Appendix A.

Notations. The usual Lebesgue and Sobolev spaces of real-valued functions will be denoted,
respectively, by Lp(R) and W k,p(R), for p ∈ [1, ∞] and k ∈ N. Moreover, W k,2(R) = Hk(R). If
Ω ⊂ R is an open interval, then H1

0 (Ω) denotes the closure of C∞
0 (Ω) in H1(Ω). The notation

for the Lebesgue spaces of complex-valued functions will be Lp(R;C), and analogously for the
Sobolev spaces of complex-valued functions, or simply Lp(R), if there is no ambiguity. For k ≥ 1,
we introduce the homogeneous space Ḣk(Ω) = {u ∈ L1

loc(R) : u′ ∈ Hk−1(Ω)} where L1
loc(R) is

the Lebesgue space of functions integrable on every compact subset of R. Given a function f ,
f(a+) and f(a−) denote the lateral limits of f(x), as x → a+ and x → a−, respectively. We
denote by ⟨ , ⟩ the real scalar product on C:

⟨z1, z2⟩ = Re(z1z̄2).

For a complex-valued function u (typically a function in X (R)), we define its intensity profile as
the real-valued function η = ηu = 1−|u|2. In addition, we use the notation uc,κ for a solution to
(TW(c, κ)) and ηc,κ for its intensity profile, but we will remove the subscripts c, κ in the proofs,
when there is no ambiguity.

2 Equations for the intensity profile
We start by recalling properties satisfied by functions in X (R).

Lemma 2.1. Let u ∈ X (R). Then u belongs to C1/2(R) ∩ L∞(R), and its intensity profile
ηu = 1 − |u|2 lies in H1(R), with,

lim
|x|→∞

ηu = 0. (2.1)
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Proof. The fact that u is bounded and 1/2-Hölder continuous follows from the Morrey inequality.
Then, using that η′

u = −2⟨u′, u⟩, we conclude that η′
u ∈ L2(R), so that ηu ∈ H1(R) and therefore

(2.1) holds.

For notational simplicity, we omit from now on the subscript u in the profile intensity ηu, if
there is no ambiguity.

For the sake of completeness, we also recall the following result concerning the lifting of
smooth functions.

Lemma 2.2. If u ∈ Ck(R;C), for some k ∈ N∗, satisfies that u(x) ̸= 0, for all x ∈ R, then there
exists a phase θ ∈ Ck(R,R), such that the lifting u = ρeiθ holds in R, where ρ ∈ Ck(R;R) is
given by ρ = |u|. Similarly, if u ∈ N X (R), then there is θ ∈ C(R;R) ∩ Ḣ1(R) such that u = ρeiθ

in R, and also ρ = |u| ∈ C(R;R) ∩ Ḣ1(R).

Proof. If u ∈ Ck(R;C) does not vanish, it is immediate that ρ =
√

uū is of class Ck. Now,
let w(x) = u(x)/|u(x)| and θ̃ =

∫ x
0 −iw′(s)w̄(s)ds =

∫ x
0 −⟨iu′(s), u(s)⟩/|u|2(s)ds, then we have

(w(x)e−iθ̃(x))′ = e−iθ̃(w′ − ww′w̄) = 0, since ww̄ ≡ 1. Hence, w(x) = w(0)eiθ̃(x), and we the
conclusion follows by setting θ(x) = θ̃(x)+arg(w(0)), where arg is any continuous determination
of the argument defined near w(0).

The same argument holds for u ∈ N X (R), showing that θ is continuous. Also, since u ∈
X (R), we have

u′ = ρ′eiθ + iρθ′eiθ ∈ L2(R), (2.2)

which implies that ρ′, ρθ′ ∈ L2(R). Since infR ρ > 0, we conclude that θ′ ∈ L2(R).

For a nonvanishing solution u to (TW(c, κ)), the lifting u = ρeiθ is commonly used to
derive a system of equations satisfied by ρ and η, which are related to the hydrodynamical
formulation for the Gross–Pitaevskii equation [7]. The equivalence between the hydrodynamical
formulation and the traveling wave equation has been obtained for nonlocal Gross–Pitaevskii
equations in [20]. However, they use that the solutions are smooth. We verify now that this
hydrodynamical formulation holds also for weak solutions to (TW(c, κ)).

Corollary 2.3. Let u = ρeiθ ∈ N X (R), with ρ, θ ∈ C(R)∩Ḣ1(R) be weak solution to (TW(c, κ)).
Then θ′ ∈ H1(R) and (ρ, θ) satisfies the following system:

θ′ = c(1 − ρ2)
2ρ2 . (2.3)

(
ρ′(1 − 2κρ2)

)′
= −2κρ(ρ′)2 − ρ(1 − ρ2) + c2(1 − ρ2)2

4ρ3 + c2(1 − ρ2)
2ρ

. (2.4)

Conversely, if there exists a function ρ ∈ C(R) such that infR ρ > 0 and 1 − ρ2 ∈ H1(R),
satisfying (2.4), then there exists a unique (up to a constant) function θ ∈ C1(R) ∩ Ḣ2(R)
satisfying (2.3). Moreover, the function defined by u = ρeiθ belongs to N X (R) and is a solution
to (TW(c, κ)).

Proof. Let u = ρeiθ ∈ N X (R). To show (2.3)–(2.4), we take φ ∈ H1(R) and write (1.15) with
ϕ = eiθφ. We have ϕ ∈ H1(R) and the equation reads, using that ⟨z1eiθ, z2eiθ⟩ = ⟨z1, z2⟩, for all
z1, z2 ∈ C and all θ ∈ R,∫

R
⟨icρ′ − cθ′ρ + ρ(1 − ρ2), φ⟩ − ⟨ρ′ + iρθ′, iθ′φ + φ′⟩ + 2κ⟨ρ, ρ′ + iθ′ρ⟩⟨ρ, φ⟩′ = 0. (2.5)
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Taking iφ1 and then φ1 for any φ1 ∈ H1(R;R) in place of φ in (2.5), we deduce:∫
R

cρ′φ1 + ρ′θ′φ1 − θ′ρφ′
1 = 0, (2.6)∫

R
(−cθ′ρ + ρ(1 − ρ2))φ1 − (θ′)2ρφ1 − ρ′φ′

1 + 2κρρ′(ρφ1)′ = 0. (2.7)

Setting φ1 = ρφ2 ∈ H1(R;R) in (2.6), we obtain
∫
R −c(1 − ρ2)′φ2/2 − θ′ρ2φ′

2 = 0, it follows, by
integration by parts of the first term, that (−c(1 − ρ2)/2 + θ′ρ2)′ = 0 in the distributional sense.
We conclude from the integrability at infinity of 1 − ρ2 and θ′2 that equation (2.3) is satisfied
in L2(R), which in turn implies that θ′ ∈ H1(R). In particular, (2.3) satisfied pointwisely. To
deduce equation (2.4), we just replace θ′ by c(1 − ρ2)/(2ρ2) in (2.7).

We now prove the converse; it follows from the assumptions that ρ and 1/ρ are essentially
bounded, with weak derivatives in L2(R). Similar to what has been done to obtain (2.3)–(2.4)
from (TW(c, κ)), choosing adequate test functions in H1(R), we deduce that u = ρeiθ belongs
to N X (R) and satisfies equation (TW(c, κ)) in the weak sense.

Remark 2.4. We also deduce from the proof of Corollary 2.3 that if u ∈ X (R) is a solution
to (TW(c, κ)), with inf [a,b] |u| > 0, for some interval (a, b), so that u = ρeiθ in [a, b], then there
exists a constant K ∈ R such that

θ′ = c(1 − ρ2)
2ρ2 + K, in (a, b). (2.8)

The next result shows that equation (TW(c, κ)) can be recast as two equations for the
(real-valued) intensity profile η, which is key for our classification results, in the same spirit
of [4, 17,20].

Proposition 2.5. Let uc,κ ∈ C2(R) ∩ X (R) be a solution to (TW(c, κ)). Then ηc,κ = 1 − |uc,κ|2,
satisfies

(1 − 2κ + 2κηc,κ)η′′
c,κ + κ(η′

c,κ)2 = −3η2
c,κ + (2 − c2)ηc,κ, in R. (2.9)

(1 − 2κ + 2κηc,κ)(η′
c,κ)2 = η2

c,κ(2 − c2 − 2ηc,κ), in R. (2.10)

In particular, assuming without loss of generality that |ηc,κ| reaches a global maximum at the
origin, we obtain either

η(x) = 0, for all x ∈ R, or η(0) = 1 − c2

2 . (2.11)

Proof. Let u = u1 + iu2, writing the equations satisfied by u1 and u2, we obtain

u′′
1 − cu′

2 + u1(η + κη′′) = 0, in R, (2.12)

u′′
2 + cu′

1 + u2(η + κη′′) = 0, in R. (2.13)

Multiplying (2.12) by −u2, and (2.13) by u1, and adding these equations, we get

(u1u′
2 − u′

1u2)′ = c

2η′.

Since u′ ∈ L2(R) ∩ C(R), there exists a sequence (Rn)n∈N such that limn→∞ Rn = ∞ and
u′(Rn) = u′

1(Rn) + iu′
2(Rn) → 0 as n → ∞. Integrating from x ∈ R to Rn, we obtain

(u1u′
2 − u′

1u2)(x) = c

2η(x) + Kn, for all x ∈ R, (2.14)
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where Kn = (u1u′
2 − u′

1u2)(Rn) − c
2η(Rn) → 0, as n → ∞. Thus equation (2.14) reads

(u1u′
2 − u′

1u2) = c

2η, in R. (2.15)

On the other hand, multiplying (2.12) by u′
1 and (2.13) by u′

2, and adding these equations, we
have

1
2
(
(u′

1)2 + (u′
2)2
)′

= η′

2 (η + κη′′),

so integrating this relation from x to Rn, and taking the limit as before, we obtain

|u′|2 = 1
2(η2 + κ(η′)2). (2.16)

In addition, multiplying (2.12) by u1, (2.13) by u2 and adding these equations, we have

c(u1u′
2 − u′

1u2) = u1u′′
1 + u2u′′

2 + |u|2(η + κη′′).

We are now in a position to deduce (2.9). Indeed, since η′′ = −2(|u′|2 + u1u′′
1 + u2u′′

2), using
(2.15)–(2.16), we get

η′′ = −(η2 + κ(η′)2) − c2η + 2|u|2(η + κη′′),

which is exactly (2.9). To obtain (2.10), we notice that

((η′)2

2 (1 − 2κ + 2κη)
)′

= η′′η′(1 − 2κ + 2κη) + κ(η′)3, (2.17)

so that multiplying (2.9) by η′, integrating from x to Rn and taking the limit as n → ∞, we
finally deduce (2.10). Since η satisfies (2.1), it must reach a global extremum at some x0 ∈ R.
We fix x0 = 0 and evaluate (2.10) at 0 to obtain (2.11).

Remark 2.6. Notice that if η ∈ C2(R) satisfies (2.10), and if η′ only vanishes on a set of measure
zero, then η satisfies (2.9). Conversely, if η ∈ C2(R) satisfies (2.9) and if η ∈ H1(R), then η
satisfies (2.10). This remark motivates our choice to study solutions to both (2.9)–(2.10) to
shorten the statements of the results.

Equation (2.9)–(2.10) provides a simpler formulation to (TW(c, κ)) given by two real-valued
equations. Combining Proposition 2.5 with the following result, we deduce the equivalence of
these problems for regular solutions with nonzero speed c.

Proposition 2.7. If c > 0 and ηc,κ ∈ C2(R) is a solution to (2.9)–(2.10), then, ηc,κ < 1 on R,
and the function

θc,κ(x) = c

2

∫ x

a

( ηc,κ(y)
1 − ηc,κ(y)

)
dy, for all x ∈ R, (2.18)

is well-defined in R, for all a ∈ R. Moreover, the function uc,κ =
√

1 − ηc,κeiθc,κ belongs to
C2(R;C) and satisfies (TW(c, κ)). Also, if ηc,κ ∈ H1(R), then uc,κ ∈ N X (R).

Proof. Let u = ρeiθ, with ρ =
√

1 − η, we show first that ρ(x) > 0, for all x ∈ R. Suppose that
ρ(x0) = 0, for some x0 ∈ R, then η(x0) = 1 and is necessarily a global maximum of η. Equation
(2.11) implies that c = 0, contradicting our assumptions. We conclude that θ is well-defined and
belongs to C3(R). In view of (2.18), we have

u′(x) = − eiθ(x)η′(x)
2
√

1 − η(x)
+ ieiθ(x) cη(x)

2
√

1 − η(x)
. (2.19)
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Computing the left-hand side of (TW(c, κ)) using (2.19), one can check that the imaginary part
is zero. Using (2.9)–(2.10), computations yield that the real part is zero too, thus u satisfies
(TW(c, κ)). Now suppose additionally that η ∈ H1(R). Using (2.19) we get∫

R
|u′|2 =

∫
R

η′2

4(1 − η) + c2η2

4(1 − η) , (2.20)

Then |u′|2 is integrable, since η ∈ H1(R) and infR(1 − η) > 0. Therefore u ∈ N X (R).

Remark 2.8. If u =
√

1 − ηeiθ ∈ N X (R) is a solution to (TW(c, κ)), then the formulas for
Eκ(u) and p(u) in (1.14) and (1.13), can be simplified as

Eκ(u) = 1
2

∫
R

η2 and p(u) = c

4

∫
R

η2

1 − η
, (2.21)

by using respectively (2.16) and (2.3).

3 Classification of smooth traveling waves
Equation (2.10) yields necessary conditions on (c, κ) for the existence of nontrivial traveling
waves. For instance, taking x large enough, we expect that

0 < (2 − c2)(1 − 2κ), or equivalently (c, κ) ∈ D, (3.1)

is a necessary condition for the existence of nontrivial solutions. Corollary 3.1 and Proposi-
tion 3.2 aim to provide a rigorous proof of this fact.

Corollary 3.1. Let c ≥ 0 and κ ∈ R, with κ ̸= 1/2. Assume that (c, κ) /∈ D and that u ∈
C2(R) ∩ X (R) is a solution to (TW(c, κ)). Then u is a trivial solution, i.e., there is a constant
ϕ ∈ R such that u(x) = eiϕ, for all x ∈ R.

Proof. Let η ∈ H1(R) be the solution to (2.9)–(2.10) given by Proposition 2.5. We distinguish
three cases for the parameters: (i) c =

√
2 and κ ∈ R, (ii) c >

√
2 and κ < 1/2, (iii) 0 ≤ c <

√
2

and κ > 1/2. We show now that in each case we can conclude that η ≡ 0 in R.
If (i) is satisfied, then (2.11) implies that 0 is the only possible global extremum of η, thus

η ≡ 0. In the case (ii), suppose by contradiction that η is not the zero function, then, using
(2.11), η(0) = 1 − c2/2 < 0. By (2.1) and using the intermediate value theorem, we infer that
there exists x1 ∈ R such that

η(x1) = max
{2 − c2

4 ,
2κ − 1

4κ

}
if κ > 0, and η(x1) = 2 − c2

4 if κ ≤ 0.

Hence η(x1)2(2 − c2 − 2η(x1)) < 0 and 1 − 2κ + 2κη(x1) > 0. Therefore, computing the sign of
both sides of equation (2.10), we obtain a contradiction. We conclude that η ≡ 0. Case (iii) can
be treated analogously to case (ii), by taking η(x1) = min

{
2−c2

4 , 2κ−1
4κ

}
.

Corollary 3.1 provides a first nonexistence result for nontrivial finite energy solutions to
(TW(c, κ)), where the case κ = 1/2 was excluded. We will handle the case κ = 1/2, finding
the explicit smooth solutions to (TW(c, κ)), and checking that this solution does not belong to
the energy space. This explicit solution will also enable us to construct the dark compactons in
Subsection 4.2.
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Proposition 3.2. Let κ = 1/2 and c ≥ 0. Assume that η ∈ C2(R) is a nonzero solution to
(2.9)–(2.10), satisfying (2.11). Then for all x ∈ R, we have

η(x) = (2 − c2)
2 cos2

( x√
2

)
. (3.2)

In particular, there is no nontrivial solution to (TW(c, κ)) with κ = 1/2 in C2(R) ∩ X (R).

Proof. If c =
√

2, then (2.11) shows that η ≡ 0 is the only solution, so (3.2) is trivially satisfied.
Let us now verify formula (3.2) in the case 0 ≤ c <

√
2. Notice first that (2.9) reads

ηη′′ + (η′)2/2 = −3η2 + (2 − c2)η, in R. (3.3)

By (2.11), we can assume that |η| reaches a global maximum at x = 0 with η(0) = 1 − c2/2,
hence η′(0) = 0 and (3.3) yields η′′(0) < 0. Since η is strictly concave at x = 0, η(0) is the
global maximum of η and letting R = sup{x > 0 : η(s) > 0, for all s ∈ (0, x)}, we infer that
η′ < 0 on (0, R). Indeed, otherwise setting x1 = inf{x > 0, η′(x) = 0}, we would have x1 < R
and 0 < x1 by concavity. Then, evaluating (2.10) at x1 yields η(x1) = 1 − c2/2 since η(x1) > 0
by definition of R. Using Rolle’s theorem, the latter identity contradicts the minimality of x1.
We deduce again from (2.10) that

η′√
η(2 − c2 − 2η)

= −1, in (0, R). (3.4)

By direct integration, we obtain R = π/
√

2 and

η(x) = 2 − c2

2 tan2 (x/
√

2
)

+ 2
= (2 − c2)

2 cos2 (x/
√

2
)
, x ∈

[
0,

π√
2

)
. (3.5)

The same argument shows that the formula (3.5) remains valid for −π/
√

2 < x < 0, so (3.2)
holds on (−π/

√
2, π/

√
2). It follows that,

η′(x) = −2 − c2
√

2
sin
( x√

2

)
cos

( x√
2

)
, for all x ∈

(
− π√

2
,

π√
2

)
, (3.6)

η′′(x) = −2 − c2

2
(

cos2
( x√

2

)
− sin2

( x√
2

))
, for all x ∈

(
− π√

2
,

π√
2

)
. (3.7)

Since η ∈ C2(R), we conclude from these explicit formulas that η(±π/
√

2) = 0, η′(±π/
√

2) = 0,
and η′′(±π/

√
2) = (2 − c2)/2. Because η is strictly convex at x = −π/

√
2, letting

R2 = inf{x < −π/
√

2 : η(s) < 1 − c2/2, for all s ∈ (x, −π/
√

2)},

we deduce that (3.4) still holds replacing (0, R) by (R2, −π/
√

2), arguing as before. Integrating
(3.4), we obtain R2 = −

√
2π, and (3.5) remains true in (−

√
2π, −π/

√
2]. From the same

arguments and an induction procedure, we infer that η satisfies (3.2). In the case c >
√

2,
similar ideas allow us to deduce that (3.2) also holds.

Finally, suppose by contradiction that u ∈ C2(R) ∩ X (R) satisfies (TW(c, κ)) with κ = 1/2
and is nontrivial. Then η = 1 − |u|2 satisfies (2.9)–(2.10) and (2.11), by Proposition 2.5. Hence
(3.2) holds, and therefore η /∈ L2(R), contradicting u ∈ X (R). Additionally, we can check that
(2.21) also holds in that case, so that we have Eκ(u) = ∞.
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Remark 3.3. Using (3.2) and (2.18), we deduce that the only nontrivial C2(R)-solution u to
(TW(c, 1/2)) such that η = 1 − |u|2 satisfies (2.11) is given, up to invariances and for any c > 0
by

u(x) =
√

1 − (2 − c2)
2 cos2

( x√
2

)
eiθ(x),

where θ is a smooth odd function satisfying, for all x ≥ 0 and all k ∈ N,

θ(x) = −cx

2 −
(

atan
( c√

2
cot

( x√
2

))
− π

2 − kπ

)
, if x ∈

(
k
√

2π, (k + 1)
√

2π
)
.

In the case c = 0, this solution degenerates to the periodic solution to (TW(0, 1/2)) given by
u(x) = i sin(x/

√
2).

We continue the study of the equations (2.9)–(2.10) in Proposition 2.5 when the parameters
(c, κ) belong to D, using the regions D1, D2 and D3, defined in(1.18)–(1.19).

Corollary 3.4. Let (c, κ) ∈ D and assume that η ∈ C2(R) is a nonzero solution to (2.9)–(2.10)
satisfying (2.1). Then up to translation, η is even, reaching a global extremum at the origin
with η(0) = 1 − c2/2. Moreover, we have η > 0 and η′ < 0 on (0, ∞) if (c, κ) ∈ D1 ∪ D2, while
η < 0 and η′ > 0 on (0, ∞) if (c, κ) ∈ D3. Additionally, the function η belongs to C∞(R) and
is exponentially decaying, as well as all its derivatives, i.e. for every j ∈ N there exists positive
constants C0 and C such that

|Djη(x)| ≤ C0e−C(|x|−1), for all |x| ≥ 1.

Proof. We recall that D = D1 ∪ D2 ∪ D3. Let us treat case first the case (c, κ) ∈ D1 ∪ D2. Using
(2.11), we assume that η reaches a positive global maximum 1 − c2/2 at x = 0. Notice that
η > 0, indeed, otherwise we would have η(x1) = 0, for some x1 ∈ R. Then, equation (2.10)
yields η′(x1) = 0. Using (2.9), we infer that (η, η′)T satisfies(

η
η′

)′

(x) =
(

η′(x)
−3η2(x)+(2−c2)η(x)−κ(η′(x))2

1−2κ+2κη(x)

)
= F ((η, η′)T ), (3.8)

in a neighborhood of x1. Since F is well-defined and locally Lipschitz in (R\{1 − 1/(2κ)}) × R,
by Cauchy–Lipschitz theorem, for any initial condition in (R\{1−1/(2κ)})×R, there is a unique
maximal solution of (3.8). In particular, since (η(x1), η′(x1))T = (0, 0)T , is an equilibrium, we
deduce that η ≡ 0 in R, which is a contradiction.

The fact that η is even also follows from the Cauchy–Lipschitz theorem. Indeed, setting
η̃(x) = η(−x), for all x ∈ R, we deduce that (η̃, η̃′)T satisfies (3.8) with initial condition
(η̃(0), η̃′(0))T = (1 − c2/2, 0)T . Thus η2 = η.

We show now that η′(x) < 0, for all x ∈ (0, ∞). Evaluating equation (2.9) at x = 0,
yields η′′(0) < 0, hence η′ is decreasing in the vicinity of 0. This implies that η′(x) < 0,
for x > 0 near 0. Now suppose by contradiction that η′(x1) = 0, for some x1 > 0, and let
x2 = inf{x > 0 : η′(x) = 0}. Since η(0) = 1 − c2/2, we infer from Rolle’s theorem that we
cannot have η(x2) = 1 − c2/2. Hence, evaluating (2.10) at x = x2, we obtain η(x2) = 0, which
contradicts the positivity of η. Thus η′ does not change sign and remains negative in (0, ∞).

To prove the remainder properties, we use that η > 0 on R, thus

1 − 2κ + 2κη(x) > 1 − 2κ > 0, for all x ∈ R,
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and therefore η remains in the domain of F , so it is a global solution to (3.8). Thus, the
smoothness of η follows by an induction argument on the ODE (3.8). For the decay estimates,
since η is decreasing in (0, ∞), we get from (2.10)

η′(x) = −η(x)
√

−2η(x) + (2 − c2)
1 − 2κ + 2κη(x) , for all x > 0. (3.9)

Thus η′ ≤ −Cη(x), for all x ≥ 1, where C = infx≥1
{√

−2η(x)+(2−c2)
1−2κ+2κη(x)

}
> 0. Integrating this

differential inequality, we get η(x) ≤ η(1)e−C(x−1). The decay of higher other derivatives is then
obtained by differentiating (3.9), together with an induction argument.

Finally, the case (c, κ) ∈ D3 can be treated similarly, noticing that η also satisfies (3.9), since
η < 0 and η′ > 0 on (0, ∞).

Now we prove the main result of this subsection: the existence and uniqueness (up to trans-
lation) of ηc,κ ∈ C2(R) ∩ H1(R) satisfying (2.9)–(2.10), for any (c, κ) ∈ D. Then, in the case
c > 0, Theorem 1.1 is deduced using the equivalence stated in Proposition 2.7. We prove be-
forehand, that the functions (1.22)–(1.24) are well-defined, and injective so that we can define
their inverse. The idea behind (1.22)–(1.24) is to integrate explicitly the ODE (3.9) taking into
account the properties of the solutions stated in Corollary 3.4.

Lemma 3.5. The functions Fc,κ, Gc,κ and Hc,κ are well-defined. Moreover,
(i) Fc,κ is decreasing, belongs to C∞(I◦

c ) ∩ C(Ic), and

lim
y→0+

Fc,κ(y) = ∞, Fc,κ(1 − c2/2) = 0, F ′
c,κ(y) = −1

y

√
1 − 2κ + 2κy

2 − c2 − 2y
, for y ∈ I◦

c . (3.10)

(ii) Hc,κ is increasing, belongs to C∞(J ◦
c ) ∩ C(Jc), and

Hc,κ(1 − c2/2) = 0, lim
y→0−

Hc,κ(y) = ∞, H ′
c,κ(y) = −1

y

√
1 − 2κ + 2κy

2 − c2 − 2y
, for y ∈ J ◦

c . (3.11)

(iii) Gc,κ is decreasing, belongs to C∞(I◦
c ) ∩ C(Ic), and

lim
y→0+

Gc,κ(y) = ∞, Gc,κ(1 − c2/2) = 0, G′
c,κ(y) = −1

y

√
1 − 2κ + 2κy

2 − c2 − 2y
, for y ∈ I◦

c . (3.12)

Proof. It is immediate to check that

(σ, (c, κ)) ∈ Ic × D1 =⇒ 1 − 2κ + 2κσ ≥ 1 − 2κ > 0, (3.13)
(σ, (c, κ)) ∈ Ic × D2 =⇒ 1 − 2κ + 2κσ ≥ 1 − κc2 > 0, (3.14)
(σ, (c, κ)) ∈ Jc × D3 =⇒ 1 − 2κ + 2κσ < 1 − 2κ < 0, (3.15)

so the square roots in (1.22)–(1.23) and in (3.10)–(3.12) are well-defined. Since the domain
of definition of atanh is (−1, 1), in case (i), it remains to check that (1 − 2κ)(2 − c2 − 2y) <
(2 − c2)(1 − 2κ + 2κy), which is equivalent to the condition

y(c2κ − 1) < 0, (3.16)

which is satisfied in this case, since y > 0. Thus, Fc,κ belongs to C∞(I◦
c ) ∩ C(Ic), and one gets

immediately the values of Fc,κ at y = 0+ and y = 1−c2/2 in (3.10). Finally, simple computations
give

d

dy

(
atan

(√
κ

√
2 − c2 − 2y

1 − 2κ + 2κy

))
= −

√
κ√

(2 − c2 − 2y)(1 − 2κ + 2κy)
,
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and
d

dy

(
atanh

(√ (1 − 2κ)(2 − c2 − 2y)
(2 − c2)(1 − 2κ + 2κy)

))
= −

√
(1 − 2κ)(2 − c2)

2y
√

(2 − c2 − 2y)(1 − 2κ + 2κy)
,

so that we obtain the derivative of Fc,κ in (3.10).
The case (ii) follows using the same computations, noticing that (3.16) is still satisfied in

this case, since y < 0.
In case (iii), we check that for all y ∈ Ic,

0 ≤ −κ(2 − c2 − 2y) < 1 − 2κ + 2κy,

and (3.16) is still satisfied, since κ < 0 and y > 0. Therefore, both atanh in (1.23) are well-
defined. Noticing that

d

dy

(
atanh

(√
−κ

√
2 − c2 − 2y

1 − 2κ + 2κy

))
= −

√
−κ√

(2 − c2 − 2y)(1 − 2κ + 2κy)
,

the conclusion follows as in the previous cases.

In view of Lemma 3.5, the inverse functions of Fc,κ, Hc,κ and Gc,κ are well-defined in (0, ∞):

Fc,κ = F −1
c,κ , for (c, κ) ∈ D1; Gc,κ = G−1

c,κ, for (c, κ) ∈ D2; Hc,κ = H−1
c,κ , for (c, κ) ∈ D3.

(3.17)
We show that these functions can be smoothly extended to R.

Lemma 3.6. Let (c, κ) ∈ D and Fc,κ, Gc,κ and Hc,κ be defined as in (3.17). Then they extend
to R as even functions, that we still denote by Fc,κ, Gc,κ and Hc,κ, respectively, and satisfy

Im(Fc,κ) = (0, 1 − c2/2], Im(Gc,κ) = (0, 1 − c2/2], Im(Hc,κ) = [1 − c2/2, 0). (3.18)

In addition, these extensions belong to C∞(R).

Proof. We prove the statements only for Fc,κ, since the proofs for Gc,κ and Hc,κ are similar.
Since F ′

c,κ ∈ C∞(I◦
c ; (0, ∞)) is negative valued, we have Fc,κ = F −1

c,κ ∈ C1((0, ∞)) with

F ′
c,κ(x) = 1

F ′
c,κ(Fc,κ(x)) = −Fc,κ(x)

√
2 − c2 − 2Fc,κ(x)

1 − 2κ + 2κFc,κ(x) , (3.19)

in fact, this yields Fc,κ ∈ C∞((0, ∞); I◦
c ). Using (3.19) we know the monotonicity of Fc,κ, and

we conclude that Fc,κ ∈ C([0, ∞); Ic), with Fc,κ(0) = 1 − 1/c2. Symmetrizing Fc,κ with respect
to the ordinate axis, and still denoting by Fc,κ the extension, we deduce that Fc,κ defines an
even function and belongs to C(R) ∩ C∞(R\{0}). It remains to show that Fc,κ is smooth at
the origin. For this purpose, let h ∈ R \ {0}, so that, by the mean value theorem, there exists
0 < |xh| < |h| such that

Fc,κ(h) − Fc,κ(0) = hF ′
c,κ(xh).

Regarding (3.19), we have F ′
c,κ(xh) → 0 as h → 0, therefore Fc,κ ∈ C1(R; Ic) and F ′

c,κ(0) = 0.
Differentiating (3.19) and proceeding by induction, we infer that Fc,κ ∈ C∞(R; Ic), using the
same arguments.

We are in a position to show that the function ηc,κ defined in (1.26) is the nonzero smooth
solution to (2.9)–(2.10).

Proposition 3.7. Let (c, κ) ∈ D and ηc,κ defined in (1.26). Then ηc,κ belongs to C∞(R)∩H1(R)
and is a nonzero to solution to (2.9)–(2.10). Moreover, it is, up to a translation, the unique
nonzero solution to (2.9)–(2.10) in C2(R) ∩ H1(R).
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Proof. We show the result only for (c, κ) ∈ D1, so that ηc,κ = Fc,κ, since the other cases are
analogous. For the sake of simplicity, we omit the subscripts c and κ. By definition, η is even,
with η(0) = 1 − c2/2, η′(0) = 0, η > 0 on R, and

Fc,κ(η(x)) = x, for x > 0. (3.20)

In particular, η satisfies (2.10) for x = 0. Bearing in mind that η(x) ∈ Ic, for all x > 0, we can
invoke Lemma 3.5 to differentiate (3.20), using (3.10), to obtain

η′(x)
η(x)

√
1 − 2κ + 2κη(x)
2 − c2 − 2η(x) = −1, for all x > 0, (3.21)

so that η satisfies (2.10) for all x ≥ 0. Since η is even, we conclude that η satisfies (2.10) in R.
Also, by differentiating (2.10), we deduce that η also solves (2.9), using Remark 2.6.

The property η ∈ H1(R) is a consequence of the decay of global solutions to (2.9)–(2.10),
stated in Corollary 3.4.

Now, for the uniqueness, suppose that there exists another function η̃ ∈ C2(R) ∩ H1(R), a
nonzero solution to (2.9)–(2.10). Then (2.11) applies, so that we can assume, up to a translation,
that η̃ reaches a global extremum at the origin, with η̃(0) = 1−c2/2. Thus (η̃, η̃′) is also a global
solution to the ODE (3.8) with initial condition (η̃, η̃′)(0) = (1− c2/2, 0). Therefore, by Cauchy–
Lipschitz theorem, we conclude that η = η̃.

Now we can prove Theorem 1.1.

Proof of Theorem 1.1. The assertion (i) is a direct consequence of Corollary 3.1 and Proposi-
tion 3.2.

To prove (ii), let (c, κ) ∈ D1, let η be the unique (up to a translation) global solution to
(2.9)–(2.10) given by Proposition 3.7. In the case c > 0, from Proposition 2.7, u =

√
1 − ηeiθ

with θ given by (2.18) is up to invariances the unique finite energy solution of (TW(c, κ)). The
smoothness and decay of u is a consequence of the smoothness and the decay of η.

It remains to analyze the case c = 0, where η(0) = 1 and 0 < η < 1 on R \ {0}, and u is the
odd real function defined in (1.28), so that u(0) = 0. Hence, we need to modify the arguments
given above. It is clear that u is smooth for x ̸= 0. To avoid tedious computations, we use the
following argument to verify that u is a smooth solution to (TW(c, κ)).

Let us define ũ ∈ C∞((−R, R)) as the local real solution, given by the Cauchy–Lipschitz
theorem, of

(1 − 2κũ2)ũ′′ + ũ(1 − ũ2 − 2κ(ũ′)2) = 0, (3.22)
ũ(0) = 0, ũ′(0) = 1/

√
2, (3.23)

for some R > 0, since 1 − 2κy2 > 0, for y near 0. In this manner, ũ satisfies (TW(c, κ)) with
c = 0 on (−R, R). Notice that we chose the value of ũ′(0) to have compatibility with the identity
in (2.16), since η(0) = 1 and η′(0) = 0. Let η̃ = 1 − ũ2. Since η̃ ≤ 1 in (−R, R), with η̃(0) = 1,
we infer that η̃ reaches a global maximum at the origin, so that η̃′(0) = 0. Arguing as in the
proof of Proposition 2.5, with u2 ≡ 0 and c = 0, but integrating between 0 and x, instead of x
and Rn, we conclude that η̃ satisfies equation (2.9) with c = 0 in (−R, R). Thus, η̃ and η satisfy
the same ODE problem (3.8), with the same initial condition. By Cauchy–Lipschitz theorem,
we have η̃ = η, in (−R, R), i.e.

|ũ(x)| = |u(x)|, for all x ∈ (−R, R). (3.24)

Recall that u > 0 in (0, ∞), and that u < 0 in (−∞, 0). Since ũ′(0) > 0, we deduce that there
is some R0 ∈ (0, R] such that ũ > 0 in (0, R0) and ũ < 0 in (0, R0). We conclude from (3.24)
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that ũ = u in (−R0, R̃0), so that u ∈ C∞(R). This also implies that ũ is a global solution to
(3.22)–(3.23), and that ũ = u in R, so that u is solution to (TW(c, κ)), with c = 0.

Finally, we need to prove the uniqueness of the black soliton u in (1.28), up to invariances.
Let us assume that ǔ ∈ C∞(R;C) ∩ X (R) is another solution to (TW(c, κ)) with c = 0. Setting
η̌ = 1 − |ǔ|2, we deduce that η̌ satisfies (2.9)–(2.10) by Proposition 2.5, so that Proposition 3.7
implies that η̌ = η(· − x0) for some x0 ∈ R. Up to a translation, we assume that x0 = 0. Also,
by Corollary (3.4), we deduce that

|ǔ| ≤ 1 on R. (3.25)

In this manner, we have η̌(0) = 1 and η̌′(0) = 0, so that ǔ(0) = 0. By using (2.16), we also get
|ǔ′|(x0) = 1/

√
2, thus ǔ′(0) = eiϕ/

√
2, for some ϕ ∈ R.

To conclude, we consider the function v = e−iϕǔ. It is clear that v satisfies (TW(c, κ))
with c = 0. Therefore, the real-valued function V = (Re(v), Im(v)) satisfies the ODE system in
(1.32), with c = 0, that we rewrite as

V ′′ = G(V, V ′), (3.26)

with initial condition
V (0) = (0, 0), V (0) = (1/

√
2, 0). (3.27)

Notice that G(V, V ′) includes the multiplication by A(V )−1, which is well-defined on R, in view
of (3.25), since 2κ < 1. Because the black soliton u satisfies (3.22)–(3.23), the function U = (u, 0)
is also a solution to (3.26)–(3.27). Therefore, by the Cauchy–Lipschitz theorem, we conclude
that U = V , i.e. that ǔ = eiϕu on R, completing the proof.

We end this section with a word on the regularity of uc,κ with respect to (c, κ). Because
ηc,κ satisfies the autonomous ODE (3.8) and since the right-hand side is a smooth vector field
F = F (c, κ, η, η2), the regularity of the flow with respect to the initial condition (see e.g [25])
yields η ∈ C∞(D ×R), where η(c, κ, x) = ηc,κ(x). We prove by induction that η ∈ C∞(D, Hk(R))
for all k ∈ N.

Proposition 3.8. For every multi-index α = (α1, α2, j) ∈ N3, (c, κ) ∈ D, there exists R, C0, C
positive constants depending continuously on (c, κ) but not on x ≥ R, such that for all |x| ≥ R

|Dα
c,κ,xηc,κ(x)| ≤ C0e−C(|x|−R), (3.28)

where Dα
c,κ,x = ∂α1

c ∂α2
κ ∂j

x. Moreover, η ∈ C∞(D; Hj(R)) where η(c, κ, x) = ηc,κ(x).

Proof. By simplicity, we prove (3.28) only for α2 = 0, since the case α2 ≥ 1 follows by induction
on α2.

By induction on α1, the case α1 = 0 is just the exponential decay of η and all its derivatives
in x. Since ηc,κ satisfies (2.9)–(2.10), from Corollary 3.4 and the regularity of the flow, we have
for all α1 ≥ 0 and all x > 0

∂x∂α1
c ηc,κ(x) = − dα1

(dc)α1
F (c, κ, ηc,κ(x)), where F (c, κ, y) = y

√
2 − c2 − 2y

1 − 2κ + 2κy
. (3.29)

We infer that using the induction hypothesis, there exists R > 1 such that for all x ≥ R

|∂x∂α1
c ηc,κ(x) + ∂yF (c, κ, ηc,κ(x))∂α1

c ηc,κ(x)| ≤ C1e−C2(x−R), for some C1, C2 > 0. (3.30)

For instance, with α1 = 1, (3.29) yields

∂x∂cηc,κ(x) = − d

dc
F (c, κ, ηc,κ(x)) = −∂cηc,κ(x)∂yF (c, κ, ηc,κ) − ηc,κ

∂cF (c, κ, ηc,κ)
ηc,κ

, (3.31)
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Using |η(x)| ≤ |η(1)| < |1 − c2/2| for all x ≥ 1, we can bound (∂cF )/η independently of x ≥ 1,
we can conclude that (3.31) implies (3.30). On the other hand, we have

∂yF (c, κ, ηc,κ) = (1 − 2κ + 2κηc,κ)(2 − c2 − 2ηc,κ) + ηc,κ(κc2 − 1)√
(1 − 2κ + 2κηc,κ)3(2 − c2 − 2ηc,κ)

. (3.32)

Since ∂yF (c, κ, ηc,κ(x)) tends to
√

(2 − c2)/(1 − 2κ), as x → ∞, we get C3 < ∂yF (c, κ, ηc,κ(x))
for all x ≥ R and some C3 > 0 and R > 1. From (3.30), we deduce the decay estimate as
follows. Let G(x) =

∫ x
R ∂yF (c, κ, ηc,κ(s))ds, then, multiply (3.30) by eG(x) and integrate from R

to w ≥ R. By integration by part of
∫ w

R eG(x)∂x∂α1
c ηc,κ(x)dx, we obtain

−C1

∫ w

R
eG(x)−C2(x−R)dx ≤ eG(w)∂α1

c ηc,κ(w) − ∂α1
c ηc,κ(R) ≤ C1

∫ w

R
eG(x)−C2(x−R)dx. (3.33)

Moreover, we can check that for all R ≤ x ≤ w, we have G(x) − G(w) ≤ −C3(w − x). Adding
∂c,κη(c,κ)(R) and multiplying by e−G(w) every side of (3.33) we get, using the latter estimate on
G

∂c,κηc,κ(R)e−G(w) − C1

∫ w

R
e−C3(w−x)−C2(x−R)dx ≤ ∂α1

c ηc,κ(w), (3.34)

and also the upper bound on ∂α1
c ηc,κ

∂α1
c ηc,κ(w) ≤ ∂α1

c ηc,κ(R)e−G(w) + C1

∫ w

R
e−C3(w−x)−C2(x−R)dx. (3.35)

If C2 = C3 we obtain using (3.34)–(3.35)

|∂α1
c ηc,κ(w)| ≤ (|∂α1

c ηc,κ(R)| + C1(w − R))e−C2(w−R), (3.36)

while if C2 ̸= C3, computing the integrals in (3.34)–(3.35) yields

|∂α1
c ηc,κ(w)| ≤ |∂α1

c ηc,κ(R)|e−C3(w−R) + C1
|C3 − C2|

(e−C2(w−R) + e−C3(w−R)) (3.37)

From (3.36)–(3.37) follows the exponential decay estimate (3.28) for j = 0. Using the same
method, we get (3.28) for x ≤ −R. The case j ≥ 1 is then obtained by induction, differentiating
(3.29) j − 1 times with respect to x.

Since (ηc+h,κ(x) − ηc,κ(x))/h − ∂cηc,κ(x) converges to 0 for every x ∈ R as h → 0 and
supch∈(c−h,c+h) |∂cηch,κ(·)| is a continuous exponentially decaying function uniformly in (c, κ)
since the constant in (3.28) are continuous with respect to (c, κ) ∈ D. We also get the convergence
to 0 in the L2-norm using the dominated convergence theorem. Induction of this argument
ensures that η ∈ C∞(D; Hk(R)).

4 Classification of singular traveling waves
We start by defining the notion of weak solution for (QGP).

Definition 4.1. We say that Ψ ∈ L1
loc(R; H1(R)) is a global weak solution to (QGP) if for any

φ ∈ C∞
0 (R; H1(R)) we have∫∫

R×R
⟨iΨ, ∂tφ⟩dxdt =

∫∫
R×R

⟨∂xΨ, ∂xφ⟩ − (1 − |Ψ|2)⟨Ψ, φ⟩ + κ∂x(1 − |Ψ|2)∂x⟨Ψ, φ⟩dxdt. (4.1)

We can check that uc,κ ∈ X (R) is a solution to (1.15) if and only if Ψ(x, t) = uc,κ(x − ct)
is a weak solution to (QGP). In the following subsection, we prove Theorems 1.2, 1.4, 1.7, and
Propositions 1.6 and 1.3 that provide qualitative results on the weak solutions.
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4.1 Properties of singular solutions

Let (c, κ) ∈ [0, ∞) ×R, throughout this subsection, we assume that uc,κ ∈ X (R) is a solution to
(TW(c, κ)). Let u1 = Re(uc,κ), u2 = Im(uc,κ) and ηc,κ = 1 − |uc,κ|2. Taking ϕ = ϕ1 ∈ H1(R;R)
and ϕ = ϕ2 ∈ H1(R;R), in (1.15), we see that (1.15) is equivalent to the system of two real
equations in (1.32), satisfied in the weak sense. Therefore, since uc,κ is continuous, we expect
that solutions to (TW(c, κ)) are smooth on the open set

Ω(uc,κ) :=
{

x ∈ R : |uc,κ|2 ̸= 1
2κ

}
= Γ(uc,κ)c. (4.2)

This is exactly the conclusion of the result below. Note that if κ ≤ 0, we trivially have Ω(uc,κ) =
R. Also, in the case κ ̸= 1/2, bearing in mind (2.1), we can find R > 0 such that −∞ < −R ≤
ac,κ ≤ bc,κ ≤ R < ∞ and (−∞, −R) ∪ (R, ∞) ⊂ Ω(uc,κ), where ac,κ, bc,κ are given by (1.34).

Lemma 4.2. Let (c, κ) ∈ [0, ∞) × R. If uc,κ ∈ X (R) satisfies (TW(c, κ)), then uc,κ ∈
C∞(Ω(uc,κ)). In particular, if κ ̸= 1/2 so that −∞ < ac,κ ≤ bc,κ < ∞, then uc,κ is smooth
in (−∞, ac,κ) ∪ (bc,κ, ∞).

Proof. As usual, let u = uc,κ and write u = u1 + iu2, so that U = (u1, u2) satisfies the system
(1.32), that we recast as

A(u)U ′′ = F (U, U ′),

in the distributional sense, where F (U, U ′) denotes the right-hand side in (1.32). Because
F (U, U ′) belongs to L1

loc(R), we conclude that A(u)U ′′ also belongs to L1
loc(R). Since the de-

terminant (1.33) in nonzero on Ω(u), we deduce that (A(u))−1 ∈ L∞
loc(Ω(u)), and thus U ′′ =

(A(u))−1F (U, U ′) ∈ L1
loc(Ω(u)). Therefore, U ′ ∈ W 1,1

loc (Ω(u)). Using that, by the Sobolev em-
bedding theorem, the functions W 1,1

loc (Ω(u)) are continuous, we conclude that u′ is in C(Ω(u)).
This implies that F (U, U ′) ∈ C(Ω(u)), so u is twice continuously differentiable in Ω(u). The
smoothness follows using a bootstrap argument.

If |uc,κ(x)|2 ̸= 1/(2κ), for all x ∈ R, then by Lemma 4.2, uc,κ ∈ C2(R) so we can refer
to Theorem 1.1 to determine uc,κ. Hence, from now on, we always assume Ω(uc,κ) ̸= R (or
equivalently Γ(uc,κ) ̸= ∅) in an attempt to describe singular solutions to (TW(c, κ)). To analyze
the behavior at infinity of singular solutions (see Theorem 1.4), we introduce the following
variant of equations (2.9)–(2.10). Let uc,κ ∈ X (R) be a singular solution to (TW(c, κ)) such
that Γ(uc,κ) is bounded, and define the real numbers ac,κ, bc,κ according to (1.34). Repeating
the arguments of Proposition 2.5, we deduce that ηc,κ = 1 − |uc,κ|2 satisfies the following ODEs:

(1 − 2κ + 2κηc,κ)η′′
c,κ + κ(η′

c,κ)2 = −3η2
c,κ + (2 − c2)ηc,κ, in (−∞, ac,κ) ∪ (bc,κ, ∞), (4.3)

(1 − 2κ + 2κηc,κ)(η′
c,κ)2 = η2

c,κ(2 − c2 − 2ηc,κ), in (−∞, ac,κ) ∪ (bc,κ, ∞). (4.4)

In particular, the sign constraints in equation (4.4) imply some conditions on (c, κ), which we
discuss in the following lemma.

Lemma 4.3. Let (c, κ) ∈ [0, ∞) × R and assume that κ ̸= 1/2. If uc,κ ∈ X (R) satisfies
(TW(c, κ)) and Γ(uc,κ) ̸= ∅, then we necessarily have (c, κ) ∈ D̃.

Proof. Let us remove the subscripts of uc,κ. We saw above that since κ ̸= 1/2, Γ(u) is bounded,
so that the function η = 1 − |u|2 satisfies (4.3)–(4.4). By contradiction, assume that (c, κ) ∈
([0, ∞) × R)\D̃. Then, since κ ̸= 1/2, we have either (c, κ) ∈ D2 or (c, κ) meet the assumption
of Corollary 3.1. By definition of Γ(u), if κ ≤ 0, then Γ(u) = ∅, therefore (c, κ) meet the
assumption of Corollary 3.1. Using ideas along the same lines as in Corollary 3.1, we infer that
there exists x0 > b such that (2 − c2 − 2η(x0))/(1 − 2κ + 2κη(x0)) < 0, which further implies
that (η′(x0))2 < 0 in (4.4), a contradiction. We conclude that (c, κ) ∈ D̃.
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We are now in a position to prove Theorem 1.2, using the previous lemmas.

Proof of Theorem 1.2. Let (c, κ) /∈ (D̃ ∪ C) and assume by contradiction that Γ(uc,κ) ̸= ∅. Since
(c, κ) /∈ C, we can apply Lemma 4.3 to deduce that (c, κ) ∈ D̃, contradicting the assumptions
on (c, κ). Thus Γ(uc,κ) = ∅, and using Lemma 4.2, we deduce that uc,κ ∈ C2(R), so that the
conclusion follows from Theorem 1.1.

Let (c, κ) ∈ D̃, and a ≤ b be given real numbers. We discuss the behavior of any solution η
to (4.3)–(4.4) with ac,κ = a and bc,κ = b reaching the critical value at the boundaries η(a−) =
η(b+) = 1 − 1/(2κ). We will show later, in the proof of Theorem 1.4, that such a solution is
uniquely determined using (1.39) and satisfies η(x) = η(a − x + b), for all x < a. Therefore, in
the next result, we consider only the properties of the function on (b, ∞). Most of the ideas in
this result come from Corollary 3.4.

Lemma 4.4. Let (c, κ) ∈ D̃ and assume that one of the following conditions holds:

(i) (c, κ) ∈ D1 ∪ B− or (ii) (c, κ) ∈ D3 ∪ B+.

Suppose that η ∈ C2((−∞, a) ∪ (b, ∞)) satisfies (2.1), (4.3)–(4.4), and the boundary conditions

η(a−) = η(b+) = 1 − 1/(2κ).

Then η ∈ C∞((b, ∞)), we have η < 0 and η′ > 0 on (b, ∞) in case (i), while in case (ii), η > 0
and η′ < 0 on (b, ∞). In addition, if (c, κ) ∈ D1 ∪ D3, for all j ∈ N, there exist C, C0 > 0 such
that

|∂j
xη(x)| ≤ C0e−C1(|x|−b−1), for all |x| ≥ b + 1,

Finally, if (c, κ) ∈ B− ∪ B+, for all j ∈ N, there exist C0, C1 > 0 such that

|∂j
xη(x)| ≤ C0

(x − b − 1 + C1)2+j
, for all |x| ≥ b + 1. (4.5)

Proof. We place ourselves in case (i). We prove that the function η does not vanish in (b, ∞)
using the same ODE argument as in Corollary 3.4. Then, since η(b+) < 0, we get η < 0 in
(b, ∞). Using condition (2.1), there must exist R > b such that 1−1/(2κ) < η(R) < 0, hence by
the mean value theorem, there exists b < x0 < R such that η′(x0)(R − b) = η(R) − 1 + 1/(2κ).
We conclude that η′ > 0 is the neighborhood of x0. Now suppose that η′(x̃) = 0, for some
x̃ ∈ (b, ∞). From (4.4), we infer that η(x̃) = 0 or η(x̃) = 1 − c2/2 ≥ 0, which is absurd since
η cannot vanish in (b, ∞). Therefore, η′ > 0 in (b, ∞). Proceeding along the same lines as in
Corollary 3.4 we recover the exponential decay of η if c ̸=

√
2. It remains to prove (4.5) for

(
√

2, κ) ∈ B−. In this case, since η < 0 and η′ > 0 in (b, ∞), we obtain using (4.4)

η′(x) =
√

−2η3(x)√
1 − 2κ + 2κη(x)

, for all x > b. (4.6)

Thus η′(x) ≥
√

−2η3(x)/
√

1 − 2κ, for all x ≥ b+ 1, and we obtain (4.5) for j = 0 by integrating
this inequality. We get (4.5) for higher order derivatives using (4.6) for j = 1, and differentiating
(4.3) with respect to x, together with an induction argument for j ≥ 2. Case (ii) is analogous,
bearing in mind that η(b+) = 1 − 1/(2κ) > 0, so that η > 0 and η′ < 0 in (b, ∞).

We now prove an adapted version of Lemma 3.5 to the functions (1.35)–(1.38), using the
same arguments.

Lemma 4.5. The functions fc,κ, gκ, g̃κ and hc,κ are well-defined. Moreover,
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(i) fc,κ is increasing, belongs to C∞(T◦
κ) ∩ C(Tκ), and

fc,κ(1 − 1/(2κ)) = 0, lim
y→0−

fc,κ(y) = ∞, f ′
c,κ(y) = −1

y

√
1 − 2κ + 2κy

2 − c2 − 2y
, for y ∈ T◦

κ. (4.7)

(ii) gκ is increasing, belongs to C∞(T◦
κ) ∩ C(T◦

κ), and

gκ(1 − 1/(2κ)) = 0, lim
y→0−

gκ(y) = ∞, g′
κ(y) = −1

y

√
1 − 2κ + 2κy

−2y
, for y ∈ T◦

κ. (4.8)

(iii) g̃κ is decreasing, belongs to C∞(J◦
κ) ∩ C(Jκ), and

lim
y→0+

g̃κ(y) = ∞, g̃κ(1 − 1/(2κ)) = 0, g̃′
κ(y) = −1

y

√
1 − 2κ + 2κy

−2y
, for y ∈ Jκ. (4.9)

(iv) hc,κ is decreasing, belongs to C∞(J◦
κ) ∩ C(J◦

κ), and

lim
y→0+

hc,κ(y) = ∞, hc,κ(1 − 1/(2κ)) = 0, h′
c,κ(y) = −1

y

√
1 − 2κ + 2κy

2 − c2 − 2y
, for y ∈ J◦

κ. (4.10)

Consequently, the functions in (1.35)–(1.38) are injective and their inverse lie in C∞(T◦
κ)∩C(Tκ)

in cases (i)–(ii) (respectfully in C∞(J◦
κ) ∩ C(Jκ) in cases (iii)–(iv)).

Proof. For case (i), it can be proved just as in Lemma 3.5 that the square roots are well-defined
for all y ∈ T◦

κ. The only difference between the formula of fc,κ and Fc,κ given by (1.22), is the
inversion of the argument in atanh. Here, we have y(c2κ − 1) > 0, which is equivalent to the
condition (1 − 2κ)(2 − c2 − 2y) > (2 − c2)(1 − 2κ + 2κy) > 0. Therefore, the atanh in fc,κ is
well-defined. Moreover, we have for all y ∈ T◦

κ,

d

dy

(
atanh

(√(2 − c2)(1 − 2κ + 2κy)
(1 − 2κ)(2 − c2 − 2y)

))
= −

√
(1 − 2κ)(2 − c2)

2y
√

(2 − c2 − 2y)(1 − 2κ + 2κy)
,

We refer to Lemma 3.5 for the formula of the derivative of the other terms in fc,κ. The other
cases are analogous to (i).

We are in a position to prove Theorem 1.4.

Proof of Theorem 1.4. Recall that uc,κ ∈ C∞((−∞, ac,κ)∩(bc,κ, ∞)) with −∞ < ac,κ ≤ bc,κ < ∞
and that ηc,κ satisfies (4.3)–(4.4). Without loss of generality, we assume that bc,κ = 0 and we
set a = ac,κ. Let us treat the case (c, κ) ∈ D1, using Lemma 4.4, we get 1 − 2κ < ηc,κ(x) < 0,
(i.e. ηc,κ(x) ∈ T◦

κ) for all x > 0 and that η′
c,κ > 0 for all x > 0. From this and equation (4.4), we

have in the fashion of (3.9)

η′
c,κ(x)

ηc,κ(x)

√
1 − 2κ + 2κηc,κ(x)
2 − c2 − 2ηc,κ(x) = −1, for all x > 0. (4.11)

Integrating (4.11) from ε to x and taking the limit as ε → 0, we obtain from (4.7) that
fc,κ(ηc,κ(x)) = x for all x ≥ 0 and we obtain (1.39) by applying f−1

c,κ to both sides. Addi-
tionally, the symmetry formula ηc,κ(x) = ηc,κ(a − x) holds for all x ≥ 0. Indeed, using ideas
from Lemma 4.4, we can show that ηc,κ < 0 and η′

c,κ < 0 in (−∞, a). Thus, ηc,κ(a − x) ∈ Tκ,
for all x ≥ 0, and also satisfies (4.11). Then, we infer that

fc,κ(ηc,κ(a − x)) = fc,κ(η(x)) = x, for all x ≥ 0,
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and we conclude by applying f−1
c,κ to the previous equation. Since 1 − 1/(2κ) < ηc,κ(x) < 0,

we have ηc,κ(x) < 1 for all x ∈ (−∞, a) ∪ (0, ∞). Hence, we recover uc,κ =
√

1 − ηc,κeiθc,κ

with θ′
c,κ = cηc,κ/(2 − 2ηc,κ) in (−∞, a) ∪ (0, ∞) using ideas similar to the ones in Corollary 2.3

adapted to intervals of the form (−∞, a) ∪ (0, ∞). On the other hand, the limits of η′
c,κ as

x → a−
c,κ and x → 0+ are obtained taking the limit in (4.11) and using ηc,κ(x) = ηc,κ(a − x)

for all x ≤ a. The general result for (c, κ) ∈ D̃ follows from the same arguments because
we can show that the formula (4.11) still holds in all cases. Notice that formula (1.39) does
not contradict the finite energy assumption on uc,κ. Indeed, using ideas along the same line
as in the proof of Proposition 2.7, we deduce that the condition u′

c,κ ∈ L2((−∞, a) ∪ ((0, ∞))
reduces to ηc,κ ∈ H1((−∞, a) ∪ ((0, ∞)). From the symmetry formula, this question further
simplifies to whether or not ηc,κ ∈ H1((0, ∞)). For all ε > 0 due to the exponential decay
estimates in Lemma 4.4, we have ηc,κ ∈ H1((ε, ∞)). Since ηc,κ in continuous in (0, ∞), we have
ηc,κ ∈ L2((0, ε)), and, concerning η′

c,κ, which is unbounded near 0, we get using equation (4.11),

∫ ε

0
η′(x)2dx = −

∫ ε

0
η′(x)η(x)

√
2 − c2 − 2η(x)

1 − 2κ + 2κη(x)dx. (4.12)

Performing the change of variable y = η(x), the integrability problem in (4.12) simplifies to
the integrability of s 7→ (

√
s)−1 near 0. Therefore, ηc,κ ∈ H1((−∞, a) ∪ ((0, ∞)) and u′

c,κ ∈
L2((−∞, a) ∪ ((0, ∞)) follows.

Properties of solution with two or more singular points

We are now interested in the behavior of a singular solution uc,κ ∈ X (R) in the interval (ac,κ, bc,κ).
We assume that this interval is nonempty, i.e. that card(Γ(uc,κ)) ≥ 2. If (c, κ) ∈ D̃ so that
−∞ < ac,κ < bc,κ < ∞, then from the variations of ηc,κ in (−∞, ac,κ) ∪ (bc,κ, ∞) (see the proof
of Theorem 1.4) we have

Z(uc,κ) ⊂ (ac,κ, bc,κ), and − ∞ < a0
c,κ < x0 < b0

c,κ < ∞, (4.13)

where a0
c,κ and b0

c,κ are the closest singular points to x0 ∈ Z(uc,κ) defined in (1.43). Notice that
we omit the dependence of a0

c,κ and b0
c,κ on x0 for notational simplicity. The following lemma

establishes that if κ = 1/2, then ac,κ = −∞ and bc,κ = ∞, so that there are infinitely many
points in Γ(uc,κ) and (4.13) still holds unless uc,κ is trivial.

Lemma 4.6. Let (c, κ) ∈ C. If u ∈ X (R) satisfies (TW(c, κ)) with κ = 1/2, then ac,1/2 = −∞
and bc,1/2 = ∞. In particular |u(x)| = 1 for an infinite number of x ∈ R.

Proof. If Γ(u) = ∅, then from Lemma 4.2, we have u ∈ C2(R), and Proposition 3.2 yields that
u is the trivial solution. Now assume that Γ(u) ̸= ∅ so that ac,1/2 ≤ bc,1/2. By contradiction, if
−∞ < ac,1/2 ≤ bc,1/2 < ∞ , then η = 1−|u|2 satisfies (4.3)–(4.4). In view of (2.1), the definition
of bc,1/2 implies that η must reach a nonzero extremum at some x0 > bc,1/2 . Hence, ideas along
the same lines as in Proposition 3.2 yield η(x) = (1 − c2/2) cos2((x − x0)/

√
2), for all x > bc,1/2;

in particular, η(x0 + π/
√

2) = 0. This implies that b ≥ x0 + π
√

2, which is absurd. This proves
that bc,1/2 = ∞, and the proof of ac,1/2 = −∞ is analogous.

In the fashion of Proposition 2.5, we obtain near any local extremum x0 ∈ Z(uc,κ) a system
of equations similar to (2.9)–(2.10) satisfied by η = 1 − |uc,κ|2 in (a0

c,κ, b0
c,κ), making the analysis

tractable.

Lemma 4.7. Let (c, κ) ∈ D̃ ∪ C. Consider u = uc,κ ∈ X (R) a nontrivial solution to (TW(c, κ))
with card(Γ(uc,κ)) ≥ 2, so that there exists x0 ∈ Z(uc,κ) satisfying −∞ < a0

c,κ < x0 < b0
c,κ < ∞.
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Then, denoting η0 = η(x0) and K0 = |u′(x0)|2, we have u ∈ C∞((a0
c,κ, b0

c,κ)), and there exists
K1 ∈ R such that η = 1 − |u|2 satisfies in (a0

c,κ, b0
c,κ)

2(1 − 2κ + 2κη)η′′ + 2κ(η′)2 = P (η) + (η − η0)P ′(η), (4.14)
(1 − 2κ + 2κη)(η′)2 = (η − η0)P (η), (4.15)

where P (y) = −2y2 + (2 − c2 − 2η0)y + (2 − c2)η0 − 4K0 − 4cK1, for all y ∈ R.

Proof. By simplicity, we fix x0 = 0 and we adapt arguments from Proposition 2.5 to obtain
(4.14)–(4.15), taking this time Rn = x0 = 0, for all n ∈ N. Writing uc,κ = u1 + iu2, we obtain
similarly to (2.14)

(u1u′
2 − u′

1u2)(x) = c

2η(x) + K1, in (a0
c,κ, b0

c,κ), (4.16)

where K1 = (u1u′
2 − u′

1u2)(0) − cη0/2. We also get in the fashion of (2.16),

2|u′|2 = η2 + κ(η′)2 − η2
0 + 2K0, in (a0

c,κ, b0
c,κ). (4.17)

From u1u′′
1 +u2u′′

2 = c(u1u′
2 −u′

1u2)−|u|2(η +κη′′) and η′′ = −2(|u′|2 +u1u′′
1 +u2u′′

2), we recover
η′′ = −(η2 + κ(η′)2 − η2

0 + 2K0) − c2η − 2cK1 + 2|u|2(η + κη′′), which can be recast as

(1 − 2κ + 2κη)η′′ + κ(η′)2 = −3η2 + (2 − c2)η + η2
0 − 2K0 − 2cK1 in (a0

c,κ, b0
c,κ). (4.18)

Multiplying (4.18) by η′ and integrating from 0 to x we get, using (2.17),

(1 − 2κ + 2κη)(η′)2 = η2(2 − c2 − 2η) + (2η2
0 − 4K0 − 4cK1)η − (2 − c2)η2

0 + 4K0η0 + 4cK1η0,

which can be algebraically factorized into (4.15) due to the choice of integration bounds. From
this factorization, we deduce that (4.18) can be recast as (4.14) by differentiation of (4.15) with
respect to x.

Equations (4.14)–(4.15) imply constraints on P (η): By the intermediate value theorem, η
reaches at least once every number in I = (η0, 1 − 1/(2κ)). Thus, equation (4.15) yields

(y − η0)P (y)
1 − 2κ + 2κy

≥ 0, for all y ∈ I. (4.19)

We are in a position to prove Theorem 1.7. A consequence of this result is that the strict
inequality in (1.47) holds.

Proof of Theorem 1.7. The symmetry property follows from ODEs arguments along the same
lines as in Corollary 3.4. For the monotonicity of η in (x0, b0

c,κ), we assume without loss of
generality that x0 = 0 and that η0 < 1 − 1/(2κ). Suppose by contradiction that η′(x) = 0 for
some x ∈ (0, b0

c,κ) and let x1 = inf{x > 0 : η′(x) = 0}. If x1 = 0, then there is an infinite
sequence (xn) of zeros of η′ tending to 0. This yields η′′(0) = 0, further implying that P (η0) = 0
so that η0 is an equilibrium of equation (4.14), a contradiction to η(b0

c,κ) = 1−1/(2κ). Therefore,
x1 > 0 and we necessarily have η(x1) ̸= η0, otherwise Rolle’s theorem provides a contradiction
to the minimality of x1. Hence, evaluating equation (4.15) at x1, we get P (η(x1)) = 0. If
η(x1) is a zero of P of multiplicity 2, notice that η(x1) is then an equilibrium point of equation
(4.14). Therefore, we can apply ODE arguments along the same lines as in Corollary 3.4 to
deduce that η ≡ η(x1) in (a0

c,κ, b0
c,κ), contradicting that η0 ̸= η(x1). Thus η(x1) is a zero of P

of multiplicity 1, and we denote by y1 the other root of P . By contradiction, if η0 is a local
maximum of η, then by definition of x1, we have η′ < 0 in (0, x1). In particular (η − η0) < 0
and 1 − 2κ + 2κη < 1 − 2κ + 2κη0 < 0 in (0, x1), therefore the condition (4.19) yields P (η) ≥ 0
in (0, x1). We deduce by analyzing the sign of P that y1 > η(x) > η(x1), for all x ∈ [0, x1).
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Notice that the inequality y1 > η is strict because otherwise, η0 would be a root of multiplicity
2 in the right-hand side of (4.15), thus an equilibrium point of (4.14), which contradicts that
η(b0

c,κ) ̸= η0.
Since η(b0

c,κ) = 1 − 1/(2κ) > η0, using the intermediate value theorem, there exists x2 ∈
(x1, b0

c,κ) such that η0 < η(x2) < y1 so that P (η(x2)) > 0. Since x2 < b0
c,κ, we have 1 −

2κ + 2κη(x2) < 0, therefore (4.19) does not hold for y = η(x2). We deduce that η0 is not a
local maximum of η. Then, we can assume that η0 is a local minimum. Analogously to the
previous case, we have η′ > 0 and η − η0 > 0 in (0, x1). By the definition of b0

c,κ, we have
η(x1) < 1 − 1/(2κ), and using the intermediate value theorem, we can find x2 ∈ (x1, b0

c,κ)
satisfying η(x1) < η(x2) < 1 − 1/(2κ). Since η′ > 0 in (0, x1), we obtain 1 − 2κ + 2κη < 0
in (0, x1). Condition (4.19) implies that P (η(x)) ≤ 0, for all x ∈ (0, x1), and P (η(x2)) ≤ 0,
therefore the analysis of sign of P gives η(x) ≤ η(x1) < y1 ≤ η(x2). Once again, by the
intermediate value theorem, there exists x1 ≤ x3 ≤ x2 satisfying η(x1) < η(x3) < y1. This
relation implies that η(x3) − η0 > 0, and, η(x3) < y1 ≤ η(x2) yields 1 − 2κ + 2κη(x3) < 0.
Since P (η(x3)) > 0, condition (4.19) is not fulfilled for y = η(x3) yielding a contradiction. We
conclude that η′ ̸= 0 in (0, b0

c,κ). By the mean value theorem, we deduce that η′ > 0 in (0, b0
c,κ).

In the case η0 > 1 − 1/(2κ), the result follows using the same ideas.

By the monotonicity of ηc,κ, we can check that if u(x0) = 0, then |uc,κ| > 0 in (x0, b0
c,κ), so

that, using Remark 2.4, we can lift uc,κ in (x0, b0
c,κ) as

uc,κ =
√

1 − ηc,κeiθc,κ with θ′
c,κ = cηc,κ

2(1 − η) + K, (4.20)

for some K ∈ R. We will use this fact in the proof of Proposition 1.3, as follows.

Proof of Proposition 1.3. Assume by contradiction that uc,κ(0) = 0 and c > 0. If card(Γ(uc,κ)) <
2, this contradicts the explicit formula of uc,κ given in Theorems 1.1 and 1.4. Hence, card(Γ(uc,κ)) ≥
2 and we infer that 0 ∈ Z(uc,κ). We deduce that (4.20) holds, with η = ηc,κ solution to (4.14)–
(4.15) in (0, b0

c,κ). The contradiction comes from the fact that u′
c,κ cannot be square integrable

near 0. Indeed, from (4.20),

u′
c,κ = eiθ

( η′

2
√

1 − η
+ i

cη

2
√

1 − η
+ iK

√
1 − η

)
, in (0, b0

c,κ).

Since u′
c,κ ∈ L2(R), we deduce that cη/(2

√
1 − η) + K

√
1 − η ∈ L2((0, b0

c,κ)), which implies that∫ b0
c,κ

0

c2η2

4(1 − η) < ∞. (4.21)

To compute (4.21), we proceed as in (4.12). Precisely, using (4.15) and inequality (1.47), we
have

η′(x)
√

1 − 2κ + 2κη

(η − 1)P (η) = −1, (4.22)

so plugging (4.22) into (4.21), and performing the change of variable y = η(x), we obtain∫ 1

1−1/(2κ)

cy2

4(1 − y)

√
1 − 2κ + 2κy

(1 − y)P (y) < ∞.

However, this is a contradiction with the non-integrability of (1 − y)−3/2 near 1. We conclude
that if c > 0, then infx∈R |uc,κ(x)| > 0.

Now suppose that c = 0 and u0,κ(0) = 0. We observe a weaker correlation between the
two real equations in (1.32), indeed, if u′

0,κ(0) = reiϕ for some r ≥ 0 and ϕ ∈ R, then the
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Cauchy–Lipschitz theorem yields that ũ = u0,κe−iϕ must coincide with the local real solution
to the simpler problem (3.22) with initial condition (0, r). Thus ũ(x) ∈ R, for all x ∈ (−R, R),
for some R > 0. Assume by contradiction that there exists x̃ > 0 such that Im(ũ)(x̃) ̸= 0
and let x0 = sup{τ > 0 : Im(ũ) = 0, in (0, τ)}. By continuity, we infer that x0 ≤ x̃ and that
Im ũ(x0) = 0. If ũ(x0) = 0, then the latter argument applies so that there exists ϕ0 ∈ R such
that e−iϕ0 ũ ∈ R in (x0 − R0, x0 + R0), for some R0 > 0. But then, since ũ(x) ∈ R, for all
0 < x < x0, we conclude that ϕ0 = 2lπ for some l ∈ N, contradicting the definition of x0. We
deduce that ũ(x0) ̸= 0 so that we can lift ũ = ρeiθ in a neighborhood of x0 with θ′ = K for
some K ∈ R by Remark 2.4. Once again, since ũ(x) ∈ R for all 0 < x < x0, the constant K
must be 0, which further implies that θ is constant in the neighborhood of x0. Therefore, ũ
remains real-valued in the neighborhood of x0, contradicting its definition. Consequently, there
is no x̃ > 0 such that Im ũ(x̃) ̸= 0. The same holds for all x < 0 with similar arguments, which
means that ũ is real-valued. If c = 0, and uc,κ ∈ N X (R), the proof is easier since we get from
Corollary 2.3 that we can lift uc,κ = ρeiθ with θ′ ≡ 0 in R.

In the setting of Lemma 4.7, the next result establishes that the constant K1 in (4.14)–(4.15)
must be zero.

Lemma 4.8. Let (c, κ) ∈ D̃ ∪ C and u = uc,κ ∈ X (R) be a solution to (TW(c, κ)) satisfying
card(Γ(uc,κ)) ≥ 2 so that there exists x0 ∈ Z(uc,κ) and Lemma 4.7 applies. Then η = 1 − |u|2
satisfies (4.14)–(4.15) near x0 and the constant K1 in those equations must be 0.

Proof. If u ∈ N X (R), then we can lift u =
√

1 − ηeiθ with θ′ = cη/(2 − 2η) by Corollary 2.3.
Clearly the expression for K1 = (u1u′

2 − u′
1u2)(x0) − cη(x0)/2 can be recast as

K1 = (1 − η(x0))θ′(x0) − cη(x0)/2, (4.23)

so that K1 = 0. On the other hand, if u vanishes at some point, then by Proposition 1.3, we
must have c = 0, and we can find ϕ ∈ R so that eiϕu(x) ∈ R for all x ∈ R. If u(x0) = 0 then we
get K1 = 0, whereas if u(x0) ̸= 0 we can lift u =

√
1 − ηeiθ near x0, so that we can rewrite K1

with (4.23) and c = 0. We must have θ′ = 0 in the neighborhood of x0 otherwise contradicting
the fact that eiϕu(x) ∈ R for all x ∈ R. This lets us conclude that K1 = 0

We deduce that (1.47) simplifies to

−2y2 + (2 − c2 − 2η0)y + (2 − c2)η0 − 4K0 < 0, for all y ∈ [η0, 1 − 1/(2κ)). (4.24)

We now prove Proposition 1.6 stating that unless κ = 1/2, uc,κ cannot be of constant intensity
in subintervals (a, b) ⊂ (ac,κ, bc,κ). Indeed, assume that |uc,κ|(x) = 1/(2κ) for all x ∈ (a, b), then
uc,κ ̸= 0 in (a, b) so that we can apply the same reasoning as in Remark 2.4 to recover that
uc,κ = ρeiθ in (a, b) with θ′ ≡ θ̇0 ∈ R and ρ ≡ 1/

√
2κ satisfying

(θ̇0)2 + cθ̇0 + ρ2 − 1 = 0. (4.25)

Although one can build local solutions in (a, b), choosing adequate θ̇0, we show that global
solutions add constraints on θ̇0 preventing this behavior.

Proof of Proposition 1.6. On one hand, if uc,κ ∈ N X (R), then we can write u = ρeiθ with θ and
ρ satisfying (2.3)–(2.4). Setting ρ ≡ 1/

√
2κ in (2.3) yields θ̇0 = c(κ − 1/2), which replaced in

(4.25) implies that (κ − 1/2)(c2(κ − 1/2) + c2 − 1/κ) = 0. Since (c2(κ − 1/2) + c2 − 1/κ) ̸= 0,
for all (c, κ) ∈ D̃, we deduce that κ = 1/2.

On the other hand, if uc,κ(x0) = 0 for some x0 ∈ R, we deduce by Proposition 1.3 that c = 0
so that κ ≤ 1/2. Indeed, if κ > 1/2 we deduce that |u(x)|2 = 1 for all x ∈ R by Theorem 1.2,
in particular |u(x)| ≠ 1/(2κ) for all x ∈ R. Thus, equation (4.25) writes (θ̇0)2 + 1/(2κ) − 1 = 0,
which further implies that κ = 1/2 and θ̇0 = 0.
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4.2 Construction of singular solutions

We are now in a position to show the existence of singular solutions. We start with the case
card(Γ(uc,κ)) = 1, i.e. the cuspons in Corollary 1.5, constructed using the functions in The-
orem 1.4. To show that the cuspons defined by parts is indeed a global weak solution to
(TW(c, κ)), we use the following lemma, which provides sufficient conditions for gluing two
strong solutions into a weak solution.

Lemma 4.9. Let c ≥ 0 and k ∈ R \ {0}, and let I1, I2 be two nonempty disjoint open intervals
such that I1 and I2 share one bound a ∈ R, i.e. cl(I1)∩cl(I2) = {a}, where cl is the usual closure
on R, and set I = I1 ∪ I2 ∪ {a}. Suppose that u ∈ C(I) ∩ C2(I1 ∪ I2) is a solution to (TW(c, κ))
on I1 ∪ I2, and assume that |u(a)|2 = 1/(2κ), so that we can write u =

√
1 − ηeiθ with η < 1 in

(a − 2δ, a + 2δ) for some δ > 0. If θ′ has a well-defined limit as x → a, and if the function η
belongs to H1((a − δ, a + δ)), with

lim
x→a

η′(x)(1 − 2κ + 2κη(x)) = 0, (4.26)

then u is a weak solution to (TW(c, κ)) on I, i.e. u satisfies (1.15) for every ϕ ∈ C∞
0 (I;C).

Remark 4.10. It is enough to assume that the limit in (4.26) exists, but this limit is going to
be equal to zero in all our applications.

Proof. Since we are assuming that u lies in C(I)∩C2(I1∪I2), we deduce that θ is also is continuous
on I. In addition, since θ′ has a limit as x → a, we infer that θ′ is bounded in (a − δ, a + δ).
Therefore, using that

u′(x) = eiθ(x)

2
√

1 − η(x)
(

− η′(x) + i(1 − η)θ′(x)
)
, (4.27)

we conclude that u′ ∈ L2((a − δ, a + δ)).
To check that u is a weak solution, let us take without loss of generality a = 0, I1 = (r1, 0)

and I2 = (0, r2), for some −∞ ≤ r1 < 0 < r2 ≤ ∞, 0 < ε < δ small, and Iε = I \ (−ε, ε), so that
u ∈ C2(cl(Iε)). Taking φ ∈ C∞

0 (I;C), and integrating by parts, we deduce that

Re
∫

Iε

(icu′ + uη)φ̄ − u′φ̄′ + 2κ⟨u, u′⟩(uφ̄)′ = Re
∫

Iε

(icu′ + uη + u′′ − 2κu(|u′|2 + ⟨u, u′′⟩))φ̄

+ Re
[

− u′φ̄ + 2κ⟨u, u′⟩(uφ̄)
]x=−ε

x=ε
(4.28)

Since u ∈ Ḣ1((−ε, ε)) ∩ C(I), we can use the dominated convergence theorem to conclude that
the integral in the left-hand side of (4.28) converges to the integral in I, as ε → 0. On the other
hand, the integral in the right-hand side of (4.28) vanishes because u is a pointwise solution to
(TW(c, κ)) on Iε.

We verify now that the last term in (4.28) goes to zero, as ε → 0. Using (4.27), we have for
all x ∈ [−ε, ε] with x ̸= 0

−u′(x) + 2κ⟨u(x), u′(x)⟩u(x) = eiθ

2
√

1 − η(x)

(
η′(x)(1 − 2κ − 2κη(x)) − i(1 − η(x))θ′(x)

)
.

Finally, invoking (4.26), the continuity of η and θ and the fact that θ′ has a limit as x → 0, we
conclude that the last term in (4.28) goes to zero, as ε → 0, which completes the proof.

Remark 4.11. This result can be adapted to handle strong solution in
⋃

j∈J Ij where (Ij)j∈J is
a finite family of open intervals touching at one of their bounds and to recover a weak solution
in cl(

⋃
j∈J Ij)
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Applying this result we deduce Corollary 1.5, and also Proposition 1.9.

Proof of Corollary 1.5. Since Γ(uc,κ) = {0}, we deduce from Theorem 1.4 that ac,κ = bc,κ = 0,
and that, up to phase shift, uc,κ must be given by uc,κ =

√
1 − ηc,κeiθc,κ , where ηc,κ is the

function in (1.39), and θc,κ(x) = c
2
∫ x

0
ηc,κ(y)

1−ηc,κ(y) . In the course of the proof of Theorem 1.4, we
established that uc,κ ∈ X (R), thus it remains to verify that uc,κ is indeed a weak solution. Since
ηc,κ satisfies (4.4) in R\{0}, we can check that (4.26) holds multiplying (4.4) by 1 − 2κ + 2κηc,κ,
and taking the square root of both sides of the equation. It is straightforward to check that θc,κ

is well-defined and that u ∈ C(R) ∩ C2(R\{0}) satisfies (TW(c, κ)) in R\{0} using ideas similar
to the ones in Proposition 2.7. Finally, θ′

c,κ tends to cκ(1 − 2κ), as x → 0, therefore we can
apply Lemma 4.9 to conclude.

Proof of Proposition 1.9. By construction u
(j)
c,1/2 is continuous R, is a strong solution in Ij by

Proposition 3.2, and is a constant of modulus 1 outside Ij . Thus, it is simple to check that u
(j)
c,1/2

is a global weak solution by invoking Lemma 4.9.

We focus now on the construction of solutions satisfying card(Γ(uc,κ)) ≥ 2. Thus, we need to
find solutions to (4.14)–(4.15) satisfying the boundary condition η(b0

c,κ) = 1 − 1/(2κ), for some
b0

c,κ ∈ R. We show now that such solutions exist when the numbers η0 and K0 satisfy (4.24).

Proposition 4.12. Let (c, κ) ∈ D̃ ∪ C. For any η0 ≤ 1, with η0 ̸= 1 − 1/(2κ), and any
K0 ≥ 0 satisfying (4.24), there exist a nonempty interval (a0

c,κ, b0
c,κ) containing 0, and a unique

solution η to (1.44)–(1.45), with K1 = 0, on (a0
c,κ, b0

c,κ), such that η(0) = η0. Moreover a0
c,κ =

−b0
c,κ, the function η is even in (a0

c,κ, b0
c,κ), and monotonous in (0, b0

c,κ). Also η belongs to
H1(a0

c,κ, b0
c,κ)) ∩ C([a0

c,κ, b0
c,κ]), with

η(a0
c,κ) = η(b0

c,κ) = 1 − 1/(2κ). (4.29)

Proof. Let us assume first that η0 < 1 − 1/(2κ). We look for a solution η in (0, b0
c,κ) with

η(0) = η0 and η((b0
c,κ)−) = 1 − 1/(2κ), with b0

c,κ > 0 to be determined. Let y ∈ [η0, 1 − 1/(2κ)],
and

F (y) =
∫ y

η0
f(s)ds, where f(s) = −

√
1 − 2κ + 2κs

(s − η0)P (s) , for all s ∈ (η0, 1 − 1/(2κ)).

Using condition (4.24), which can be recast as P (y) < 0 in [η0, 1 − 1/(2κ)) with P given by
(1.46), we see that f is a well-defined smooth function in (η0, 1 − 1/(2κ)). Also, f(s) = O((s −
1+1/(2κ))−1/2), as s → 1−1/(2κ), and since P (η0) < 0, it follows that f(s) = O((s−η0)−1/2) as
s → η0, so that f is locally integrable in (η0, 1−1/(2κ)). We deduce that F ∈ C∞((η0, 1−1/(2κ)))
is a well-defined function, which we can extend by continuity to [η0, 1 − 1/(2κ)], with F (η0) = 0
and F (1 − 1/(2κ)) := b0

c,κ.
Since F ′(y) < 0, for all y ∈ (η0, 1 − 1/(2κ)), we deduce that F is bijective, and its inverse

function F = F −1 lies in C([0, b0
c,κ])∩C∞((0, b0

c,κ)). In addition, F can be extended by reflection
to [−b0

c,κ, b0
c,κ] as an even function, that we still denote by F . This extension satisfies Im(F) =

[η0, 1 − 1/2κ] with F(0) = η0 and F(±b0
c,κ) = 1 − 1/(2κ). Moreover, we can prove, using

ideas similar to the ones in Lemma 3.6, that F ∈ C∞((−b0
c,κ, b0

c,κ)). Letting η = F , we get
η′ = 1/f(η) in (−b0

c,κ, b0
c,κ). We see that this imply that η is not only a solution to (4.15), but

also satisfies (4.14) in (−b0, b0)\{0}. Since η ∈ C∞((−b0
c,κ, b0

c,κ)), it must satisfy (4.14) at x = 0,
by a continuity argument. It remains to check that η ∈ H1((a0

c,κ, b0
c,κ)). Since η is a continuous

function, we just need to show that η′ is square integrable near b0
c,κ to conclude. Indeed, since∫ bc,κ

0
(η′)2 = −

∫ b0
c,κ

0
η′

√
(η − η0)P (η)
1 − 2κ + 2κη

, (4.30)
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the change of variable y = η in (4.30), yields

∫ bc,κ

0
(η′)2 ≤

∣∣∣∣∣
∫ 1−1/(2κ)

η0

√
(y − η0)P (y)
1 − 2κ + 2κy

∣∣∣∣∣ < ∞,

where we used that y 7→ (1 − 2κ + 2κy)−1/2 is integrable near 1 − 1/(2κ). This concludes the
existence part of the result.

For the uniqueness, let η̌ be another solution in (a0
c,κ, b0

c,κ) such that η̌(0) = η0. Then, by
(4.15) we obtain (η̌)′(0) = 0. Thus, it also satisfies (4.14) with the same initial condition at
x = 0 as η. By the Cauchy–Lipschitz theorem, we deduce that η̌(x) = η(x) for all x ∈ (a0

c,κ, b0
c,κ)

The same ideas apply to treat the case η0 > 1 − 1/(2κ).

Inspired by Corollary 2.7, we prove now that getting a C2((a0
c,κ, b0

c,κ))-solution to (TW(c, κ))
in (a0

c,κ, b0
c,κ) from η solution to (4.14)–(4.15), is equivalent to

K0 = (cη0)2/(4 − 4η0). (4.31)

In this manner, condition (4.24) reduces to (1.48).

Proposition 4.13. Let (c, κ) ∈ D̃ ∪ C. Assume that η0 < 1, with η0 ̸= 1 − 1/(2κ), and K0 ≥ 0
fulfill (4.24). If b0

c,κ > 0 and η ∈ C∞((−b0
c,κ, b0

c,κ)) are given by Proposition 4.12, then the
function u =

√
1 − ηeiθ defined in (1.50) satisfies (TW(c, κ)) if and only if K0 = c2η2

0/(4−4η0).
Moreover, this is, up to phase shift, the unique C2((−b0

c,κ, b0
c,κ))-solution to (TW(c, κ)) such that

1 − |u|2(0) = η0 and θ′(0) = cη0/(2 − 2η0).

Proof. Using (4.27) together with the formula for θ′ in (1.50), we can compute the left-hand
side of (TW(c, κ)). A direct verification yields that the imaginary part is zero. On the other
hand, the real part writes

−c
√

1 − ηθ′ − η′′

2
√

1 − η
(1 − 2κ + 2κη) − (η′)2

4(1 − η)3/2 − (θ′)2√1 − η − η
√

1 − η. (4.32)

We can factorize (−4(1 − η)3/2)−1 in (4.32) and use consecutively equations (4.14)–(4.15) to
remove respectively the term in η′′ and the terms in (η′)2. Then, we infer that, since (1 − η)
does not vanish in (−b0

c,κ, b0
c,κ), formula (4.32) is zero if and only if

2c2η − c2η2 + (1 − η0)P (η) + (η − η0)(1 − η)P ′(η) − 4η(1 − η)2 = 0, (4.33)

where P is given by (1.46) with K1 = 0. In addition, when expanding all the terms in the
left-hand side of (4.33), we see that (4.33) reduces to the identity (1 − η0)P (0) − η0P ′(0) = 0.
Thus, we check that (4.32) is zero if and only if (4.31) holds.

Let us prove the uniqueness. Assume that ǔ ∈ C2((−b0
c,κ, b0

c,κ)) is another solution that
can be lifted near 0, ǔ =

√
1 − η̌ exp(iθ̌), with η̌(0) = η0 and θ̌′(0) = cη0/(2 − 2η0). Then, by

Lemma 4.7 and the condition (4.31) for K0, we deduce that η and η̌ both satisfy (4.14)–(4.15).
From Proposition 4.12, we obtain η̌ = η in (−b0

c,κ, b0
c,κ), thus we can lift ǔ in (−b0

c,κ, b0
c,κ). Using

the latter identity and Remark 2.4, (or equivalently using (4.16)), we check that θ̌′ satisfies the
same equation as θ′ in (1.50) in (a0

c,κ, b0
c,κ), therefore θ̌ = θ + ϕ, which completes the proof.

In the case c = 0, we can also obtain a local solution to (TW(c, κ)) vanishing at the origin
(so that η0 = 1), using ideas similar to the ones in the proof of Theorem 1.1.
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Proposition 4.14. Let c = 0 and 0 < κ ≤ 1/2. Assume that η0 = 1 and K0 ≥ 0 are real numbers
so that (4.24) holds. If b0

0,κ > 0 and η ∈ C∞((−b0
0,κ, b0

0,κ)) are given by Proposition 4.12, then
the real-valued function u(x) = ±

√
1 − η(x) for all ±x ∈ [0, b0

0,κ) defined in (1.51) is, up to
phase shift, the unique C2((b0

0,κ, b0
0,κ))-solution to (TW(c, κ)) with c = 0 such that u(0) = 0 and

|u′(0)|2 = K0.

Proof. Using the Cauchy–Lipschitz theorem, define ũ ∈ C∞((−R, R)) to be the local real solution
of equation (3.22), with initial conditions ũ(0) = 0 and ũ′(0) =

√
K0, for some R > 0. Note that

ũ is a local solution to (TW(c, κ)) with c = 0 such that 0 ∈ Z(ũ).
Then, following computations along the same lines as in Lemma 4.7, we infer that η̃ = 1−|ũ|2

satisfies (4.14)–(4.15) with η0 = 1 and K0 = (u′(0))2 (and K1 = 0). By Proposition 4.12, we
obtain η̃ = η in I = (−b0

0,κ, b0
0,κ) ∩ (−R, R). We deduce that |ũ| =

√
1 − η in I. Since ũ′(0) > 0,

we see that ũ is negative and then becomes positive in the neighborhood of 0. Therefore, ũ and
u coincide in I. This yields that ũ and ũ′ are bounded and η̃ does not reach 1 − 1/(2κ) in I if
R < b0

0,κ. Thus, we can assume that the local solution ũ exist in (−R, R) with R ≥ b0
0,κ, which

further implies that u satisfies (TW(c, κ)) in (−b0
0,κ, b0

0,κ) with c = 0.
To prove uniqueness, suppose that ǔ is another solution in (−b0

c,κ, b0
c,κ). Then by assumption,

ǔ satisfies the initial value problem associated to (TW(c, κ)) with ǔ(0) = 0 and ǔ′(0) = eiϕ
√

K0,
for some ϕ ∈ R. Hence e−iϕǔ satisfies (TW(c, κ)) with the same initial conditions as u, therefore
ǔ = u, by the Cauchy–Lipschitz theorem.

We can extend these local solutions to R by a cuspon-like solution outside (a0
c,κ, b0

c,κ) if
(c, κ) ∈ D̃, and by constants of modulus one if κ = 1/2. By Lemma 4.9, we recover a composite-
wave (and a compacton if κ = 1/2) satisfying (TW(c, κ)) weekly. For instance, this procedure
yields the solutions in Proposition 1.8. To obtain Proposition 1.8, we just need to show that
(1.48) holds for η0 small enough

Proof of Proposition 1.8. Let η0 < 1 − 1/(2κ) and K0 = c2η2
0/(4 − 4η0), then condition (1.48)

writes P (y) < 0 for all y ∈ (η0, 1 − 1/(2κ)) where P is the quadratic polynomial in (1.46) with
K1 = 0. Computing the discriminant of P (y) yields

∆ = (2 − c2 − 2η0)2 + 8(2 − c2 − 2η0)η0
1 − η0

. (4.34)

We can check that ∆ → ∞ as η0 → −∞, thus there exists A1(c, κ) < 0 such that ∆ > 0 for all
η0 < A1. We show that 1−1/(2κ) is smaller than the smallest root of P , y1 = (2−c2−2η0−

√
∆)/4

for η0 small enough. Indeed, y1 = (2 − c2 − 2η0)(1 −
√

1 + 8η0/((2 − c2 − 2η0)(1 − η0)))/4 for
η0 < 1 − c2/2 and we can check that y1 → 1 as η0 → −∞ so there exists A(c, κ) < A1(c, κ) such
that 1 − 1/(2κ) < y1 for all η0 ≤ A(c, κ). This implies (1.48), so we can build the composite
wave solution u by extending the local solution in (−b0

c,κ, b0
c,κ) of Proposition 4.13 with a cuspon

like solution or a constant solution if κ = 1/2. The uniqueness follows from the uniqueness
in Proposition 4.13 and from Theorem 1.4 ruling out the behavior at infinity of the solutions.
Finally, since P (1 − 1/(2κ)) < 0 we obtain (1 − |u|2)′ → ∞ as x → b0

c,κ using (1.45) so that
N (u) = {−b0

c,κ, b0
c,κ}.

This ends the classification in the case card(Z(uc,κ)) < ∞. Moreover, the next result estab-
lishes that the classification of solutions with 2 ≤ card(Γ(uc,κ)) < ∞ can be reduced to the cases
already treated.

Lemma 4.15. Let (c, κ) ∈ D̃∪C and uc,κ be a solution to (TW(c, κ)). If 2 ≤ card(Γ(uc,κ)) < ∞,
then card(Z(uc,κ)) = card(Γ(uc,κ)) − 1.
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Proof. We show that between two elements of Γ(uc,κ) lies exactly one element of Z(uc,κ). Let
a < b be two consecutive elements of Γ(uc,κ). By Lemma 4.2, uc,κ is smooth in (a, b). Since the
intensity profile ηc,κ = 1 − |uc,κ|2 satisfies ηc,κ(a) = ηc,κ(b) = 1 − 1/(2κ), we can apply Rolle’s
theorem to deduce the existence of x0 ∈ (a, b) such that η′(x0) = 0. Since Γ(uc,κ) ∩ (a, b) = ∅,
we deduce that x0 ∈ Z and that a = a0

c,κ and b = b0
c,κ. Using the monotonicity of ηc,κ in (a, b)

established in Theorem 1.7, the conclusion follows.

In conclusion, we classified all the solutions with card(Γ(uc,κ)) < ∞. On the other hand,
by Proposition 1.6, if κ ̸= 1/2 then Γ(uc,κ), is a closed bounded set of empty interior. Hence,
it is possible that Γ(uc,κ) contains a countable number of points (for instance, Γ(uc,κ) = {1/n :
n ≥ 1}), or even uncountable many points (for instance, Γ(uc,κ) is the Cantor set). These cases
are beyond the scope of this paper, and we refer to [32] treating these kinds of considerations
in the context of the Camassa–Holm equation. Similarly, the question of whether Γ(uc,1/2) can
be any closed subset of R is still open. Also, as explained in the proof of Proposition 4.12, in
general, the value of b0

c,κ with respect to the parameters is not explicit and relies on our ability
to compute the integral from η0 to 1 − 1/(2κ) of a function fc,κ,η0 . It is an open problem to
determine if there is a one-to-one correspondence between the maximal amplitude η0 and the
half-length b0

c,κ of the interval of existence.
We end this section with a comment on the regularity and decay of the cuspon solutions

to mirror Proposition 3.8 about the dark solitons. Let uc,κ be the cuspon solution given by
Corollary 1.5, then, from the regularity of the flow of ODEs, for all x ̸= 0, and all j ∈ N,
∂j

xη(·, ·, x) is smooth for all (c, κ) ∈ D̃ where η(c, κ, x) = ηc,κ(x) (the derivatives in the c direction
are in the sense of Dini for c =

√
2, and κ ̸= 1/2). At x = 0, ηc,κ(0) = 1 − 1/(2κ) so η(·, ·, 0)

is also smooth in D̃, however, ηc,κ(·) is not continuously differentiable in 0. To summarize, we
have η ∈ C∞(D̃ × R\{0}) and the following decay estimates. Since the proof involves the same
ideas as the ones in Proposition 3.8, we omit it.

Proposition 4.16. Let (c, κ) ∈ D1 ∪ D3. Consider uc,κ ∈ X (R) the singular solution given
by Corollary 1.5 and ηc,κ = 1 − |uc,κ|2 be its intensity profile. Then, for every multi-index
α = (α1, α2, k) ∈ N3, there exist R, C0, and C positive numbers such that for all |x| ≥ R

|Dα
c,κ,xηc,κ(x)| ≤ C0e−C(|x|−R), where Dα

c,κ,x = ∂α1
c ∂α2

κ ∂k
x . (4.35)

5 Energy and momentum of traveling waves
In this section, we compute explicit formulas the energy and the momentum of the dark solitons
and the cuspons given by Theorem 1.1 and Corollary 1.5 in N X (R), respectively. In this manner,
we can check the stability condition (1.53). For the sake of simplicity, we use the notations Eκ(c),
pκ(c), Ẽκ(c) and p̃κ(c), corresponding to the set of parameters D and D̃, as defined in (1.54)
and (1.55).

The starting point is the following elementary result.

Lemma 5.1. For all (c, κ) ∈ D, we have

Eκ(c) =
∫ 0

1−c2/2
−y

√
1 − 2κ + 2κy

2 − c2 − 2y
dy, pκ(c) = c

2

∫ 0

1−c2/2

−y

1 − y

√
1 − 2κ + 2κy

2 − c2 − 2y
dy, (5.1)

where we exclude the value c = 0 for momentum. Similarly, for all (c, κ) ∈ D̃, we have

Ẽκ(c) =
∫ 0

1−1/(2κ)
−y

√
1 − 2κ + 2κy

2 − c2 − 2y
dy, p̃κ(c) = c

2

∫ 0

1−1/(2κ)

−y

1 − y

√
1 − 2κ + 2κy

2 − c2 − 2y
dy. (5.2)
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Proof. Since η is even, from (2.21) we obtain Eκ(u) =
∫∞

0 η2. Equation (3.21) yields Eκ(c) =
−
∫∞

0 ηη′
√

1−2κ+2κη
2−c2−2η

, so that the formula for Eκ(u) in (5.1) follows from a change of variables.
Concerning pκ(c), for c > 0 we have 1−η > 0, therefore the momentum in (2.21) is well-defined,
and the same argument gives us the expression for pκ(c).

Noticing that the formulas in (2.21) are still valid for the cuspons, we obtain similarly the
expressions in (5.2), by using (4.11).

It remains to compute the integrals in (5.1)–(5.2). To simplify our results, let us set the
constants

Ac,κ = 3c4κ2 − 8c2κ2 − 2c2κ + 8κ − 1, Bc,κ = 3c2κ − 4κ − 1,

Cc,κ = c2κ − 4κ − 1, Dc,κ =
√

(1 − 2κ)(2 − c2), Lc,κ =

√
2 − c2

1 − 2κ
.

Proposition 5.2. (i) Let (c, κ) ∈ D1∪D3, and set s = 1 if (c, κ) ∈ D1, and s = −1 if (c, κ) ∈ D3.
Then

Eκ(c) = 1
16κ3/2

(
Ac,κ atan(

√
κLc,κ) − s

√
κBc,κDc,κ

)
, (5.3)

pκ(c) = c

4
(Cc,κ√

κ
atan(

√
κLc,κ) − sDc,κ

)
+ atan

(Lc,κ

c

)
, if c > 0. (5.4)

Ẽκ(c) = 1
16κ3/2

(
Ac,κ

[
atan(

√
κLc,κ) − π/2

]
− s

√
κBc,κDc,κ

)
, (5.5)

p̃κ(c) = c

4
(Cc,κ√

κ

[
atan(

√
κLc,κ) − π/2

]
− sDc,κ

)
+ atan

(Lc,κ

c

)
− π/2. (5.6)

(ii) For (c, κ) ∈ D2, with κ < 0, we have

Eκ(c) = −1
16|κ|3/2

(
Ac,κ atanh(

√
|κ|Lc,κ) −

√
|κ|Bc,κDc,κ

)
, (5.7)

pκ(c) = c

4
( Cc,κ√

|κ|
atanh(

√
|κ|Lc,κ) − Dc,κ

)
+ atan

(Lc,κ

c

)
, if c > 0. (5.8)

(iii) If (c, κ) ∈ B+ ∪ B−, we have

Ẽκ(c) = π
(2κ − 1)2

32κ3/2 , p̃κ(c) = π
(
√

2κ − 1)2

4
√

2κ
. (5.9)

Proof. Given Lemma 5.1, we use the following antiderivatives: In case (I), for all y ∈ Ic ∪ Tκ,

∫
−y

√
1 − 2κ + 2κy

2 − c2 − 2y
dy = 1

16κ3/2

(
(3c4κ2 − 8c2κ2 − 2c2κ + 8κ − 1) atan

(√
κ

√
2 − c2 − 2y

1 − 2κ + 2κy

)
−

√
κ
√

(2 − c2 − 2y)(1 − 2κ + 2κy)(3c2κ − 4κy − 4κ − 1)
)
,

and

c

2

∫ −y

1 − y

√
1 − 2κ + 2κy

2 − c2 − 2y
dy = c

4
(c2κ − 4κ − 1√

κ
atan

(√
κ

√
2 − c2 − 2y

1 − 2κ + 2κy

)
−
√

(2 − c2 − 2y)(1 − 2κ + 2κy)
)

+ atan
(1

c

√
2 − c2 − 2y

1 − 2κ + 2κy

)
.
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In case (ii) and for all y ∈ Ic, we take
√

−κ instead of
√

κ and atanh instead of the first atan
in the formulas above, in the fashion of Lemma 3.5. In case (iii), for all y ∈ Jc ∪ Jκ, we take∫

−y

√
1 − 2κ + 2κy

2 − c2 − 2y
dy = 1

16κ3/2

(
(3c4κ2 − 8c2κ2 − 2c2κ + 8κ − 1) atan

(√
κ

√
2 − c2 − 2y

1 − 2κ + 2κy

)
+

√
κ
√

(2 − c2 − 2y)(1 − 2κ + 2κy)(3c2κ − 4κy − 4κ − 1)
)
,

c

2

∫ −y

1 − y

√
1 − 2κ + 2κy

2 − c2 − 2y
dy = c

4
(c2κ − 4κ − 1√

κ
atan

(√
κ

√
2 − c2 − 2y

1 − 2κ + 2κy

)
+
√

(2 − c2 − 2y)(1 − 2κ + 2κy)
)

+ atan
(1

c

√
2 − c2 − 2y

1 − 2κ + 2κy

)
.

We verify that these are indeed the antiderivatives of the integrands in (5.1)–(5.2) from the
derivatives computed in Lemma 3.5, and using that

d
dy

(
atan

(√ 2 − c2 − 2y

c2(1 − 2κ + 2κy)
))

= −c

2(1 − y)
√

(2 − c2 − 2y)(1 − 2κ + 2κy)
,

d
dy

√
(2 − c2 − 2y)(1 − 2κ + 2κy) = −4κy + 4κ − κc2 − 1√

(2 − c2 − 2y)(1 − 2κ + 2κy)
.

In the case (iii), by the dominated convergence theorem, the integrals (5.2) are continuous in
(c, κ) ∈ D̃. Therefore, it suffices to take the limit as c →

√
2 in (5.5) to obtain (5.9).

As a consequence of Proposition 5.2, we can compute the limit cases stated in the following
result. We omit the proof, since it only uses Taylor expansions and the identity atan(x) +
atan(1/x) = π/2, for all x ̸= 0.

Corollary 5.3. For all c > 0, as κ → 1/2, we have

(Ek(c), pk(c)) →
(
π

3c4/4 − 3c2 + 3
8
√

2
, π
(c3/2 − 3c

4
√

2
+ 1/2

))
= E(u(1)

c,1/2), p(u(1)
c,1/2), (5.10)

where u
(1)
c,1/2 is the dark compacton given by Proposition 1.9, and (Ẽκ(c), p̃κ(c)) converges to

(0, 0). Also, for all c > 0, as κ → 0,

(Eκ(c), pκ(c)) →
((2 − c2)

3
2

3 ,
π

2 − atan
( c√

2 − c2

)
− c

2
√

2 − c2
)

= (E(uc,0), p(uc,0)),

where uc,0 is the dark soliton of the Gross–Pitaevskii equation, given in (1.5). Finally, for all
κ ∈ R, as c →

√
2, (Eκ(c), pκ(c)) → 0, while Ẽκ(c) and p̃κ(c) converge to the values for the

energy and momentum in (5.9).

Remark 5.4. Notice that from (5.4), we deduce that pκ(0+) = π/2 for all κ < 1/2.

We check now if the stability condition (1.53) is satisfied for the smooth solitons given by
Theorem 1.1, according to regions D1, D2 and D3, for c > 0. In this case the functions c 7→ pκ(·)
are c 7→ Eκ(·) are smooth with respect c, on (0,

√
2), so that we introduce the notations

p′
κ(c) = d

dc
pκ(c) and E′

κ(c) = d

dc
Eκ(c). (5.11)

In analogous manner, we define Ẽ′
κ and p̃′

κ

To rigorously compute the Vakhitov–Kolokolov criterion, we need the Hamilton group prop-
erty, which is just a consequence of the formulas in Proposition 5.2.
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Lemma 5.5. If (c, κ) ∈ D with c > 0, then E′
κ(c) = c p′

κ(c). In the same manner, if (c, κ) ∈ D̃
with c > 0, then Ẽ′

κ(c) = c p̃′
κ(c).

Consequently, it is enough to compute p′
κ, as follows.

Proposition 5.6. Let (c, κ) ∈ D with c > 0. Then

p′
κ(c) =3c2κ − 4κ − 1

4
√

κ
atan

(√
κ

√
2 − c2

1 − 2κ

)
− 3(2 − c2)

4

√
1 − 2κ

2 − c2 , if (c, κ) ∈ D1 ∪ D3, (5.12)

p′
κ(c) =3c2κ − 4κ − 1

4
√

−κ
atanh

(√
−κ

√
2 − c2

1 − 2κ

)
− 3(2 − c2)

4

√
1 − 2κ

2 − c2 , if (c, κ) ∈ D2. (5.13)

Furthermore, we have p′
κ(c) < 0 if (c, κ) ∈ D1, p′

κ(c) > 0 if (c, κ) ∈ D3, and

p′
κ(c) < max{p′

κ(0+), 0}, if (c, κ) ∈ D2. (5.14)

Proof. The formulas in (5.12)–(5.13) follow directly by differentiating the expressions in the
momentum in Proposition 5.2.

If (c, κ) ∈ D1, then 3c2 < 6 < 4 + 1/κ, so that 3c2κ − 4κ − 1 < 0 and we conclude that
p′

κ(c) > 0. Similarly, if (c, κ) ∈ D3, then 3c2κ − 4κ − 1 > 0, and we get p′
κ(c) > 0, since c2 > 2.

Finally, we consider the case (c, κ) ∈ D2. We remark from (5.13) that p′
κ(c) can be seen as

a function of c2. Differentiating twice with respect to c2, we obtain

d2

(dc2)2 p′
κ(c) = (1 − 2κ)2

4(2 − c2)(1 − κc2)2

√
1 − 2κ

2 − c2 . (5.15)

Thus, p′
κ(c) is a strictly convex function of c2, for c2 ∈ (0, 2), so that it is below its end points,

p′
κ(c) < max{p′

κ(0+), p′
κ(

√
2−)}.

Since p′
κ(c) → 0, as c →

√
2−, inequality in (5.14) follows.

We focus now on the case (c, κ) ∈ D2, where the sign of p′
k(c) is unclear. Indeed, it depends

on p′
κ(0), which corresponds to the function in (5.13), evaluated at c = 0, i.e.

w(k) = p′
κ(0) = −4κ − 1

4
√

−κ
atanh

(√ −2κ

1 − 2κ

)
− 3

2

√
1 − 2κ

2 , (5.16)

and w is continuous on (−∞, 0), with w(−∞) = ∞ and w(0+) = −
√

2. In addition, using that
x ≤ atanh(x), for all 0 ≤ x < 1, one can verify that w′ < 0 on (−∞, 0). Therefore, w is strictly
decreasing and w has a unique zero in (−∞, 0), which we denote by κ0. Using Newton’s method,
we can check that κ0 ≈ −3.636. This value allows us to establish the following result.

Lemma 5.7. Let (c, κ) ∈ D2 with c > 0. We have

Eκ(0+) = Eκ(u0,κ), pκ(0+) = π/2, Eκ(
√

2−) = pκ(
√

2−) = 0. (5.17)

If κ ∈ [κ0, 0), then E′
κ < 0 and p′

κ < 0 in (0,
√

2). Also, if κ < κ0, there is c̃κ ∈ (0,
√

2), such
that E′

κ > 0 and p′
κ > 0 in (0, c̃κ), while E′

κ < 0 and p′
κ < 0 in (c̃κ,

√
2).

Proof. The limits in (5.17) follow from (5.7)–(5.8). If κ ∈ [κ0, 0), then, by definition of κ,
p′

κ(0) = w(κ) ≤ 0. Therefore, the conclusion follows from (5.14) and (5.11).
Assume now that κ < κ0, so that p′

κ(0) = w(κ) > 0. Recall that, from the proof of
Proposition 5.6, p′

κ is a strictly convex function of c2, satisfying p′
κ(

√
2−) = 0. Also, from (5.15),

d2

(dc2)2 pκ(c) goes to ∞, as c →
√

2−. Therefore, we conclude that there exists a unique zero of p′
κ

in (0,
√

2), which we denote by c̃κ, so that p′
κ > 0 in (0, c̃κ) and p′

κ < 0 in (c̃κ,
√

2).
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Remark 5.8. In Lemma 5.7, we have pκ(c) → π/2, as c → 0+. However, it is not true that
the momentum of the black soliton u0,κ is π/2. A naive approach will be to try to use the
formula (1.10), in a generalized sense. However, since u0,κ is a real-valued function, we have
⟨iu0,κ, u′

0,κ⟩ = 0, so this would imply that the momentum of u0,κ is zero. Indeed, a proper
definition of the momentum of vanishing functions is a difficult problem, and it requires the use
of the notion of untwisted momentum, explained in [5,19]. For this reason, the analysis of black
solitons goes beyond the scope of this article.

An immediate consequence of the monotonicity of E′
κ in Lemma 5.7, is that the critical speed

c∗
κ in (1.61) is well-defined, and that there is a bijection between the speeds and the momenta

as follows.

Corollary 5.9. (i) If κ ∈ [κ0, 0), then c∗
κ = 0. If κ < κ0, then there exists a unique c ∈ (0,

√
2]

such that Eκ(0) = Eκ(c), thus this value corresponds to c∗
κ. In any case, Eκ(c∗

κ) = Eκ(u0,κ).
(ii) Define q0(κ) as q0(κ) = pκ(c∗

κ), if c∗
κ ∈ (0,

√
2), and as q0(κ) = π/2, if c∗

κ = 0. Then
the function pκ : (c∗

κ,
√

2) → (0, q0(κ)) can be extended by continuity to [c∗
κ,

√
2], is strictly

decreasing, and it defines a continuous bijective function, whose inverse function we denote by
cκ : [0, q0(κ)] → [c∗

κ,
√

2], with cκ(0) =
√

2 and cκ(q0(κ)) = c∗
κ.

Proof. In view of (5.17), the assertions are a straightforward consequence of the monotonicity
results in Lemma 5.7.

In Figure 7, we plot the functions Eκ and pκ, for κ = −50 and c ∈ (0,
√

2), so that κ < k0 and
Lemma 5.7 applies. We also see the values c̃κ ≈ 0.51, c∗

κ ≈ 0.75 and q0(κ) ≈ 3.5 in Corollary 5.9.
Due to the change in the monotonicity of the functions pκ and Eκ, we observe the cusp in the
right diagram of Figure 6 because the tangent vector must jump from (1, c̃−

κ ) to −(1, c̃+
κ ) near

the cusp by the Hamilton group property (1.52).

c∗
κc̃κ

Eκ(c)

q0

pκ(c)

c̃κ c∗
κ

Figure 7: Plot of the energy Eκ(c) and momentum pκ(c) of the dark solitons uc,κ, for (c, κ) ∈ D2,
with κ = −50. The left panel displays Eκ(c) and the constant line crossing Eκ(0) in orange.
The value c̃κ ≈ 0.51 is defined in Lemma 5.7, c∗

κ ≈ 0.75 is the point defined in (1.61). The right
panel depicts pκ(c), where we also highlight the values c̃κ and c∗

κ.

Finally, we remark that in the case κ < κ0, the function pκ defines also a bijection between
the intervals (c̃κ,

√
2) and (0, pκ(c̃κ)), but we do need to use this fact in the sequel. In addition,

we will show in the next section that q0(κ) is equal to q∗
κ, defined in (1.59).

Notice that function cκ in Corollary 5.9, allows to us determine that ucκ(q) is the unique
smooth soliton of momentum q, up to invariances, for all q ∈ (0, q0(κ)). In particular, in view
of the minimization problem (1.57), we have

Eκ(q) ≤ Eκ(ucκ(q),κ), for all q ∈ (0, q0(κ)). (5.18)
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6 Variational characterization of dark solitons
In this section, we prove Theorem 1.10. The starting point is that equation (TW(c, κ)) cor-
responds to the Euler–Lagrange equation associated with the minimization of the energy at
constant momentum, and that c appears as a Lagrange multiplier. Since N X (R) is not a vector
space, we use the Gâteau differential, denoted by d, as follows.

Lemma 6.1. Let v ∈ N X (R) be a (complex valued) function and h ∈ H1(R;C). For t ∈ R
small enough, the functions t 7→ p(u + th) and t 7→ Eκ(u + th) are differentiable, and

dp(u)[h] := d

dt
p(u + th)|t=0 =

∫
R

⟨ih′, u⟩,

dE(u)[h] := d

dt
Eκ(u + th)|t=0 =

∫
R

⟨u′, h′⟩ − η⟨u, h⟩ − 2κ⟨u, u′⟩⟨u, h⟩.

Also for all c ≥ 0, c dp(u) = dEκ(u)[h], for all h ∈ H1(R), if and only if u satisfies (TW(c, κ)).

We omit the proof of Lemma 6.1, since it is a straightforward adaptation of the computations
in Lemma 6.1 in [21].

6.1 The minimization curve

We first show that the minimization problem (1.57) does not define a real-valued function of
q ∈ R, for κ > 0. Therefore, the variational problem is not well-suited to study the dark solitons
in D1 ∪ D3 given by Theorem 1.1.

Proposition 6.2. For all κ > 0 and all q ∈ R, we have Eκ(q) = −∞.

Proof. Let κ > 0 and q ∈ R. We define a family of functions in N X (R), indexed by t ≥ 0, such
that t 7→ Eκ(u(·, t)) and t 7→ p(u(·, t)) are continuous. More precisely, let u = ρeiθ, where

ρ(x, t) =


−txακ + t + 1√

2κ
+ 1, for x ∈ (0, 1),

(2 − x)( 1√
2κ

+ 1) + x − 1, for x ∈ (1, 2),
1, for x ≥ 2,

θ(x, t) =


0, for x ∈ (0, 1),
qJκ(x − 1), for x ∈ (1, 2),
qJκ, for x ≥ 2,

for some ακ > 1 to be chosen later, and

Jκ =
(
2
∫ 2

1
(1 − ρ(x, t)2)dx

)−1
= −3κ/(1 + 3

√
2κ).

We define u(x, t) = u(−x, t), for all x ≤ 0. Remark that ∂xu(t) = eiθ(t)(∂xρ(t) + i∂xθ(t)ρ(t)) ∈
L2(R) for all t ≥ 0. Also 1 − ρ2(t) ∈ L2(R), for all t ≥ 0, since it is continuous and compactly
supported in [−2, 2]. We have ρ(t, x) ≥ 1, hence u(·, t) ∈ N X (R) for all t ≥ 0. We compute,
using the symmetry of ρ,

p(u(·, t)) =
∫
R

(1 − ρ(t)2)∂xθ(t) = 2
∫ 2

1
(1 − ρ(t)2)qJκ = q.

On the other hand, from (1.9) we obtain

Eκ(u(·, t)) =
∫ 1

0
(tακ)2x2αk−2 + (1 − ρ2(x, t))2/2 − 2κ(tακxακ−1ρ(t, x))2dx (6.1)

+
∫ 2

1
|∂xu(x, t)|2 + (1 − ρ(x, t))2/2 − 2κ(∂xρ(x, t)ρ(x, t))2dx. (6.2)
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We can prove that the second integral (6.2) is constant in t. Let us denote by I(t) the first
integral (6.1). It remains to show that, for ακ > 1 large enough, I(t) diverges to −∞, as t → ∞.
Indeed, We have I(t) = t4βk + (t + 1)3R(t), where

βk =
( −4κα4

κ

(2ακ − 1)(4ακ − 1)(3ακ − 1) + 1
2 − 2

ακ + 1 + 3
2ακ + 1 − 2

3ακ + 1 + 1
8ακ + 2

)
,

and R is a bounded function, for t ≥ 0. Since βκ → −∞ as ακ → ∞, we deduce that for ακ

large enough, Eκ(u(·, t)) → −∞ as t → ∞, which completes the proof.

From now on, we assume that κ < 0, so that the energy density eκ(u) satisfies

eκ(u) = |u′|2

2 + η2

4 + |κ|
4 (η′)2 ≥ e0(u) ≥ 0. (6.3)

Hence, several properties shown for the curve Emin in [21] remain true. Indeed, the curve Emin
in [21] is associated with the nonlocal energy

EW(u) = 1
2

∫
R

|u′|2 dx + 1
4

∫
R

(W ∗ η)η dx = 1
2

∫
R

|u′|2 dx + 1
8π

∫
R

Ŵ(ξ)|η̂(ξ)|2 dξ,

where W is a tempered distribution, with bounded nonnegative Fourier transform Ŵ, among
other hypotheses. In our case, by using Plancherel’s theorem, we can recast the energy as

Eκ(u) = 1
2

∫
R

|u′|2 dx + 1
8π

∫
R

Ŵκ(ξ)|η̂(ξ)|2 dξ, with Ŵκ = 1 + |κ|ξ2,

for all u ∈ X(R), so that η ∈ H1(R). In this manner, we recover the potential (1.8) mentioned
in the introduction. Thus, formally, W is the tempered distribution Wκ = δ0 − |κ|(δ0)′′, but
we do not use this formulation, since η ∈ H1(R). In conclusion, in most of the proofs in this
subsection, we will use that the potential energy can be written as

Ep(u) = 1
4

∫
R

(η2 + |κ|(η′)2)dx, and Ep(u) = 1
8π

∫
R

Ŵκ(ξ)|η̂(ξ)|2 dξ. (6.4)

More precisely, we will rely on the potential energy written in the Fourier variable to invoke
the arguments in [21] not needing that Ŵ to be bounded. Of course, some arguments will be
performed directly in the variable x, if they are simpler.

Proposition 6.3. Let k < 0. Then the function Eκ is well-defined, is even and Lipschitz
continuous, with

|Eκ(p) − Eκ(q)| ≤
√

2|p − q|, for all p, q ∈ R. (6.5)

In particular, Eκ(q) ≤
√

2q, for all q ≥ 0. Also Eκ is nondecreasing and concave on [0, ∞).
Moreover, for all v ∈ X (R),

Eκ(v) ≤ Eκ(q), for some q ∈ [0, q∗
κ) ⇒ v ∈ N X (R). (6.6)

Proof. It is straightforward to check that Lemmas 3.1, 3.2, 3.4 in [21] hold with the same proofs.
Corollary 3.7 is still true, and the proof is simpler, using the first expression for Ep in (6.4).
Thus, using the notation in the proof of Corollary 3.7, we obtain Ep(un) = Ep(vn) + Ep(wn),
which gives the conclusion. As a consequence, we deduce, as in Corollary 3.8 and Proposition 3.9
in [21], that

Eκ(q) = inf{Eκ(v) : v ∈ X ∞
0 (R), p(v) = q},

where
X ∞

0 (R) = {v ∈ N X (R) ∩ C∞(R) : ∃R > 0 s.t. v is constant on B(0, R)c},
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and that Eκ satisfies (6.5). The fact that Eκ is nondecreasing follows as in Lemma 3.11.
The proof of concavity is exactly the same as in Proposition 3.12, without any extra assump-

tion needed. Indeed, using the reflection functions defined in the proof of Proposition 3.12 and
the first expression in (6.4), it is immediate to verify that Ep(u+) + Ep(u−) = 2Ep(u), so that
the conclusion follows.

Finally, let 0 ≤ q < q∗
κ so that, by definition of q∗

κ, we can find q < q̌ < q∗
κ satisfying

∀v ∈ X (R), Eκ(v) ≤ Eκ(q̌) =⇒ v ∈ N X (R). (6.7)

Since Eκ is nondecreasing on [0, +∞), we deduce that Eκ(q) ≤ Eκ(q̌), so that (6.7) holds with q
instead of q̌, which proves (6.6).

Proposition 6.4. Assume that κ < 0.

(i) Let u = ρeiθ ∈ X (R) and assume that there is ε ∈ (0, 1) such that 1 − ε ≤ |u|2 ≤ 1 + ε on
a open set Ω ⊂ R. Then

1
2

∫
Ω

|ηθ′| ≤ 1√
2(1 − ε)

∫
Ω

eκ(u). (6.8)

In particular, if 1 − ε ≤ |u|2 ≤ 1 + ε on R, then
√

2(1 − ε)p(u) ≤ Eκ(u).

(ii) For any u ∈ X (R), we have

∥η∥2
L∞(R) ≤ (1 + |κ|−1)Eκ(u). (6.9)

(iii) There is a constant K0 > 0 such that

√
2q − K0q

3/2 ≤ Eκ(q), for all q ∈
[
0,

|κ|
8(1 + |κ|)

)
. (6.10)

Proof. Using the Cauchy inequality ab ≤ a2/2 + b2/2, with a = η/2 and b = θ′2, we have∣∣∣∣∫
Ω

η

2θ′
∣∣∣∣ ≤

∫
Ω

(η2

4 + θ′2

2
)

≤ 1
4

∫
Ω

η2 + 1
2(1 − ε)

∫
Ω

ρ2θ′2. (6.11)

Bearing in mind (1.14) and that κ ≤ 0, (6.8) follows.
The estimate in (ii) is an immediate consequence of

η2(x) = 2
∫ x

−∞
ηη′ ≤

∫
R

(η2 + η′2) ≤ 4(1 − κ−1)Eκ(u).

In view of (6.8) and (6.9), the inequality in (6.10) follows exactly as in Proposition 3.14 in
[21].

Proposition 6.5. Let k < 0. We have

Eκ(q) <
√

2q, for all q > 0. (6.12)

Proof. In view of Proposition 6.5, and since Eκ in concave on R+, we only need to prove that
the strict inequality in (6.12) holds for q small. For this purpose, we will use the behavior of
solitons uc,κ in Proposition 5.2-(ii) for c close to

√
2. By setting ε =

√
2 − c2, and computing a

Taylor expansion in formulas (5.7)–(5.8), we deduce that

Eκ(uc,κ) = ε3

3
√

1 − 2κ + 2ε5κ

15
√

1 − 2κ
+ o(ε6), p(uc,κ) = ε3

3
√

2
√

1 − 2κ + 3 + 2κε5

60
√

2(1 − 2κ)
+ o(ε6).
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Therefore, there is ε0 > 0 small, such that Eκ(p(uc,κ)) ≤ Eκ(uc,κ) <
√

2p(uc,κ), for all c ∈
(c(ε0),

√
2), where c(ε0) = (2 − ε2

0)1/2. By Corollary 5.9, we can assume that pκ is a diffeomor-
phism from (c(ε0),

√
2) to (0, pκ(c(ε0)). Thus, we conclude that there exists q0 > 0 such that

Eκ(q) <
√

2q, for all q ∈ (0, pκ(c(ε0)).

We can prove now the minimizing curve is strictly subadditive, which is the crucial property
to deduce the compactness of minimizing sequences in Theorem 6.8.

Corollary 6.6. If κ < 0, then Eκ is strictly subadditive on R+.

Proof. From Propositions 6.3 and 6.4-(iii), we deduce that the right derivative of Eκ at the origin,
denoted by E+

κ , exists and that E+
κ (0) =

√
2. By invoking Lemma 3.16 in [21], Proposition 6.5

implies that Eκ is strictly subadditive on R+.

6.2 Compactness of minimizing sequences

We are now in a position to prove the compactness of minimizing sequences in the problem
Eκ(q), with κ < 0, and that the minimizers are the solitons uc,κ, with c = cκ(q). Notice that in
the rest of this section, uc,κ refers to the dark soliton to (TW(c, κ)), given by Theorem 1.1.

We will use the general argument given [21], based on the properties of the minimizing curve
Eκ and an adaptation of the concentration-compactness principle. However, we need to guarantee
the nonvanishing properties of the limit of the minimizing sequences. This is the purpose of the
constant q∗

κ defined in (1.59). To relate q∗
κ with q0(κ), let us state some properties related to

the energy of the black soliton u0,κ in (1.60), i.e. the solution to (TW(c, κ)) with c = 0.

Lemma 6.7. Let κ < 0 and q ≥ 0. There exists a sequence (un) ⊂ N X (R) satisfying

p(un) = q, for all n ∈ N, and lim
n→∞

Eκ(un) = Eκ(u0,κ). (6.13)

In addition,
inf{Eκ(v) : v ∈ H1

loc(R), inf
x∈R

|v(x)| = 0} = Eκ(u0,κ). (6.14)

In particular, for all q > 0, we have 0 ≤ Eκ(q) ≤ Eκ(u0,κ) and q0(κ) ≤ q∗
κ.

Proof. The existence of a sequence (un) satisfying (6.13) is analogous to the case κ = 0, done
in Proposition 3.4 in [3].

The minimization problem (6.14) correspond to Lemma 1 in [4] in the case κ = 0. In the case
κ < 0, the same proof holds, using that u0,κ is the unique solution to (TW(c, κ)) that vanishes
at some point, up to a translation.

Finally, let us show that (6.14) implies that q0(κ) ≤ q∗
κ. Let q ∈ (0, q0(κ)) and let v ∈ E(R)

such that Eκ(v) ≤ Eκ(q). By (5.18), we deduce that Eκ(v) ≤ Eκ(ucκ(q),κ), with cκ(q) ∈ (c∗
κ,

√
2).

Since, by definition, Eκ(ucκ(q),κ) = Eκ(cκ(q)), and, by Lemma 5.7, the map c 7→ Eκ(c) is strictly
decreasing on [c∗

κ,
√

2], we get Eκ(v) < Eκ(c∗
κ). By Corollary 5.9, we have Eκ(c∗

κ) = Eκ(u0,κ), so
that Eκ(v) < Eκ(u0,κ). Thus, using (6.14), we infer that infR |v| > 0. This implies that q ≤ q∗

κ,
which completes the proof.

In order to obtain the stability of minimizers, we will prove a more general result than the
one stated in Theorem 1.10, as follows.

Theorem 6.8. Let κ < 0, q ∈ (0, q0(κ)) and (un) in N X (R) be a sequence satisfying

Eκ(un) → Eκ(q) and p(un) → q, as n → ∞. (6.15)
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There exist θ ∈ R and a sequence of points (xn) such that, up to a subsequence still denoted by
un, the following convergences hold, as n → ∞,

un(· + xn) → eiθuc(q),κ(·), in L∞
loc(R), (6.16)

1 − |un(· + xn)|2 → 1 − |uc(q),κ(·)|2, in L2(R), (6.17)
u′

n(· + xn) → eiθu′
c(q),κ(·), in L2(R). (6.18)

Moreover, we have q∗
κ = q0(κ), Eκ(q) = Eκ(uc(q),κ) for q ∈ (0, q∗

κ), and Eκ(q) = Eκ(u0,κ) for
q ≥ q∗

κ. In particular, Eκ is strictly increasing on (0, q∗
κ).

Proof. As explained before, the proof follows the same steps as in Theorem 4.1 in [21], without
the extra decomposition introduced to handle the nonlocal interactions. The characterization
of the limit function is obtained by invoking Corollary 5.9. Therefore, we only give a sketch of
the proof.

First, using Proposition 6.5, we can set Σq = 1 − Emin(q)/(
√

2q) ∈ (0, 1), for any q > 0. In
addition, without loss of generality, we can assume that

Eκ(un) ≤ 2Eκ(q). (6.19)

Thus, we can apply Lemmas 2.4 and 2.5 in [21], with with L = 1 + Σq, E = 2Eκ(q) and
m0 = Σ̃q := Σq/L, to deduce that there exist R > 0, two integers ℓ, l∗, with 1 ≤ ℓ ≤ l∗,
depending on E and q, but not on n, and points xn

1 , xn
2 , . . . , xl∗ , satisfying

|xn
k − xn

j | −→
n→∞

∞, for 1 ≤ k ̸= j ≤ ℓ, and xn
j ∈

ℓ
∪

k=1
B(xn

k , R), for ℓ < j ≤ l∗.

In addition, the sequence ηn = 1 − |un|2 satisfies

|ηn(xn
j )| ≥ Σ̃q, ∀1 ≤ j ≤ ℓ, and |ηn(x)| ≤ Σ̃q, ∀x ∈ R \

ℓ⋃
j=1

B(xn
j , R + 1). (6.20)

Applying standard weak compactness results for Hilbert spaces, the Rellich–Kondrachov
theorem, and Fatou’s lemma, to the translated sequence un,j(·) = un(·+xn

j ), we infer that there
exist functions vj = ρjeiϕj ∈ N X (R), j ∈ {1, . . . , ℓ}, satisfying, up to a subsequence,

un,j → vj , in L∞
loc(R), u′

n,j ⇀ v′
j , in L2(R), ηn,j = 1 − |un,j |2 ⇀ ηj = 1 − |vj |2, in L2(R),

(6.21)

as n → ∞, and also, ∫ A

−A
|v′

j |2 ≤ lim inf
n→∞

∫ A

−A
|u′

n,j |2, for all A ∈ (0, ∞], (6.22)∫ A

−A
(η2

j + |κ|(η′
j)2) ≤ lim inf

n→∞

∫ A

−A
(η2

n,j + |κ|(η′
n,j)2), for all A ∈ (0, ∞], (6.23)

lim
n→∞

∫ A

−A
ηn,jϕ′

n,j =
∫ A

−A
ηjϕ′

j , for all A ∈ (0, ∞), (6.24)

as well as
Eκ(qj) ≤ Eκ(vj) ≤ Eκ(q), (6.25)

where un,j = ρn,jeiϕn,j and qj = p(vj). Notice that the fact that vj belongs to N X (R), follows
from (6.6) and (6.25), since q < q0(κ) ≤ q∗

κ. We also remark that we only have an inequality
in (6.23), whereas we had an equality in the potential energy in (4.25) in [21]. The rest of the
proof consists in showing the following steps.
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Step 1. There exist q̃ ∈ R and Ẽ ≥ 0 such that

Eκ(q) ≥
ℓ∑

j=1
Eκ(qj) + Ẽ and q =

ℓ∑
j=1

qj + q̃. (6.26)

The proof of the first inequality is the same as in [21], handling the potential energy in
the same manner as the kinetic energy in (6.22). For the momentum, we use inequality (6.8),
instead of Lemma 2.3 in [21]. Thus, there is no need to introduce cut-off functions that caused
the appearance of some reminder terms.

Step 2. We have √
2
(
1 − Σ̃q

)
|q̃| ≤ Ẽ. (6.27)

This inequality follows as in Claim 2 in [21], but using inequality (6.8), instead of introducing
cut-off functions.

Step 3. We have Ẽ = q̃ = 0 and ℓ = 1.

The proof of this step is the same as in Claim 3 in [21], since it only uses the properties of
the function Ek in Propositions 6.3, 6.5 and Corollary 6.6.

Step 4. The weak convergences in (6.21) are also strong in L2(R) (for j = 1).

We set from now on v = v1 and η = 1 − |v1|2. For the previous step, we have

p(un,1) → q = p(v) and Eκ(un,1) → Emin(q) = Eκ(v). (6.28)

To prove that u′
n,1 → v′ in L2(R), it is enough to show that

lim sup
n→∞

∥u′
n,1∥L2(R) ≤ ∥v′∥L2(R). (6.29)

Arguing by contradiction, taking a subsequence that we still denote by un,1, we suppose that

M := lim
n→∞

∥u′
n,1∥2

L2(R), with M > ∥v′∥2
L2(R).

Hence, using (6.28),

lim
n→∞

Ep (un,1) = lim
n→∞

(
Eκ(un,1) − ∥u′

n,1∥2
L2(R)/2

)
= Eκ(v) − M/2 < Eκ(v) − ∥v′∥2

L2(R)/2 = Ep(v),

which contradicts (6.23) (with A = ∞). Therefore u′
n,1 → v′ in L2(R). Let us show that this

also implies that
∥η′

n,1 − η′∥L2(R) → 0. (6.30)

Indeed, noticing that η′ − η′
n,1 = 2(⟨v, v′⟩ − ⟨un,1, u′

n,1⟩), we have

∥η′
n,1 − η′∥L2(R) ≤ 2∥(v − un,1)v′∥L2(R) + 2∥(v′ − u′

n,1)un,1∥L2(R). (6.31)

From inequality (6.9), we obtain the existence of a constant C(q) > 0 such that ∥un,1∥L∞(R) ≤
C(q). Thus, the second term in the right-hand side of (6.31) goes to zero. By using the dominated
convergence theorem, we also infer that the other term in the right-hand side of (6.31) also tends
to zero, which completes the proof of (6.30).

Finally, going back to (6.28), we conclude that

lim sup
n→∞

∥ηn,1∥L2(R) = ∥η∥L2(R),

which combined with the last weak convergence in (6.21) (with j = 1), implies that ηn,1 → η in
L2(R).
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Step 5. There exists (θ, y) ∈ R2 such that v = eiθuc(q),κ(· − y).

By Theorem 6.3 in [21], since p(v) = q and Eκ(q) = Eκ(v), we conclude that v is a solution to
(TW(c, κ)), for some speed c. In addition, as in Theorem 4 in [21], we deduce that c ∈ (0,

√
2).

Therefore, by Corollary 5.9, v satisfies (TW(c, κ)) with c = c(q), and the conclusion follows from
Theorem 1.1.

Step 6. We have q∗
κ = q0(κ) and Eκ(q) = Eκ(u0,κ), for all q ≥ q∗

κ.

By continuity of Eκ, invoking Corollary 5.9, and using the previous step, we deduce that

Eκ(q0(κ)) = lim
q→q0(κ)−

Eκ(q) = lim
q→q0(κ)−

Eκ(uc(q),κ) = Eκ(uc∗
κ,κ) = Eκ(u0,κ) (6.32)

where we used the definition (1.61) for the equality. Since u0,κ(0) = 0, we conclude, using the
definition of q∗

κ, that q0(κ) ≥ q∗
κ. By Lemma 6.7, we have q0 ≤ q∗

κ, hence, q0 = q∗
κ.

Finally, we show that Eκ is constant in [q∗
κ, ∞). Indeed, for q ≥ q∗

κ. using that Eκ is
nondecreasing, and (6.32), we have Eκ(q) ≥ Eκ(q0(κ)) ≥ Eκ(u0,κ). Since the reverse inequality
was already proved in Lemma 6.7, we conclude that the equality holds.

At last, in view of Lemma 5.7, and Steps 5 and 6, we conclude that Eκ is strictly increasing
on (0, q∗

κ), which finishes the proof of the theorem.

6.3 Some additional properties of the energy

As seen in (6.3), if κ ≤ 0, then 0 ≤ EGP (u) ≤ Eκ(u), where EGP = E0 is the Gross–Pitaevskii
energy. Moreover, our energy space X (R) is exactly the domain of the functional EGP . The
following result discusses the relation between X (R) and the domain of Eκ, defined as

Dom(Eκ) := {u ∈ H1
loc(R), |Eκ(u)| < ∞}

depending on the sign of κ.

Proposition 6.9. If κ ≤ 0, then Dom(Eκ) = X (R). If κ > 0, then there is u ∈ H1
loc(R)\X (R)

such that |E(u)| < ∞, i.e. X (R) ⊊ Dom(Eκ).

Proof. The case κ ≤ 0 is simple, so we just prove the second statement. For this purpose, we
consider κ > 0 and we construct u as follows. Let

f(x) =


0 if x ∈ [−1, 1],
(x − n − j

2|n| )gκ if x ∈
[
n + j

2|n| , n + j+1
2|n|

]
, with 0 ≤ j ≤ 2|n| − 1 even, n ∈ Z,

(n + j
2|n| − x)gκ + gκ

2|n| if x ∈
[
n + j

2|n| , n + j+1
2|n|

]
, with 0 ≤ j ≤ 2|n| − 1 odd, n ∈ Z,

with gκ =
√

1/(8κ4) + 1/(4κ2) > 0 and set u =
√

1 + 1/(2κ) + f(x) ∈ H1
loc(R). Note that f is a

decaying triangle wave that satisfies f ∈ L∞(R) ∩ L1(R). Indeed, we have 0 ≤ f(x) ≤ gκ/(2|n|)
for all x ∈ [n, n + 1] , n ∈ Z, and∫

R
f(x)dx =

∑
|n|≥1

2|n|−1∑
j=0

∫ n+(j+1)/(2|n|)

n+j/(2|n|)
f(x)dx.

Since
∫ n+(j+1)/(2|n|)

n+j/(2|n|) f(x)dx = gκ/(2|n|) × 1/(2|n|+1) for all |n| ≥ 1 and 0 ≤ j ≤ 2|n| − 1, we
deduce

∫
R f(x)dx =

∑
|n|≥1 gκ/(2|n|+1) = gκ. In addition, is f weakly differntiable, with

f ′(x) =


0 if x ∈ [−1, 1],
gκ if x ∈

[
n + j

2|n| , n + j+1
2|n|

]
, when 0 ≤ j ≤ 2|n| − 1 is even,

−gκ if x ∈
[
n + j

2|n| , n + j+1
2|n|

]
, when 0 ≤ j ≤ 2|n| − 1 is odd.
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We see that f ′ /∈ L2(R) and, since u′(x) = f ′(x)/(2
√

1 + 1/(2κ) + f(x)), for all x ∈ R, we
deduce that u /∈ X (R). However, |Eκ(u)| < ∞, indeed,

Eκ(u) = 1
2

∫
|x|≥1

(gκ)2

4(1 + 1/(2κ) + f(x))dx + 1
4

∫
R

( 1
2κ

+ f(x)
)2

− κ(f ′(x))2dx,

= 1
8

∫
|x|≥1

−(gκ)2(2κ + 2κf) + 2(1 + 1/(2κ) + f)(1/(4κ2) + f/κ + f2)
1 + 1/(2κ) + f

dx + R, (6.33)

with |R| = |
∫

|x|≤1(1/(2κ) + f(x))2dx|/4 < ∞. It remains to see that the integral in (6.33) is
finite. Indeed, the integrals involving f , f2 and f3 are finite, since f ∈ Lp(R) for all p ∈ [1, ∞].
In addition, the constant term is equal to (gκ)2(−2κ) + 1/(2κ2) + 1/(4k3), and this terms is
equal to 0, due to our choice of gκ. This completes the proof of |E(u)| < ∞.

7 Local well-posedness of (QGP) and orbital stability
The Cauchy problem with vanishing conditions at infinity associated with (1.2) is locally well-
posed in Sobolev spaces Hs(R) of high regularity. This was shown for (1.2) in [11, 13], for
s ≥ 3. Best regularity results were obtained in [35] in l1Hs(R) spaces, containing Hs(R), with
s > 1/2 + 2, and recently improved in [26,40].

Concerning (QGP), we can decompose Ψ as Ψ = v + φ, where v satisfies condition (1.1)
and φ ∈ Hs(R). Then, we obtain a quasilinear equation on φ with vanishing conditions. In
this setting, it is not straightforward to show well-posedness in v + Hs(R), using the latter
results. This is due to the nonhomogenous nature of the equation on φ. However, more general
quasilinear models have been considered in [27]. Their results provide local well-posedness in
v+Hs(R)∩Hw(R), for any s ≥ 1/2+11, with some additional smoothness and decay assumptions
on v, where Hw(R) is some weighted Sobolev space.

For our purposes, we will use the approach developed in [2], where they proved that the
Euler–Korteweg system is locally well-posed. As shown now, (QGP) can be written as an
Euler–Korteweg system, with initial conditions given by Hs(R)-perturbations of a dark soliton.

Assume that κ < 0 and c > 0. Let Ψ0 = uc,κ + ϕ0 satisfying infx∈R |Ψ0| > 0, where
ϕ0 ∈ Hs(R) and uc,κ is the dark soliton given by Theorem 1.1. Since Ψ0 ∈ N X (R), then for
any local solution Ψ ∈ C([0, T ]; uc,κ + Hs(R)), we deduce that there exists T > 0 such that Ψ(t)
also belongs to N X (R), for all t ∈ [0, T ], so that we can perform the Madelung transform [7]:
Ψ = √

ρeiθ, with ρ(t) ∈ L∞(R) ∩ Ḣs(R) and θ(t) ∈ C(R) ∩ Ḣs(R) for all t ∈ [0, T ]. We conclude
that (ρ, θ) satisfies in [0, T ] the system

∂tρ − 2∂x(∂xθρ) = 0,

− ∂tθ + (∂xθ)2 = 1 − 2κρ

2ρ
∂xxρ + (∂xρ)2

4ρ2 + 1 − ρ.
(7.1)

Therefore, setting

ρ̃(x, t) = ρ(x, −t/2), ṽ(x, t) = ∂x(θ(x, −t/2)), K(y) = (1 − 2κy)/4y, g0(y) = (y − 1)/2, (7.2)

for all y > 0, we deduce that (ρ̃, ṽ) satisfies the Euler–Korteweg system in [0, T ]:
∂tρ̃ + ∂x(ṽρ̃) = 0,

∂tṽ + ṽ∂xṽ = ∂x

(
K(ρ̃)∂xxρ̃ + K ′(ρ̃)

2 (∂xρ̃)2 − g0(ρ̃)
)
.

(7.3)

The result established in [2] concerning the general Euler–Korteweg system (7.3) is as follows.
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Theorem 7.1 (Theorem 5.1 in [2]). Take s > 2 + 1/2. Let ρ0 ∈ L∞(R) ∩ Ḣs(R) be a function
taking values in a compact subset of (J−, J+) ⊂ (0, ∞). Assume that K, g0 ∈ C∞(R), with K > 0
in (J−, J+). If v0 ∈ Hs−1(R), then there exists T > 0 such that (7.3) has a unique solution (ρ, v)
on R × [0, T ], satisfying ρ(·, 0) = ρ0, v(·, 0) = v0, and

(ρ − ρ0) ∈ C([0, T ]; Hs(R)),
(∂xρ, v) ∈ C([0, T ]; Hs−1(R)),
ρ(R × [0, T ]) ⊂⊂ (J−, J+).

(7.4)

Also, the flow map is continuous in a neighborhood of (ρ0, u0) in (ρ0 + Hs(R)) × Hs−1(R).

For all κ ≤ 0, it is clear that K given in (7.2) satisfies K(y) > 0, for all y > 0, so that
we can apply Theorem 7.1 with (J−, J+) = (0, ∞). In the next result, we obtain the local
well-posedness of (QGP) for small Hs(R)-perturbations of uc,κ using Theorem 7.1 and defining
Ψ = ρeiθ ∈ uc,κ + Hs(R) such that (7.1)–(7.2) hold. Also, we deduce the continuity of the flow
map and the conservation of energy and momentum.

Corollary 7.2 (Well-posedness of (QGP)). Let s > 1/2 + 2, κ < 0 and c > 0. If Ψ0 ∈
uc,κ + Hs(R) belongs to N X (R), then there exists TΨ0 > 0, the maximal time of existence such
that for every T ∈ (0, TΨ0), (QGP) has a unique solution Ψ on R× [0, T ], satisfying Ψ(·, 0) = Ψ0
and {

Ψ ∈ C([0, T ]; uc,κ + Hs(R)),
infR×[0,T ] |Ψ| > 0.

(7.5)

Moreover, the flow map is continuous in a neighborhood of Ψ0 in uc,κ + Hs(R), and the energy
and momentum are conserved, i.e. Eκ(Ψ(·, t)) = Eκ(Ψ0) and p(Ψ(·, t)) = p(Ψ0), for all t ∈ [0, T ].

Proof. Existence. We start by performing the Madelung transform to the initial condition:
Ψ0 = √

ρ0eiθ0 . Then, setting v0 = ∂xθ0, we can apply Theorem 7.1 to obtain (ρ̃, ṽ) a solution to
(7.3) satisfying (7.4), with the functions K and g0 defined in (7.2). Setting ρ(x, t) = ρ̃(x, −2t)
and v = v(x, −2t), it remains to define θ ∈ C(R × [0, T ]) so that Ψ = √

ρeiθ satisfies (QGP) and
(7.5). Indeed, taking

θ(·, t) = θ0 +
∫ t

0
v2 − 1 − 2κρ

2ρ
∂xxρ − (∂xρ)2

4ρ2 + ρ − 1,

yields θ ∈ C1([0, T ]; L2(R)), thus θ satisfies the second equation in (7.3). Since infR ρ > 0,
we deduce that √

ρeiθ is a nonvanishing local solution to (QGP). We verify that Ψ is still
a Hs(R)−perturbation of uc,κ for t > 0 to ensure (7.5). Since Ψ0 − uc,κ ∈ Hs(R), we can
conclude if we prove that Ψ − Ψ0 ∈ C([0, T ]; Hs(R)). It is easy to check that ∂x(Ψ − Ψ0) belongs
in C([0, T ]; Hs−1(R)) using (7.4), thus, we just need to verify that Ψ − Ψ0 ∈ C([0, T ]; L2(R)).
Since (ρ, θ) satisfies (7.1), we deduce using (7.4) that ∂tθ ∈ C([0, T ]; Hs−2(R)), in particular
θ −θ0 ∈ C1([0, T ]; L2(R)) and we see that Ψ−Ψ0 ∈ C([0, T ]; L2(R)) follows from this observation
and (7.4).

Uniqueness. Assume that ρ̌eiθ̌ is another solution to (QGP) defined on [0, Ť ] with the same
initial condition, then T̃ = min{Ť , T} and relabeling T̃ as T , we have ρ̌ = ρ and ∂xθ = ∂xθ̌ in
[0, T ] by Theorem 7.1. Since ρ̌eiθ̌ satisfies (QGP), we infer that θ̌ satisfies the second line in
(7.3). Therefore, we deduce that ∂tθ̌ = ∂tθ in C([0, T ]; L2(R)), so that, integrating the latter
identity, we obtain θ̌ = θ. We conclude using Theorem 7.1 that there exists T such that the
flow map is well-defined in the vicinity of any initial condition Ψ0 ∈ uc,κ + Hs(R) satisfying
infR |Ψ0| > 0, moreover this map takes its value in C([0, T ]; uc,κ + Hs(R)).
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Continuity with respect to the initial data. Let Ψ0 ∈ uc,κ + Hs(R) such that infR |Ψ0| > 0,
then the flow map is well-defined in a neighborhood V of Ψ0 and valued in C([0, T ], uc,κ+Hs(R)),
for some T > 0. By simplicity, we only show that this map is continuous at Ψ0, the continuity
in V is similar. Let (Ψ(n)

0 ) ⊂ V satisfying ||Ψ(n)
0 −Ψ0||Hs(R) → 0 as n → ∞. Let Ψ(n) = ρ(n)eiθ(n)

and Ψ = ρeiθ be the unique solution of (QGP) in R× [0, T ] satisfying (7.5) and Ψ(n)(·, 0) = Ψ(n)
0

and Ψ(·, 0) = Ψ0. By the continuity of the flow map in Theorem 7.1 we get

lim
n→∞

||(ρ(n), ∂xθ(n)) − (ρ, ∂xθ)||C([0,T ];Hs(R)×Hs−1(R)) = 0. (7.6)

Since θ(n) and θ satisfies the second equation in (7.1), we deduce using (7.6) that ||∂tθ
(n) −

∂tθ||C([0,T ];L2(R)) → 0, as n → ∞, thus ||θ(n) − θ||C([0,T ];L2(R)) → 0, as n → ∞. We see that this
relation and (7.6) are enough to ensure that ||ρ(n)eiθ(n) −ρeiθ||C([0,T ];Hs(R)) → 0 as n → ∞, hence
the flow map is continuous in Ψ0.

Conservation laws. Assume that Ψ0 satisfies infR |Ψ0| > 0 and is regular enough so that the
solution Ψ of (QGP) belongs in C([0, T ]; uc,κ + Hs(R)), for some s > 4 + 1/2. Then the energy
and momentum of Ψ are conserved in time (one just needs to derive with respect to time in
the integrals). The conclusion follows for s > 2 + 1/2, by using a density argument and the
continuity of the flow map.

As a conclusion, the following the maximal time of existence is well-defined:

TΨ0 = sup
{

T > 0 :
There exists a unique solution to (QGP) Ψ defined on [0, T ]
satisfying (7.5) and Ψ(·, 0) = Ψ0.

}
, (7.7)

associated with an initial condition Ψ0 ∈ N X (R) ∩ uc,κ + Hs(R).

Finally, we can prove the stability of dark solitons, as stated in Theorem 1.11, by invoking
Theorem 6.8, and the Cazenave–Lions argument [8].

Proof of Theorem 1.11. Using that c is a bijection between (0, q∗
κ) and (c∗

κ,
√

2), we just need to
show the result for uc(q),κ, parametrized by q ∈ (0, q∗

κ). By contradiction, we suppose that for
some q ∈ (0, q∗

κ), the dark soliton uc(q),κ is not orbitally stable. Then there exist ε0 > 0, and a
sequence (v(n)

0 ) ⊂ Hs(R), s > 5/2, such that the solution Ψ(n)(x, t) = uc(q),κ(x) + v(n)(x, t) to
(QGP), with initial data Ψ(n)

0 = uc(q),κ + v
(n)
0 , defined for t ∈ [0, TΨ(n)

0
), satisfies

d(Ψ(n)
0 , uc(q),κ) < 1/n, (7.8)

and inf
(y,θ)∈R2

d(Ψ(n)(tn), uc(q),κ(· − y)eiθ) > ε0, (7.9)

for some tn ∈ (0, TΨ(n)
0

). Let us recall that Lemma 5.5 in [21] establishes that if vn, v ∈ X (R)
satisfy d(vn, v) → 0, then,

∥|vn| − |v|∥L∞(R) → 0 and ∥|vn|2 − |v|2∥L2(R) → 0. (7.10)

In particular, this implies the continuity of the energy Eκ(vn) → Eκ(v) (with respect to d).
In addition, if vn, v ∈ N X (R), then we also have the continuity of the momentum, i.e. that
p(vn) → p(v). By conservation of energy, we have

Eκ(Ψ(n)(t)) = Eκ(Ψ(n)
0 ), for all 0 ≤ t ≤ tn. (7.11)
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From (7.11), we infer that, up to a subsequence that we do not relabel, we have Ψ(n)(t) ∈ N X (R)
for all 0 ≤ t ≤ tn. Indeed, in view of (7.8) and the continuity of the energy with respect to d,
we obtain,

Eκ(Ψ(n)
0 ) < Eκ(uc(q),κ) + δn = Eκ(q) + δn, (7.12)

for some positive sequence δn → 0. Thus, for n large enough, using (7.11)–(7.12) and that Eκ is
strictly increasing in (0, q∗

κ) (see Theorem 6.8), we deduce that there is q̃ ∈ (q, q∗
κ) such that

Eκ(Ψ(n)(t)) < E(q̃), for all 0 ≤ t ≤ tn. (7.13)

By the definition of q∗
κ in (1.59), we deduce that Ψ(n)(t) ∈ N X (R), for all 0 ≤ t ≤ tn. We can

now invoke the conservation of momentum and the continuity of the momentum (with respect
to d), to conclude that p(Ψ(n)(tn)) → q. Again, using (7.11) and the continuity of the energy,
we obtain Eκ(Ψ(n)(tn)) → Eκ(q). From Theorem 6.8, we deduce that there exist θ ∈ R and a
sequence of points (xn) such that

1 − |Ψ(n)(· + xn, tn)|2 → 1 − |uc(q),κ|2, in L2(R), (7.14)
(Ψ(n))′(· + xn, tn) → eiθu′

c(q),κ, in L2(R). (7.15)

Let us show that (7.14)–(7.15) imply that

d(Ψ(n)(tn), eiθuc(q),κ(· − xn)) → 0. (7.16)

Indeed, it is immediate that (7.15) leads to ||(Ψ(n))′(tn)−eiθu′
c(q),κ(·−xn)||L2(R) → 0. In addition,

we have the estimate:

∥|Ψ(n)| − |uc(q),κ(· − xn)|∥2
L2(R) ≤

∥|Ψ(n)|2 − |uc(q),κ(· − xn)|2∥2
L2(R)

infR((|Ψ(n)| + |uc(q),κ(· − xn)|)2)
. (7.17)

Since 0 ≤ 1 − |uc(q),κ|2 ≤ 1 − c(q)2/2 (see Proposition 3.7), we deduce that |uc(q),κ| ≥ c(q)/
√

2.
Therefore, using (7.17) and (7.14), we conclude that ∥|Ψ(n)| − |uc(q),κ(· − xn)|∥L2(R) → 0, which
establishes (7.16). This contradicts (7.9).

A Orbital stability of bright solitons
This appendix is devoted to showing the orbital stability of the bright soliton (1.3) in the case
κ > 0, as an application of the results by Colin, Jeanjean and Squassina [13]. We start by
recalling that replacing (1.3) in (1.2) with s = 1, we obtain:

−ωv + v′′ + v3 + 2κv2v′′ + 2κv(v′)2 = 0. (A.1)

By Theorem 1.2 in [13], for a given ω > 0, there exists a unique real positive solution to
(A.1) in H1(R), up to translations. Therefore, this solution is given explicitly by vω,κ = F −1

ω,κ,
with F −1

ω,κ defined in (1.4), but we omit the index κ from now on, for notational simplicity.
In addition, equation (A.1) corresponds to the Euler–Lagrange equation associated with the
minimization problem of the energy at fixed L2-norm, analogously to the solutions of (TW(c, κ))
(see Lemma 6.1). The energy functional associated with the focusing equation (1.2) is, for
v ∈ H1(R),

E(v) = 1
2

∫
R

|∂xv|2 + κ

4

∫
R

(∂x(|v|2))2 − 1
4

∫
R

|v|4, (A.2)
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and the minimization problem is

m(c) = inf{E(v) : v ∈ H1(R), ∥v∥2
L2(R) = c}. (A.3)

In addition, if the minimizer is attained, then there is a Lagrange multiplier ωc > 0, such that
vωc is a solution to (A.1). In this manner, we can define the set of solutions obtained by this
minimization approach, of mass c, by

G(c) = {v ∈ H1(R) : E(v) = m(c) and ∥v∥2
L2(R) = c}.

In [13], the authors show that this set is not empty and stable. More precisely, in the case of
dimension one, the result of Theorem 1.4 in [13] can be recast as follows.

Theorem A.1 (Theorem 1.4 in [13]). Let κ > 0. If c > 0, then m(c) < 0 and the set G(c) is
nonempty and orbitally stable in H1(R).

Therefore, to conclude the stability of the bright soliton vω, for every ω, some information
is needed to determine the relation between c and ω, as explained in Remark 5.2 in [13]. In
addition, it could happen that two different solutions vω1 , vω2 to (A.1), with ω1 ̸= ω2 have
the same L2-norm, so the the set G(c) could contain several (different) solutions. By using
(1.4), our final result establishes that there is a bijection between the parameters c and ω.
Hence, there is only one element in G(c), up to invariances. Indeed, by considering the function
c : (0, ∞) → (0, ∞), given by

c(ω) = ∥vω∥2
L2(R), (A.4)

we obtain the following result.

Proposition A.2. Let κ > 0, then

c(ω) = 2
√

ω + 1 + 4κω√
κ

atan(2
√

κω), for all ω > 0. (A.5)

As a consequence, the map c is one-to-one, G(c(ω)) = {eiϕvω(· − y) : ϕ, y ∈ R}, and vω is
orbitally stable in H1(R), for all ω > 0.

Proof. Let us fix ω > 0. Since vω is real-valued and belongs to H1(R) ∩ C2(R), we obtain from
(A.1) that

2(1 + 2κv2
ω(x))(v′

ω(x))2 = v2
ω(x)(2ω − v2

ω(x)), for all x > 0. (A.6)

Since vω is even, reaches a maximum at x = 0, and v′
ω(x) < 0, for all x > 0, using (A.6), we get√

2(1 + 2κv2
ω(x))

v2
ω(x)(2ω − v2

ω(x))v′
ω(x) = −1, for all x > 0,

so that we can recast c(ω) as

c(ω) =
∫
R

v2
ω(x)dx = −2

∫ ∞

0
vω(x)

√
2(1 + 2κv2

ω(x))
2ω − v2

ω(x) v′
ω(x)dx.

Performing the change of variable y = vω(x), we deduce that

c(ω) = 2
√

2
∫ √

2ω

0
y

√
1 + 2κy2

2ω − y2 dy.
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We obtain an antiderivative for the latter integrated, defined for all 0 ≤ y ≤
√

2ω by

2
√

2
∫

y

√
1 + 2κy2

2ω − y2 = −
√

2
√

(2ω − y2)(1 + 2κy2) + 1 + 4ω√
κ

atan
(√ 1 + 2κy2

2κ(2ω − y2)
)
,

and (A.5) follows using the identity atan(x−1) = π/2 − atan(x), for all x ≥ 0. By differentiating
(A.5), we obtain

c′(ω) = 2/
√

ω + 4
√

κ atan(2
√

κω),

for all ω > 0, so that c is a bijection between (0, ∞) to itself. Therefore, G(c(ω)) is given by
translations and phase shifts of vω and, by Theorem A.1, we conclude that vω is orbitally stable,
for all ω > 0.
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