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3-D Mutual Localization with Anonymous Bearing Measurements

Marco Cognetti, Paolo Stegagno, Antonio Franchi, Giuseppe Oriolo, Heinrich H. Bülthoff

Abstract— We present a decentralized algorithm for estimat-
ing mutual 3-D poses in a group of mobile robots, such as
a team of UAVs. Our algorithm uses bearing measurements
reconstructed, e.g., by a visual sensor, and inertial measure-
ments coming from the robot IMU. Since identification of a
specific robot in a group would require visual tagging and may
be cumbersome in practice, we simply assume that the bear-
ing measurements are anonymous. The proposed localization
method is a non-trivial extension of our previous algorithm
for the 2-D case [1], and exhibits similar performance and
robustness. An experimental validation of the algorithm has
been performed using quadrotor UAVs.

I. INTRODUCTION

In the last ten years, multi-agent systems have been widely
studied in view of the potential increase in autonomy, versa-
tility and robustness provided by decentralization. Mutual
localization of the agents is one of the main capabilities
needed to achieve those desirable features. In fact, tasks as
cooperative exploration [2], formation control [3], connec-
tivity maintenance [4], distributed estimation [5], cooperative
transportation [6], coverage and sensing [7], [8], require each
agent to possess some degree of knowledge about the poses
of the others. If each agent is equipped with its own attached
frame, one may define Relative Mutual Localization (RML)
as the problem of estimating the change of coordinates
among the agents’ moving frames.

Many authors have dealt with the problem of estimating
the poses of the agents in a common fixed frame [9], [10],
[11], [12], [13], showing that the ability of sensing each
other can be used to improve the localization accuracy of
the entire system. In the literature, this kind of approach
is called Cooperative Localization. Note that agreeing on a
common fixed frame already implies a form of centralized
consensus between the agents. Other works have studied
observability in RML, showing the minimal sets of data
needed to determine the robot-to-robot 3-D relative pose
[14], and proposing suitable estimators [15], [16].

Most of the previous works assume that robot-to-robot
measurements come with the identity of the measured robot,
or equivalently that the estimation is performed pairwise.
In [17], we have addressed the problem of 2-D RML with
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anonymous position measurements plus odometric data, the
rationale being that the capability of achieving mutual lo-
calization with anonymous measurements actually increases
the level of decentralization, widens the field of applicability
and adds flexibility to the system. In that paper, we proposed
a two-phase localization system composed by (1) a multiple
registration algorithm that computes all the possible changes
of coordinates among the agents’ relative frames using
geometrical arguments to invert the measurement map (2)
a bank of particle filters to account for the uncertainty and
ambiguity of the process (see also [18]). In [1], we have
considered an extension to the case of bearing-only (rather
than range-and-bearing) measurements, to allow the use of
non-depth sensors such as simple cameras.

The objective of this paper is to extend our previous
work to address the case of 3-D RML using anonymous
bearing measurements. This would extend the benefits of
our previous approach to a much wider class of systems,
including aerial and submarine vehicles, as well as wheeled
robots on 3-D surfaces. As we shall see, the extension to
the 3-D case is however non-trivial, mainly due to the ne-
cessity of developing a completely new multiple registration
algorithm to take into account (and to take advantage of) the
increased dimension of the configuration space. Moreover,
changing the vehicle model as well as the proprioceptive
sensor equipments (from encoder-based odometry to inertial
measurements) requires the redesign of the particle filters.

The paper is organized as follows. In Section II we for-
mally introduce the considered mutual localization problem,
while in Section III we describe our solution. Experimental
results on a team of quadrotor UAVs are presented in
Section IV, and some conclusions are given in Section V.

II. PROBLEM FORMULATION

Throughout this section, refer to Fig. 1 for illustration.
Consider a system of n robots A1, . . . , An, with n un-
known (hence, it may vary during the operation). Denote
by K = {1, . . . , n} the set of robot indices, and let
Ki = K/{i}. Each robot is a rigid body in R3. Denote by
W : {OW , XW , YW , ZW} and Bi : {OBi , XBi , YBi , ZBi},
respectively, the inertial (world) frame and the body frame
attached to the center of mass of Ai. Body frames conform
to the North-East-Down (NED) convention, as common in
the aerospace field. The configuration of Ai is represented
by the position WpBi ∈ R3 of the origin of Bi in W
and the rotation matrix WRBi ∈ SO(3) between W and
Bi. Denote with RX(·), RY (·), RZ(·) the canonical rotation
matrices about the axes x, y, z respectively. Then WRBi can
be written as WRBi = RZ(ψBi)RY (θBi)RX(φBi), where
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Fig. 1: 3-D mutual localization with anonymous bearing measure-
ments. Robots (triangles) are shown with their attached frame and
IMU measurements (angular velocity and acceleration). Robot Ai

detects two actual robots whose identities are unknown (hence the
question marks) plus one false positive, and accordingly collects
three anonymous bearing measurements.

ψBi , θBi , φBi ∈ S1 are the yaw, pitch, and roll angles of Ai,
respectively, and S1 denotes the unit circle. The derivative
of WRBi is WṘBi = [WωBi ]×

WRBi , where

WωBi =

(Wpi
Wqi
Wri

)
, [WωBi ]× =

(
0 −Wri

Wqi
Wri 0 Wpi
Wqi −Wpi 0

)
,

and WωBi is the angular velocity in world frame.
Since we are interested in mutual localization among

robots, define the following relative quantities

BipBj = WR
T

Bi(
WpBj −WpBi) (1)

BiRBj = WR
T

Bi
WRBj (2)

and denote by BixBj = {BipBj , BiRBj} the full relative pose
between Ai and Aj .

Each robot Ai is equipped with a motion detector, such as
an Inertial Measurement Unit (IMU), that provides measure-
ments Bi āi, Bi ω̄i of its proper acceleration Biai and angular
velocity Biωi in body frame, given by

Biai = WR
T

Bi(
W p̈Bi − g e3) (3)

Biωi = WR
T

Bi
WωBi (4)

where g is the gravity acceleration and e3 = (0 0 1)T .
In addition, Ai comes with a robot detector, a sensor

device which detects other robots and returns an anonymous
measurement Bi b̄Bj of their relative bearing

BibBj = WRTBi
WpBj −WpBi
‖WpBj −WpBi‖

∈ S2 (5)

that is, the unit-norm vector in R3 pointing toward the center
of mass1 of Aj , expressed in Bi. The measurement Bi b̄Bj is

1A measurement of (5) can be obtained, for example, by using a feature
tracking algorithm on the images provided by a calibrated camera mounted
on the robot. The choice and description of the tracking algorithm belongs
to the computer vision field and is outside the scope of this paper.

available whenever BipBj ∈ Dp, the perception set attached
to the robot.

In addition to being subject to false positives (due to
objects that look like robots) and false negatives (due to
occlusions), relative bearing measurements do not contain
the identity of the measured robot (see Fig. 1). Therefore,
the output of the robot detector is a set BBi of measurements
whose ordering has no relation to the robot indexing; in
addition, each measurement may or not refer to an actual
robot. For this reason, in the following, relative bearing
measurements will be generically referred to as features.

The equipment of each robot is completed by a communi-
cation module that can send/receive data to/from any other
robot contained in a communication set Dc around itself.
We assume that Dp ⊂ Dc, so that if Ai can detect Aj it can
also communicate with it. Each message by Ai is composed
by: (1) the robot signature (the index i), (2) the transformed
acceleration measurement âi, (3) the transformed feature set
B̂i, and (4) the partial estimates φ̂Bi , θ̂Bi ,

ˆ̇
ψi. The definition

of âi, B̂i, φ̂Bi , θ̂Bi ,
ˆ̇
ψi is given in Sect. III.

From now on, we consider the relative localization prob-
lem from the viewpoint of the generic robot Ai. Denote with
Ni the neighbors of Ai, i.e., the set of robots from which
it is receiving communication. In a probabilistic framework,
the RML problem with anonymous bearing measurements
requires the generic robot Ai to compute its belief about the
relative poses of robots that are or have been its neighbors,
using inertial and bearing measurements coming from its
own sensory equipment or obtained via communication. In
particular, using the superscripts t and 1 : t to denote the
value of a variable at time t and the history of its values at
times 1, 2, . . . , t, we can formulate the following problem.

Problem 1: (Probabilistic RML with anonymous bearing
measurements) For t = 1, 2, . . . and j ∈ N1:t

i , com-
pute the belief bel(BixBj ) = P (BixtBj | Bi ā1:t

i , Bi ω̄1:t
i , B1:t

Bi ,
{Bj āτj , Bj ω̄τj , BτBj}j∈Nτi ,τ=1,...,t).

III. 3-D POSE ESTIMATION

For k ∈ K, denote with Ck = {OCk , XCk , YCk , ZCk} the
frame having the same origin as Bk and such that WRCk =
RZ(ψBk). Being CkRBk = RY (θBk)RX(φBk), we have

CkRBk =

 cθBk sφBksθBk cφBksθBk
0 cφBk −sφBk

−sθBk sφBkcθBk cφBkcθBk

. (6)

The scheme of our estimation algorithm is shown in Fig. 2.
We split Problem 1, i.e., the problem of estimating BixBj ,
j ∈ N1:t

i , in two subproblems.
Estimation of pitch and roll: Each Ak independently

obtains estimates φ̂Bk and θ̂Bk of its roll and pitch angles
using the motion detector measurements Bkak, Bkωk. This is
achieved using a complementary filter (see [19], [20]). Ak
can then compute an estimate CkR̂Bk of CkRBk using (6).

Estimation of the reduced relative pose: We solve a
problem which is simpler than Problem 1, and consists in
retrieving the identities of the relative bearing measurements
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Fig. 2: Scheme of the mutual localization system that runs on the generic robot Ai.

and estimating a reduced relative pose ixj = {ipj , iRj},
j ∈ N1:t

i , where

ipj = WR
T

Ci(
WpCj −WpCi) (7)

iRj = RZ(ψBi)
TRZ(ψBj ). (8)

Denote by ix̂j = {ip̂j , iR̂j} the corresponding estimates.
Once both subproblems are solved, it is immediate to

compute an estimate Bi x̂Bj = {Bi p̂Bj , BiR̂Bj} of the relative

pose required by Problem 1 by setting Bi p̂Bj = CiR̂Bi
T ip̂j

and BiR̂Bj = CiR̂Bi
T iR̂j .

For the estimation of the reduced relative pose ixj , rather
than the motion and robot detector measurements (3–5) we
use the corresponding quantities in the Ci frame

ai = WR
T

Ci(
W p̈Ci − ge3) (9)

ωi = WR
T

Ci
WωCi (10)

ibj =
ipj
‖ipj‖

= WRTC
WpCj −WpCi
‖WpCj −WpCi‖

. (11)

Using the roll and pitch estimates from the complementary
filter we have

âi = CiR̂Bi
Bi āi (12)

ω̂i = CiR̂Bi
Bi ω̄i (13)

ib̂j = CiR̂Bi
Bi b̄j . (14)

We emphasize that the estimates of the transformed relative
bearings ib̂j are still anonymous. In fact only the set

B̂i = {CiR̂Bib | b ∈ BBi}
is actually available at every time t. In addition, the system
uses an estimate estimate ˆ̇

ψBk of the yaw rate, which is
computed plugging the roll and pitch estimates into the
formula

ψ̇Bk =
(

0
sinφBk
cos θBk

cosφBk
cos θBk

)
Bk ω̄k = fTBk

Bk ω̄k, (15)

where fTBk = is the co-vector which transforms the angular
velocity in body frame into the yaw rate.

This leads to the following reformulation of Problem 1.

Problem 2: For t = 1, 2, . . . and j ∈ N1:t
i , compute

the belief bel(ixj) = P (ixtj | â1:t
i , ω̂1:t

i , B̂1:t
i ,

ˆ̇
ψ1:t
i , φ̂1:t

Bi , θ̂
1:t
Bi ,

{âτj , ˆ̇
ψτj , B̂

τ
j , φ̂

τ
Bj , θ̂

τ
Bj}j∈Nτi ,τ=1,...,t).

In order to solve Problem 2 we need to recover: (1)
the identities of the measurements in B̂i, (2) the relative
orientations iRj , and (3) the relative distances ‖ipj‖. In
analogy with [1], where the 2-D case has been addressed,
we adopt a two-step approach.

First, a multiple registration algorithm (P-MultiBeaReg3D,
described in Sect. III-A) is used to retrieve the identities
in B̂i and the iR̂j matrices. For every j ∈ Ni, the output
of P-MultiBeaReg3D is a set of elements of S2 × SO(3)
that represent our best guesses for ibj and iRj , given the
anonymous measurements B̂i, {B̂j}j∈Ni , and the current
belief about ixj . In parallel, for each j ∈ N1:t

i , a Particle
Filter (PF) is used to retrieve the distance ‖ip̂j‖, based on the
output of P-MultiBeaReg3D and the inertial measurements
in (12–13). The PFs are described in Sect. III-B.

A. Identity and Mutual Orientation Recovering

P-MultiBeaReg3D is the probabilistic multiple registration
algorithm run by Ai at each time instant t to feed the
measurement update of the particle filters (see Fig. 2). In
general, registration is the process of computing the relative
pose between two or more different viewpoints of the same
scene. In our case, since the ‘scene’ consists only of sets of
bearing measurements, the scale of the relative poses cannot
be recovered. In particular, given the sets of features B̂i,
{B̂j}j∈Ni and the current beliefs {bel(ixj)}j∈Ni computed
by the particle filters through the motion model of the robots
(see Fig. 2), P-MultiBeaReg3D derives an estimate of the
relative bearing-orientation of Aj , j ∈ Ni, w.r.t. Ai.

A pseudo-code description of P-MultiBeaReg3D is given
in Algorithm 1 and its basic steps are illustrated in Fig. 3.
The underlying idea of this algorithm is to search first for all
triangles in the scene and then to reconstruct the formation,
joining the triangles found, up to a scaling factor.
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Algorithm 1: P-MultiBeaReg3D

input : feature sets B̂i, {B̂j}j∈Ni , beliefs bel{ixj}j∈Ni

output: relative bearing-orientation estimates

Identify triangles from the feature sets;1
Rate triangles according to their 2- and 3-intersections and2
collect those above a certain threshold in a set T ;
Extract from T a maximal subset Tirr of irreconcilable3
triangles containing Ai;
Define partial solution each triangle in Tirr whose metric (17)4
is above a certain threshold;
foreach partial solution S do5

Expand S with each triangle Tm ∈ T such that S and6
Tm have a common side, and Tm 6∈ S;
For each new partial solution, compute its 2- and7
3-intersections and select solutions with rating above a
threshold;
Select a maximal subset of irreconcilable solutions and8
set them as partial solutions for the next step;
Prune solutions whose metric (17) is under an adaptive9
threshold;
if no new partial solution then end branch;10
else goto 511

Consider the situation in Fig. 3a, where four robots are
arranges in a ‘square’ formation with the opposite vertices
at the same height; the corresponding feature sets are shown
in Fig. 3b. In this situation there is no vertical alignment
among robots, i.e., no measurement in B̂i ∪ {B̂j}j∈Ni is
equal to (0 0 ± 1)T .

Note that each bearing measurement can be equivalently
represented by an azimuth and zenith-distance pair. For ex-
ample, a given bearing ib̂j can be represented by (iαj , iζj) ∈
[0, 2π)× [0, π), since they are related by

ib̂j = (sin iζj cos iαj sin iζj sin iαj cos iζj)T , (16)

where iαj and iζj are azimuth and zenith-distance angles,
respectively. The projection of B̂i on the XY plane of Ci
preserves only the azimuth information. Furthermore, each
pair of azimuth angles in the same feature set (i.e., belonging
to the same robot) can be equivalently represented by their
difference. Note that the XY planes (as well as the Z axes)
of the reference frames Ck, k = 1, 2, . . . n are parallel to each
other. Then, an azimuth angle difference represents a feasible
internal angle of a planar triangle.

Consider now a triplet of robots that ‘see’ each other,
e.g., Ai, Aj , Ak, and make Ah ‘disappear’ for a moment,
so that each robot in the triplet sees only two features, or
equivalently one difference angle. Since the projection of a
3-D triangle on Ci’s XY plane2 defines a planar triangle,
the sum of the three difference angles must be π. The
algorithm then scans all the possible triplets coming from
different fature sets and looks for triplets of difference angles
(one from each feature set) whose sum is π, with a certain
tolerance. Each of these triplets defines a planar triangle;
more precisely, it defines a class of equivalence, because
the triangle is defined only up to a scaling factor. Note

2The same holds for every Ck , since all XY planes are parallel.

find and rate triangles

rating based expansion of the solutions

+ +

+

(f)

(b)(a)

triangles containing (c)

maximal subset of irreconcilable triangles(d)

(  )

(  )

(  )

(  )

(e)

Fig. 3: Execution of P-MultiBeaReg3D in an ambiguous situation:
(a) actual configuration (b) initial feature sets (c) triangle found in
the first step containing the owner of the algorithm and their triple
intersections (d) maximal subset of irreconcilable triangles and their
comparison with the current belief (e) other triangles found in the
first step of the algorithm and their triple intersections (f) expansion
of the solution using the remaining triangles.

that a triangle encodes also the identity of the robots at
its vertices. With respect to the 2-D case considered in [1],
such triangles must satisfy also an additional condition. In
fact, each azimuth angle comes with a zenith-distance angle
associated. By building the triangle as explained, we are
implying that a certain feature of a set is the equivalent of
another feature of another set. Then, the sum of the zenith-
distances of two associated bearings must be equal to π, with
a certain tolerance.

When two robots in a triangle see another robot that is not
the third vertex of the triangle, their feature sets will contain
two intersecting rays, one for each set. We will call this a 2-
intersection. A triangle can also have 3-intersections, when
all three robots forming it see a fourth robot (e.g., Ah in
Fig. 3a). In particular a 3-intersection is equivalent to three
2-intersections. Based on this idea, the algorithm rates all
the triangles by counting their 2-intersections and discards
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those below a certain threshold. From the remaining set T ,
a maximal subset Tirr is extracted of irreconcilable triangles
containing Ai; two triangles are said to be irreconcilable
if they associate the same robot to different features of the
same set (e.g., Aj in T1 and T2, Fig. 3c), or two different
robots to the same feature (e.g., Aj and Ak in T1 and T3,
Fig. 3c). The results of this process of triangle finding and
rating are illustrated in Fig. 3c–e. In particular, Fig. 3c shows
all the triangles having one 3-intersection and containing Ai;
Fig. 3e shows all the triangles having one 3-intersection but
not containing Ai. One choice for the maximal subset Tirr
is shown in Fig. 3d.

The next step is aimed at validating the triangles in Tirr on
the basis of the current belief about the pose of the robots.
To this end, we use the metric function

P ({ib̂j , iR̂j}) =
∫
p({ib̂j , iR̂j}|ixj)bel(ixj)dixj (17)

where bel(ixj) comes from the motion block of the particle
filters. First, the scale of each triangle is computed so as
to maximize this function; then, an adaptive thresholding of
these maximum values is used to select the triangles that
better fit the belief.

Each triangle of the Tirr set is the base of a branch of
the algorithm and constitutes the partial solution at the first
step of its branch. The partial solution of each branch is then
iteratively expanded looking for triangles that have common
edges with it (see Fig. 3f). Let S be the partial solution
(given as a collection of triangles, the change of coordinates
between them and the total number of 2- and 3- intersections
as rating) of a branch at a given step. Let TS = {Tm,m =
1, . . . ,M} be the set of the feasible triangles Tm ∈ T not yet
in S that have a common edge with one triangle in S. Then
the algorithm builds a set of M possible partial solutions
for the next step expanding S with Tm,m = 1, . . . ,M .
Each solution is then rated by counting its total number
of 2 and 3-intersections. Note that each matching of two
3-intersections generates a 4-intersection, that accounts for
four 3-intersections as well as two matching 2-intersections
generates a triple intersection. An n-intersection in general
accounts for n!/[(n − 3)!3!] 3-intersections. A vertex of
a triangle matching with a 3-intersection accounts for an
additional 4-intersection, while adding a triangle that has
all three vertexes already in the solution (but the triangle
itself is not yet in the solution) accounts for an additional
4-intersection. Finally, the algorithm searches for triangles
in TS that are reconcilable with S. If a triangle in TS is
reconcilable with S, an additional 4-intersection is added,
increasing the weight of the actual solution. In fact, the more
triangles fit with the solution, the higher is the probability
that it is correct. In the case of Fig. 3f, one obtains a partial
solution joining triangle T5 and T1 whose weight account
for two 4-intersections because of the triple intersection of
each triangle will overlap on a vertex of the other triangle
during the triangle fusion phase. The iterative addition of T4

and T7 results in the increase of the weight of the solution
of this branch by other two four-intersections.

Then, as in the case of the triangle, the algorithm selects a
subset of partial solution whose rating is above an adaptive
threshold. Again, a maximal subset of irreconcilable partial
solutions is selected and, among them, only the solutions that
fit with the current belief according to equation (17) are used
as partial solutions at following step, expanding a branch
for each of them. The iterative process continues in each
branch until TS becomes empty in that branch. The algorithm
generates a new branch whenever an irreconcilable triangle is
inserted in the solution, substituting the conflicting vertexes
and expanding both solutions. In the end, each branch finds a
solution, and the best of them are selected, once again with
the intersection and likelihood criteria. Since each branch
of the algorithm may in principle produce a different pair
ib̂k,

iR̂k for each Ak, each with its own weight, the result is
a list of such pairs for the generic robot Ak.

If two robots are vertically aligned (a zero-measure case)
the algorithm is the same but looks for triangles considering
the difference angles in the other bearing dimension, i.e.,
zenith-distance.

B. Relative Distance Estimation

The generic robot Ai runs one particle filter (PFj) for
each Aj to retrieve the missing relative distance ‖ipj‖.
This is obtained by fusing the depthless quantities ib̂j ,

iR̂j
coming from P-MultiBeaReg3D with the metric informations
provided by the IMUs of Ai and Aj .

The equations of motion are

iṗj = ivj (18)
iv̇j = iRjaj − ai + [ωi]×ivj (19)
iṘj = (iRj [ωj ]× − [ωi]×)iRj (20)

where we denoted with ivj the velocity of OCj in Ci. Since

iRj = RZ(−ψBi)RZ(ψBj ) = RZ(ψBj − ψBi), (21)

we can replace (20) with

iψ̇j = ψ̇Bj − ψ̇Bi = fTBj
Bjωj − fTBiBiωi, (22)

being iψj = ψBj − ψBi and fTBi , f
T
Bj defined by (15),

and compute iRj in (19) from (21). Therefore the state
of each particle in PFj is the 7-dimensional tuple iχj =
(ipj , ivj , iψj) ∈ R3 × R3 × S1. The observability of the
system is guaranteed by [16]. In particular, one can use the
analysis in that paper to generate exciting trajectories.

The motion update step of PFj is obtained by plugging
âi, âj , ω̂i,

ˆ̇
ψBi ,

ˆ̇
ψBj in (18–22). The new state probability

is predicted by means of the integration of the motion
measurements with the knowledge of the measurement noise.

Coming to the measurement update step, note first that,
at each t, the algorithm P-MultiBeaReg3D may return more
than one solution per robot, i.e., more than one pair ib̂j , iR̂j ,
each solution rated on the basis of its uncertainty during
the registration steps of the algorithm. For this reason, each
solutions is approximated in PFj as a gaussian measurement
with a covariance proportional to its uncertainty. Therefore,
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Fig. 4: The quadrotor model used in our experiments.

the measurement model is given by the normalized sum of
gaussians centered at the solutions of P-MultiBeaReg3D.

Denote with iψ̂j the estimate of iψj obtained from iR̂j .
The measurement update produces a rating of the predicted
particles by using Bayes’ law

P (iχj |ib̂j , iψ̂j) = NP (ib̂j , iψ̂j |iχj)P (iχj), (23)

where N is a normalization factor.
We used separate beliefs P (iχj), with j ∈ N1:t

i , instead of
a single joint belief P ({iχj}j∈N1:t

i
), based on the indepen-

dence assumption, i.e., P ({iχj}j∈N1:t
i

) =
∏
j∈N1:t

i
P (iχj).

This assumption is true in a pure localization scenario, while
in in certain situations it is only an acceptable approximation.
In any case, P ({iχj}j∈N1:t

i
) cannot be maintained due to its

computational cost, as the dimension of its distribution grows
exponentially with the number of robots.

A number of standard practical techniques have been
used to improve the performance of the filter. For example,
the initial prior distribution is generated using the first
measurements. Moreover, we have reduced the frequency of
the measurement update with respect to the motion update
to guarantee the independence of subsequent measurements.
Finally, we have used a Tustin integration to smooth the
acceleration data coming from the motion detector.

IV. EXPERIMENTAL RESULTS

The proposed mutual localization system has been exper-
imentally tested on a group of Mikrokopter quadrotors
(http://www.mikrokopter.com, see Fig. 4) flying in an arena
of 10×12×6 m. We used an external motion capture system
(http://www.vicon.com), whose precision is about 1 mm for
translations and 1◦ for rotations, to obtain a ground truth.

As a motion detector, we used the IMU available on
the microcontroller board, composed by one three-axis lin-
ear MEMS accelerometer plus three orthogonally mounted
angular rate sensors. The microcontroller acquires these
measurements at 400 Hz, and runs at the same frequency the
complementary filter to recover the current roll and pitch.
In particular, the estimate φ̂Bi (θ̂Bi ) of the roll (pitch) is
computed by fusing the accelerometer measurement Bi āiY
(Bi āiX ) with the gyroscope measurement Bi ω̄iX (Bi ω̄iY ). For
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Fig. 5: Estimates (red) of the roll and pitch angles computed by the
complementary filter w.r.t. ground truth values (blue) in a typical
experiment.

our quadrotor, the dynamics of the filter is

˙̂
φBi = Bi ω̄iY + kφi(

Bi āiY − φ̂Bi)
˙̂
θBi = Bi ω̄iX + kθi(

Bi āiX − θ̂Bi).
The typical performance of the filter is shown in Fig. 5; here,
the mean error is 1.92◦ for roll and 2.67◦ for pitch.

Due to the limited memory and processing power of the
microcontroller, the localization algorithm runs on a GNU-
Linux machine to which (Bi āi, Bi ω̄i, φ̂Bi , θ̂Bi) are transmit-
ted through a serial connection. This connection is slow
(average rate 20 Hz with standard deviation 4 ms) and
represents a bottleneck in our testbed but also a challenge
for the localization algorithm.

The scaling factors for the IMU readings and the noise
characteristics of Bi āi, Bi ω̄i have been identified via a
preliminary statistical analysis conducted over a set of
data collected with the quadrotor in simple hovering. In
particular, the resolutions of the accelerometer and of
the gyroscope are respectively (0.019, 0.019, 0.019) m/s2

and (0.29, 0.29, 0.29) deg/s, while their variances are
(0.1, 0.1, 0.6) m/s2 and (0.64, 0.64, 1.12) deg/s. The large
variance for the accelerometer is also due to the vibrations
induced by the motors/propellers.

We simulated the behavior of an on-board robot detector
by analytically computing the relative bearing from the
ground truth via (5), adding to the azimuth and zenith-
distance angles a zero-mean gaussian noise with standard
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deviation of 5 deg (the noise typically observed in visual
tracking experiments with the same system), and randomly
introducing false positives and negatives.

The results of an experiment with 4 quadrotors starting
in a square ambiguous configuration are shown in Fig. 6–
7. In particular, the results refer to the mutual localization
algorithm running on A1. The ‘best’ particle has been used
as estimate, because it shows a better behavior with respect
to the average of the particles. This is due to the multiple
registration algorithm that can return more than one solution
for each robot. Another possible solution would be to make a
clustering analysis on the particles. The plots in Fig. 6 show
the errors on roll and pitch estimates computed by the com-
plementary filters of all robots, plus the errors on azimuth,
zenith-distance, distance and yaw estimates computed by the
particle filters for A2, A3 and A4 that run on A1. Since the
initial configuration is ambiguous, the initial errors are large.
Moreover, the relative distances being initially unknown,
the particles were purposely initialized at random relative
distances with substantial mean error to test the ability of
the algorithm to recover from such situation. As soon as
the symmetry of the formation is broken and the robots
have traveled enough, the localization algorithm is able to
retrieve the correct relative distances. It should be noted
that the convergence of the estimates is faster than in the
2-D case [1], thanks to the fact that the multiple registration
algorithm more often returns a single solution.

The second experiment involves eight quadrotors and is
aimed at testing the localization algorithm in the presence
of false positives and false negatives. False negatives are
simulated by randomly deleting a feature from the generic
feature set B̂k for up to 3 seconds; false positives are
generated by quadrotors A7 and A8 that are detected by the
others but do not communicate any information. The results
of the mutual localization algorithm running on A1, shown in
Fig. 8–Fig. 9, confirm the robustness of the proposed method.

See the accompanying video for more illustrative clips of
the experiments.

V. CONCLUSIONS

We have presented a decentralized method for mutual
localization in multi-agent systems using anonymous bearing
measurements in a 3-D environment. This is a non trivial
extension of our previous work [1] which assumes bearing
measurements but in a planar setting. Here, the challenge
was to extend our framework to SE(3), using in addition a
IMU (more noisy and less informative than wheel encoders)
to estimate robot displacements. This led us to design an
architecture that estimates relative poses as well as velocities
among the robots. In comparison with [1], we also reduced
the time needed to retrieve the missing distance information,
thanks to an improved multiple registration algorithm and to
the increased dimension of the environment. Experimental
results on a team of quadrotor UAV confirm that the local-
ization method is effective. In the future, we plan to apply the
proposed approach to an heterogeneous multi-robot system.
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Fig. 6: First experiment. First row: errors on roll and pitch estimates
for A1, . . . , A4 computed by the complementary filters. Second and
third row: errors on azimuth, zenith-distance, distance and yaw
estimates for A2, A3, A4 computed by the particle filters of A1.
Each plot contains a zoom for t ∈ [20, 50] s.

Fig. 7: Two snapshots from the first experiment. On the left, the
scene as seen by a fixed camera. On the right, the estimates
computed by the filters at the same time instants. The dots represent
the best 100 particles. For each quadrotor, the solid circled cross
represents the best particle, while the dashed circled cross represents
the ground truth. The first snapshot is taken at the very beginning of
the experiment, while in the second snapshot the relative distances
among the robots have already been retrieved.
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Fig. 8: Second experiment. First row: errors on roll and pitch
estimates for A1, . . . , A6 computed by the complementary filters.
Second and third row: errors on azimuth, zenith-distance, distance
and yaw estimates for A2, . . . , A6 computed by the particle filters
of A1. Each plot contains a zoom for t ∈ [10, 40] s.

Fig. 9: Two snapshots from the first experiment. On the left, the
scene as seen by a fixed camera; the circled quadrotors act as false
positives and do not communicate with the others. On the right,
the estimates computed by the filters at the same time instants. The
dots represent the best 100 particles. For each quadrotor, the solid
circled cross represents the best particle, while the dashed circled
cross represents the ground truth. The first snapshot is taken at the
very beginning of the experiment, while in the second snapshot the
relative distances among the robots have already been retrieved.
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