
HAL Id: hal-04287029
https://hal.science/hal-04287029v1

Submitted on 15 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Interactive SMT Tactic in Coq using Abductive
Reasoning

Haniel Barbosa, Chantal Keller, Andrew Reynolds, Arjun Viswanathan,
Cesare Tinelli, Clark Barrett

To cite this version:
Haniel Barbosa, Chantal Keller, Andrew Reynolds, Arjun Viswanathan, Cesare Tinelli, et al.. An
Interactive SMT Tactic in Coq using Abductive Reasoning. 24th International Conference on Logic
for Programming, Artificial Intelligence and Reasoning, Jun 2023, Manizales, Colombia. pp.11-22,
�10.29007/432m�. �hal-04287029�

https://hal.science/hal-04287029v1
https://hal.archives-ouvertes.fr


An Interactive SMT Tactic in Coq

using Abductive Reasoning

Haniel Barbosa1, Chantal Keller2, Andrew Reynolds3, Arjun Viswanathan3,
Cesare Tinelli3, and Clark Barrett6

1 Universidade Federal de Minas Gerais, Brazil
hbarbosa@dcc.ufmg.br

2 Laboratory of Formal Methods, Université Paris-Saclay, France
chantal.keller@lri.fr

3 University of Iowa, USA
{andrew-reynolds,arjun-viswanathan,cesare-tinelli}@uiowa.edu

4 Stanford University, USA
barrettc@stanford.edu

Abstract

A well-known challenge in leveraging automatic theorem provers, such as satisfiability
modulo theories (SMT) solvers, to discharge proof obligations from interactive theorem
provers (ITPs) is determining which axioms to send to the solver together with the con-
jecture to be proven. Too many axioms may confuse or clog the solver, while too few may
make a theorem unprovable. When a solver fails to prove a conjecture, it is unclear to the
user which case transpired. In this paper we enhance SMTCoq — an integration between
the Coq ITP and the cvc5 SMT solver — with a tactic called abduce aimed at mitigating
the uncertainty above. When the solver fails to prove the goal, the user may invoke abduce

which will use abductive reasoning to provide facts that will allow the solver to prove the
goal, if any.

1 Introduction

Interactive theorem provers (ITPs) [10], or proof assistants, are used, among other things, to
construct proofs of logical properties in various hardware and software verification tasks. Such
proofs are reliable due to the prover’s small, highly trustworthy proof kernel; but they are often
also tedious, involving elaborate sub-proofs of even simple facts that could easily be proved by
automatic theorem provers (ATPs) such as solvers for Satisfiability Modulo Theories (SMT) [9].
Using SMT solvers to automate the proving of basic proof subgoals in proof assistants is,
however, problematic in principle since SMT solvers are generally rather complex systems.
They typically have very large code-bases, whose correctness is more difficult to trust than that
of ITP kernels. Therefore, using results from an SMT solver in a proof assistant amounts to
significantly extending its trust-base.

SMTCoq [6] is a plug-in for the Coq [35] proof assistant that provides a trustworthy inte-
gration into Coq of selected SMT solvers. Using one of SMTCoq’s tactics, a Coq user is able
to discharge goals via an SMT solver without expanding Coq’s trust-base. SMTCoq does this
by requiring the external solver to provide a proof certificate for any goal G the solver claims
to have proven. This certificate is used, generally speaking, to construct automatically a proof
of G within Coq, fully obviating the need to trust the external solver.

A typically workflow with SMTCoq proceeds as follows. The Coq user calls the smt tactic
— provided by SMTCoq — on a goal G, which asks the SMT solver to prove the validity of
(an encoding of) G. Optionally, the user can pass a set H of additional facts from Coq to the



SMT Solvers with Abduction in Coq Barbosa, Keller, Reynolds, Viswanathan, Tinelli, and Barrett

SMT solver as arguments to the tactic, to be used as hypotheses for G. In other words, the
user can ask the SMT solver to prove that H entails G.

Outside of a selection of function and predicate symbols from SMTCoq’s supported types
(Bool, Z and a custom type for arrays and bit-vectors), all symbols in a goal or its hypotheses
are considered uninterpreted by the SMT solver. If the solver succeeds in proving G, it also
sends a proof certificate, which SMTCoq then uses to derive a proof of G in Coq’s logic via a
computational reflection process, in which SMT proof terms are defined in Coq’s programming
language and lifted to Coq terms by a proof of correctness. [6]. If the SMT solver finds G
to be invalid, it may additionally return a counter-example, which is presented to the Coq
user as a witness of G’s invalidity. At that point, the user needs to determine whether G is
truly invalid in the Coq context or the hypothesis for G provided to the solver did not capture
the properties of the uninterpreted symbols of G in the Coq formalization that are needed
to prove the goal. A very simple example of this situation would be an arithmetic goal like
∀x, 0 ≤ square(x) ≤ square(x + 1), containing applications of a square function symbol defined
in Coq as expected but uninterpreted in the SMT solver. An SMT solver supporting linear
integer arithmetic would find this goal invalid unless it received as hypotheses formulas that
capture the non-negativity and the monotonicity of square.

Contribution We describe a new capability of SMTCoq, encapsulated in the new tactic
abduce, for those cases where the SMT solver finds the goal to be invalid under the given
hypotheses H. The new tactic exploits the ability of the cvc5 [8] SMT solver to produce
abducts for a goal G invalid under H, i.e., formulas that are consistent with H and entail G [33]
when added to H. With this tactic, we envision a more interactive session between the Coq
user and the SMT solver, where the solver might help answer the question of what information
is missing, if any, to prove the goal. The tactic returns one or more abducts as suggestions for
the user on how to strengthen the hypotheses for that invalid goal. If a disjunction of some
of the provided abducts is provable in Coq the user can then first prove it and then pass it as
an additional hypothesis to the smt tactic, knowing that at that point the original goal will be
proved by the SMT solver.

The rest of the paper is structured as follows. In Section 2, we introduce the formal setting
of our problem space, summarize the tools involved, and present related work; in Section 3,
we give an example to motivate our tactic. Then, in Section 4, we present the abduce tactic,
our extension to SMTCoq. Finally, in Section 5, we present some initial experiments, and we
conclude with directions of future work in Section 6.

2 Background

Our logical setting is that of classical many-sorted first-order logic with equality, the base logic
of SMT [9]. In contrast, Coq is based on the Calculus of Inductive Constructions, a constructive
higher-order logic with dependent types [32]. SMTCoq resolves this mismatch by considering,
in effect, only quantifier-free goals of the form φ = True where φ is a term of type Bool, as
opposed to terms of type Prop, the designated type for formulas in Coq. This allows SMTCoq
to use SMT solvers thanks to a faithful encoding such goals in the logic of SMT.

We restate some central definitions and notation here. We use standard symbols for connec-
tives and quantifiers within formulas, and represent True by >, and False by ⊥. In an abuse
of notation, we also use ⊥ for the empty clause. We use standard notions of signature, formula
and interpretation. A theory T is a pair consisting of Σ, a signature; and I, a non-empty set of
Σ-interpretations, called the models of T . A Σ-formula φ is T -satisfiable if there exists a model

2



SMT Solvers with Abduction in Coq Barbosa, Keller, Reynolds, Viswanathan, Tinelli, and Barrett

in I that satisfies it, and unsatisfiable otherwise. A set Γ of formulas T -entails a formula ψ,
written Γ |=T ψ, if every model of T that satisfies all the formulas in Γ is also a model of ψ. A
Σ-formula φ is weaker (in T ) than a formula ψ if {ψ} |=T φ.

2.1 Coq

Coq is a theorem prover with a small trusted computing base (TCB), offering strong guaran-
tees about properties proved within this TCB. Coq implements the Curry-Howard isomorphism
where properties — stated as logical formulas — are also types, and can be proven by construct-
ing terms of the corresponding type. Via so called conversion rules [1] a proof term in Coq can
have two different types as long as they are computationally equivalent. The Coq type-checker
plays the role of the guarantor of its TCB. While a user can provide a term of the right type
to Coq as a proof, Coq offers an interface to construct proof terms via scripts called tactics.
Tactics range from single, one-word invocations of previously proven theorems to complicated
scripts involving nested case-splittings that may involve inductive reasoning.

When external tools are used for providing automation in Coq, care must be taken so that
the TCB is not extended. One way of ensuring this is to re-implement the external tools
within Coq and prove them correct [31]; another is to use the external tool as a guide and
reconstruct its proofs within Coq [17] (such tools are called hammers and exist for other ITPs
as well [12, 13]). A different route is to use proof by reflection, which uses proofs of results
from external provers to derive checkable results in Coq. This is done by representing external
formulas in Coq via Gallina [29] and proving their soundness with respect to formulas in Coq.
This is also called computational reflection since this method leverages the conversion rules of
Coq to convince the type checker that the external proofs are computationally equivalent to the
necessary proof terms in Coq. One of the earliest known tactics to use external SMT solvers in
Coq via reflection is the kettle tactic [16] that is able to do reasoning over equality and linear
integer arithmetic. The one we extend in this work is SMTCoq [7].

2.2 SMTCoq

SMTCoq is a skeptical cooperation between the Coq proof assistant and SAT and SMT solvers,
implemented as a Coq plugin. SMTCoq requires the solvers to be proof-producing, so that
their results can be validated via Coq’s TCB. This is done using Coq’s computational reflection
capabilities to construct proof terms for goals using the proofs from the SMT solver. As a
matter of terminology, we will refer to these additional proofs as proof certificates.

The majority of SMTCoq’s machinery provides a way to computationally reflect a proof
certificate from an external solver into a proof term in Coq of the correct type. This includes a
checker for these certificates, and a proof of correctness of this checker in terms of Coq’s logic,
supported by many efficient data structures to improve scalability.

The goals that SMTCoq can deal with are restricted to a subset of the first-order fragment
of Coq’s logic. While it can handle solver proofs with “holes” in them by presenting them as
new subgoals to the user, interaction between the user and the external solver is limited —
SMTCoq’s tactics are considered push-button provers that can either succeed in proving the
subgoal or fail. The Sniper [14] tool relaxes the first of these two restrictions. It is built on top
of SMTCoq with the goal of proving more expressive goals It achieves this via a modular set
of transformations that can be applied to a Coq goal to make it suitable for an external solver
to solve, and adding to SMTCoq’s reflection mechanism to prove these goals while staying true
to Coq’s TCB. In this work, we address the second shortcoming above.

3



SMT Solvers with Abduction in Coq Barbosa, Keller, Reynolds, Viswanathan, Tinelli, and Barrett

2.3 Abduction

Given a set of formulas H (taken as a conjunction), a goal G, and a theory T , an abduct is
a formula φ such that (1) H ∧ φ is T -satisfiable and (2) H ∧ φ |=T G. Abduction has several
applications in program verification and static analysis, including loop invariant generation [26],
[20]; specification inference [36], [4]; compositional analysis [15], [21] among others [19], [23].

Several tools that perform abductive reasoning have also been developed over the years.
Echenim et al. [27], [24] modify the superposition calculus to present an abductive algorithm
for prime implicate generation in the theory of equality. GPiD [25] is a tool for abduction
that is built on top of SMT solvers. EXPLAIN [18] also leverages SMT technology to perform
abduction — in this case, the Mistral [22] SMT solver is used. CAPI [28] uses abduction in
descriptive logics to provide explanations for observations that do not hold.

cvc5 performs abductive reasoning via syntax-guided synthesis (SyGuS) [5]. Thus, in addi-
tion to the semantics conditions mentioned above, cvc5 constrains abducts to range over for-
mulas generated by a user-provided context-free grammar R. The grammar input is optional,
with the default being the grammar that generates the entire language of T .

The solver is driven by a basic CEGIS [34] procedure: candidate abducts φ, formulas gener-
ated by R that satisfy the consistency requirement (1) above, are validated by checking whether
H ∧ φ |=T G. Valuations that invalidate this entailment (by satisfying H ∧ φ and falsifying G)
are collected and used to guide the search of a solution: future candidates φ that are satisfied
by any of those valuations are immediately discarded as they are guaranteed to fail the entail-
ment check. cvc5 refines this basic CEGIS procedure with various optimizations and symmetry
breaking strategies that eliminate redundant solutions and aim at producing solutions quickly.

In the context of SMTCoq, a more general abduct is preferable to a less general one since
the latter is less likely to be provable in Coq. In light of this, we have modified cvc5 to generate
a sequence of abducts for the same problem so that their disjunction is typically weaker in
T than the individual abducts. This has the effect of producing a progressively more general
(disjunctive) abducts at the cost of additional computation. This cost can be controlled by the
user by specifying the length of the abduct sequence.

3 Motivating Example

Suppose our Coq development contains a binary function f of type Z → Z → Z (where Z is
Coq’s integer type), and many facts about f.

Example 3.1. We can invoke SMTCoq through the smt tactic as follows.

Goal forall (x y : Z), x = y → f x 1 = f y (21 − 20).
Proof. smt. Qed.

In Example 3.1, the SMT solver is able to prove a simple fact about f without using user-
provided axioms since it is able to prove the goal using equational reasoning along with linear
arithmetic. Now, consider a more interesting goal, whose validity depends on the specific
behavior of f.

Example 3.2. The following proof cannot be closed, since the tactic fails.

Goal forall (x y z : Z), x = y + 1 → (f y z) = f z (x − 1).
Proof. smt.

4



SMT Solvers with Abduction in Coq Barbosa, Keller, Reynolds, Viswanathan, Tinelli, and Barrett

Certificate C

(a) cvc5 finds query to be unsatisfiable

Counter-example

(b) cvc5 finds query to be satisfiable

Abduct P

(c) cvc5 returns an abduct

Figure 1: Interaction of SMTCoq with the SMT solver. H = {H1, H2, . . . ,Hn} is the set of
hypotheses sent to the solver.

The solver gives a counterexample witnessing the failure of the proof, shown to the user:

f 7→ λ x, y =⇒ x, x 7→ 1, y 7→ 0, z 7→ 1

It is possible that the solver failed because the goal is indeed invalid. However, considering
that the solver does not have access to a definition of f or an axiomatization of its properties,
it is more likely that the solver is missing one of those additional facts from Coq. Instead of
trying to determine which one this might be (one that is falsified by this counter-example), the
user may invoke cvc5’s abduction capability to get a suggestion from the solver.

4 The abduce Tactic

A goal in SMTCoq is a logical formula to be proven from a (possibly empty) set of premises in
some theory T . So we can identify it with the goal of proving the entailment H |=T G. SMTCoq
encodes H and G respectively as some SMT formula H ′ and G′, phrases the entailment between
them as an implication, and sends the negation of this implication to the SMT solver. Thus,
the goal of showing that H |=T G holds is converted to that of showing that H ′ ∧ ¬G′ is
T -unsatisfiable. For any particular Coq goal supported by SMTCoq, and sent to the SMT
solver, there are three possible outcomes: (i) the solver proves the goal, by finding H ′ ∧ ¬G′

to be T -unsatisfiable; (ii) it disproves the goal, by finding H ′ ∧ ¬G′ to be T -satisfiable; (iii) it
produces an “unknown” answer from having run out of resources. An acceptable certificate for
outcome (i) is a proof of unsatisfiability — the SMT solver produces a formal proof that derives
⊥ from H ′ ∧ ¬G′. An acceptable certificate for outcome (ii) is a counterexample, a valuation
of the (free) variables of H ′ ∧ ¬G′ that satisfies H ′ and falsifies G′.

Example 3.1 is an illustration of outcome (i), and Example 3.2 demonstrates outcome (ii).
Figures 1a and 1b show the interaction between Coq and the SMT solver for both situations.

5



SMT Solvers with Abduction in Coq Barbosa, Keller, Reynolds, Viswanathan, Tinelli, and Barrett

With our new abduce tactic in SMTCoq, a Coq user can ask cvc5 for abducts that would
entail a currently failing goal. An integer argument allows the user to request a particular
number of independent abducts — with each abduct separately entailing the goal (equivalently,
with the disjunction of all abducts entailing the goal) along with the hypotheses. The tactic
invokes cvc5’s SyGuS-based abduction solver as presented in Section 2.3.

Example 4.1. Consider Example 3.2 from Section 3. We can use the abduce tactic on this
goal, since smt fails.

Goal forall (x y z : Z), x = y + 1 → (f y z) = f z (x − 1).
Proof. (* smt. Fails with counter-example *) abduce 3.

This presents three abducts to the user: z = y; z + 1 = x; and f z y = f y z. The third
abduct might suggest to the user that cvc5 would prove the goal if it was told that the function
is commutative. Moreover, the solver only needs to know the commutativity of f over z and y.
If one of our previously-proven facts about f is:

comm f : ∀ m n, f m n = f n m

the user can easily instantiate it in Coq for the necessary variables. A subsequent call to the
smt tactic, with this instantiated fact in scope would successfully close the proof. We can now
complete the proof.

Goal forall (x y z : Z), x = y + 1 → (f y z) = f z (x − 1).
Proof. intros. assert (f z y = f y z). { apply comm_f. } smt. Qed.

The intros tactic introduces x, y and z, and the hypothesis x = y + 1 into the scope of the
proof. assert is a way to locally introduce a fact into scope, and we use it to state the chosen
abduct. The abduct is easy to prove by an application of comm f. At that point, the smt

tactic can successfully prove the current goal (f y z) = f z (x - 1) from the (automatically
collected) local hypotheses x = y + 1 and f z y = f y z.

We point out that in cases where SMTCoq disproves the goal (outcome (ii) above), the
abduce tactic can provide a more general explanation of the failure than a counterexample.
Counterexamples are single points over which the entailment H |=T G fails whereas an abduct
represent a general sufficient conditioin for the provability of the goal that the user might be
able to prove and then provide to the SMT solver from the current Coq context. Since there
are a large number of these additional hypotheses that might help in proving a given goal, it
is impractical to send all of them along with the goal. Abduction is then a way for the SMT
solver to tell the user what else it needs. Figure 1c illustrates this case.

5 Evaluation

In this section, we present a preliminary, proof-of-concept case study on applying the smt and
abduce tactics in the Coq library Zorder [2] with the goal of simplifying the proofs in it.1 The
library contains theorems about order predicates over Coq’s Z (integer) type. While this library
is deprecated, its lemmas are still available in the Coq core libraries.

Our study demonstrates the utility of the smt tactic and provides a proof of concept for
interacting with the SMT solver via the abduce tactic in an IDE for Coq. We ran all exper-
iments on CoqIDE version 8.16.1 in a system with 16 GB RAM, running Ubuntu 20.04. Our

1Instructions and resources needed to reproduce our experiments can be found at https://homepage.divms.
uiowa.edu/~viswanathn/lpar23/

6

https://homepage.divms.uiowa.edu/~viswanathn/lpar23/
https://homepage.divms.uiowa.edu/~viswanathn/lpar23/


SMT Solvers with Abduction in Coq Barbosa, Keller, Reynolds, Viswanathan, Tinelli, and Barrett

Lemma Znot_le_succ n : ∼ Z.succ n <= n.
Proof. (* time abduce 1. *)

(* The goal is invalid; the abduce call run for 1.072 secs

and returns the abduct 1 + n <= (Z.succ n) *)

assert (1 + n <= (Z.succ n)). { unfold Z.succ. smt. } smt.
Qed.

(a) Example goal proven using smt and abduce

Lemma Znot_le_succ n : ∼ Z.succ n <= n.
Proof. (* time abduce 1. *) unfold Z.succ. smt. Qed.

(b) An alternate interaction with abduction

experimental set-up is as follows. Within the Zorder Coq file, we import SMTCoq as a plug-in,
and for each goal, we try the smt tactic, which attempts to solve the goal using a combination
of the SMT solver CVC4 [] and veriT[], both of which are well integrated in SMTCoq. We
define an smt success the case where the goal can be fully solved by the SMT solver (with no
additional hypotheses). In cases where the solver finds the goal to be invalid, we call abduce,
asking for as many abducts as possible — we stop either if we find a provable abduct, or if a
timeout of 20 seconds is reached. Recall that abduce n asks for n disjunctive abducts, each
of which independently entail the goal. We define an abduce success the case where cvc5 pro-
duces an abduct that is provable in the Coq context, and when added locally to it, it allows
smt to prove the goal. Our results are presented in Figure 3. From the 93 goals in the file, 30
goals contain non-linear arithmetic, a theory currently unsupported by SMTCoq; 3 goals relate
to decidability in Coq, which cannot be proved by an SMT solver; and 1 contains predicates
unrecoqnized by SMTCoq. From the remaining 59 goals, we found 33 (55.9%) smt successes,
and 26 candidates for abduction, half of which were abduce successes.

All goals found invalid by the SMT solver were so for containing the Coq’s integer successor
and integer predecessor functions, Z.succ and Z.pred. When successful, the abduction solver
was able to suggest either definitions of Z.succ and Z.pred, or properties satisfied by them
in Coq. Both forms of abducts could be proven locally by unfolding the definitions of those
functions and calling smt on the ensuing goal. For example, consider goal Znot le succ in
Figure 2a (∼ represents logical negation in Coq). time is used to output the duration of the
tactic run along with its regular output. The tactic is designed to fail when it successfully finds
the abducts, and it prints the abducts as part of its error message. The call to the tactic and
its output are commented out. An alternate way to view this tactic is presented in Figure 2b.
The SMT solver fails to prove the goal as given, but the abduct returned by smt tactic suggest
that all the user needs to do in this case is to unfold the definition of Z.succ.

Admittedly, this simple example does not seem very compelling since the user might have
guessed from the start that the definition of Z.succ is needed for the SMT solver to prove
the goal. Moreover, there is an alternative automated solution provided by the Sniper [14]
whose snipe tactic is able to identify function definitions relevant to the goal and send them
to the SMT solver. However, for more complicated functions, providing hypothesis capturing
relevant properties of the function, as in he case of function f from Section 3, may be more
effective than providing their definition since proving such properties may require inductive
reasoning, something SMT solvers are not generally capable of. So the abduce can be seen as
a complement to snipe in helping the user prove goals.

7



SMT Solvers with Abduction in Coq Barbosa, Keller, Reynolds, Viswanathan, Tinelli, and Barrett

Goals Invalid smt abduce Timeouts
Goals Successes Successes

59 26 33 13 13

Figure 3: Summary of results of using abduce in Zorder

Although we allowed the tactic 20 seconds to find a useful abduct, all successful calls were
made within 8 seconds, with 9 of the 14 taking less than 2 seconds (there were 13 successful goals
but 14 calls because one of the goals required two calls, one for Z.succ and one for Z.pred).

Using the same test set, we also confirmed some of our hypotheses about the default gram-
mar to provide, and the configuration with which to call the abduction solver. The first was to
remove logical disjunction and the if-than-else (ITE) operator from the grammar. Such opera-
tors are not crucial since the user can recover disjunctive information by asking for more than
one abduct. We found that eliminating these operators did yield more successful abducts. Sec-
ond, we tested the ability of cvc5’s abduction solver to generate conjunctive solutions quickly
through unsat-core learning [33]. We found that, although the solver was much faster in gen-
erating solutions with this configuration, in almost all cases, at least one of the conjuncts was
too specific, rendering the entire solution useless for not being entailed by the Coq context. For
instance, with this option enabled, one of the abducts for Znot le succ from Figure 2a is (&&
denotes conjunction):

n <= (Z.succ n) && (not (Z.succ n) = n) && (Z.succ -2) = n && n = -1

We can see that the first conjunct is a useful abduct in isolation, whereas the full conjunction
clearly does not hold for the successor function.

6 Conclusion and Future Work

We have extended SMTCoq by adding the interactive tactic abduce to its set of proof tactics.
When cvc5 fails to prove a goal valid, this tactic presents an alternative to returning (possibly
spurious) counterexamples. By relying on the abductive capabilities of cvc5, it can to present
the user with additional assumption that would make the goal provable. With tools such
as hammers [11, 17] that deal with integrating automated theorem provers (ATPs) into proof
assistants, a good hypothesis selection strategy is important to avoid either overloading the ATP
with too many facts, or conversely supplying it with insufficient facts to prove the goal [3, 30].
With the abduction tactic, we allow the ATP to be part of the premise selection process.

Out immediate goal is to have this tactic available in an official release of SMTCoq (it is
currently available via a developer branch). Beyond this, there are many ways in which the
interaction with the abduction solver could be improved. Currently, we use a default grammar
for abducts that has proved to be efficient from some experimentation with the abduction
solver. A combination of allowing grammar selection by the user and using automatic methods
to reduce the language generated by the grammar would allow for better abducts.

Sending quantified hypotheses to the solver are problematic since SMTCoq has limited
support for quantifiers, and because they slow the SMT solver down. By producing ground
abducts, and relying on (i) manual quantifier instantiation of lemmas by the user; (ii) utilities
such as Coq’s Search vernacular to find the relevant lemmas, the abduce tactic offers a way
to skirt this issue. While Example 4.1 suggests how this may be done, we aim to to test this
ability in a larger Coq development where the abduction tactic may be used within complex
proofs possibly with numerous cases to discharge, in tandem with other tactics.

8



SMT Solvers with Abduction in Coq Barbosa, Keller, Reynolds, Viswanathan, Tinelli, and Barrett

References

[1] Conversion rules in coq - coq documentation. https://coq.github.io/doc/master/refman/

language/core/conversion.html.

[2] Library coq.zarith.zorder. https://coq.github.io/doc/v8.13/stdlib/Coq.ZArith.Zorder.

html.

[3] Jesse Alama, Tom Heskes, Daniel Kühlwein, Evgeni Tsivtsivadze, and Josef Urban. Premise
selection for mathematics by corpus analysis and kernel methods. J. Autom. Reason., 52(2):191–
213, 2014.

[4] Aws Albarghouthi, Isil Dillig, and Arie Gurfinkel. Maximal specification synthesis. In Rastislav
Bod́ık and Rupak Majumdar, editors, Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA,
January 20 - 22, 2016, pages 789–801. ACM, 2016.

[5] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin, Mukund Raghothaman, San-
jit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa.
Syntax-guided synthesis. In 2013 Formal Methods in Computer-Aided Design, pages 1–8, 2013.

[6] Michael Armand, Germain Faure, Benjamin Grégoire, Chantal Keller, Laurent Théry, and Ben-
jamin Werner. A modular integration of sat/smt solvers to coq through proof witnesses. In
Proceedings of the First International Conference on Certified Programs and Proofs, CPP’11, page
135–150, Berlin, Heidelberg, 2011. Springer-Verlag.

[7] Michaël Armand, Germain Faure, Benjamin Grégoire, Chantal Keller, Laurent Théry, and Ben-
jamin Werner. A modular integration of SAT/SMT solvers to coq through proof witnesses. In
Jean-Pierre Jouannaud and Zhong Shao, editors, Certified Programs and Proofs - First Interna-
tional Conference, CPP 2011, Kenting, Taiwan, December 7-9, 2011. Proceedings, volume 7086 of
Lecture Notes in Computer Science, pages 135–150. Springer, 2011.

[8] Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann,
Abdalrhman Mohamed, Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir, Math-
ias Preiner, Andrew Reynolds, Ying Sheng, Cesare Tinelli, and Yoni Zohar. cvc5: A versatile and
industrial-strength SMT solver. In Dana Fisman and Grigore Rosu, editors, Tools and Algorithms
for the Construction and Analysis of Systems - 28th International Conference, TACAS 2022, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022, Mu-
nich, Germany, April 2-7, 2022, Proceedings, Part I, volume 13243 of Lecture Notes in Computer
Science, pages 415–442. Springer, 2022.

[9] Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. In Handbook of Model Checking.,
pages 305–343. 2018.

[10] Yves Bertot and Pierre Castran. Interactive Theorem Proving and Program Development: Coq’Art
The Calculus of Inductive Constructions. Springer Publishing Company, Incorporated, 1st edition,
2010.

[11] Jasmin Christian Blanchette, Sascha Böhme, and Lawrence C. Paulson. Extending sledgeham-
mer with smt solvers. In Nikolaj Bjørner and Viorica Sofronie-Stokkermans, editors, Automated
Deduction – CADE-23, pages 116–130, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[12] Jasmin Christian Blanchette, Sascha Böhme, and Lawrence C. Paulson. Extending sledgehammer
with SMT solvers. J. Autom. Reason., 51(1):109–128, 2013.

[13] Jasmin Christian Blanchette, Cezary Kaliszyk, Lawrence C. Paulson, and Josef Urban. Hammering
towards QED. J. Formaliz. Reason., 9(1):101–148, 2016.

[14] Valentin Blot, Denis Cousineau, Enzo Crance, Louise Dubois de Prisque, Chantal Keller, Assia
Mahboubi, and Pierre Vial. Compositional pre-processing for automated reasoning in dependent
type theory. In Robbert Krebbers, Dmitriy Traytel, Brigitte Pientka, and Steve Zdancewic, edi-
tors, Proceedings of the 12th ACM SIGPLAN International Conference on Certified Programs and
Proofs, CPP 2023, Boston, MA, USA, January 16-17, 2023, pages 63–77. ACM, 2023.

9

https://coq.github.io/doc/master/refman/language/core/conversion.html
https://coq.github.io/doc/master/refman/language/core/conversion.html
https://coq.github.io/doc/v8.13/stdlib/Coq.ZArith.Zorder.html
https://coq.github.io/doc/v8.13/stdlib/Coq.ZArith.Zorder.html


SMT Solvers with Abduction in Coq Barbosa, Keller, Reynolds, Viswanathan, Tinelli, and Barrett

[15] Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. Compositional shape
analysis by means of bi-abduction. In Zhong Shao and Benjamin C. Pierce, editors, Proceedings of
the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2009, Savannah, GA, USA, January 21-23, 2009, pages 289–300. ACM, 2009.

[16] Adam Chlipala and George C. Necula. Cooperative integration of an interactive proof assistant
and an automated prover. In Proceedings of the 6th International Workshop on Strategies in
Automated Deduction, 2006.

[17] Lukasz Czajka and Cezary Kaliszyk. Hammer for coq: Automation for dependent type theory.
Journal of Automated Reasoning, 61, 06 2018.

[18] Isil Dillig and Thomas Dillig. Explain: A tool for performing abductive inference. In Natasha
Sharygina and Helmut Veith, editors, Computer Aided Verification - 25th International Confer-
ence, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings, volume 8044 of Lecture
Notes in Computer Science, pages 684–689. Springer, 2013.

[19] Isil Dillig, Thomas Dillig, and Alex Aiken. Automated error diagnosis using abductive inference.
In Jan Vitek, Haibo Lin, and Frank Tip, editors, ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’12, Beijing, China - June 11 - 16, 2012, pages
181–192. ACM, 2012.

[20] Isil Dillig, Thomas Dillig, Boyang Li, and Kenneth L. McMillan. Inductive invariant generation via
abductive inference. In Antony L. Hosking, Patrick Th. Eugster, and Cristina V. Lopes, editors,
Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented Program-
ming Systems Languages & Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN,
USA, October 26-31, 2013, pages 443–456. ACM, 2013.

[21] Isil Dillig, Thomas Dillig, Boyang Li, Kenneth L. McMillan, and Mooly Sagiv. Synthesis of circular
compositional program proofs via abduction. Int. J. Softw. Tools Technol. Transf., 19(5):535–547,
2017.

[22] Isil Dillig, Thomas Dillig, Kenneth L. McMillan, and Alex Aiken. Minimum satisfying assignments
for SMT. In P. Madhusudan and Sanjit A. Seshia, editors, Computer Aided Verification - 24th
International Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings, volume
7358 of Lecture Notes in Computer Science, pages 394–409. Springer, 2012.

[23] Thomas Dillig, Isil Dillig, and Swarat Chaudhuri. Optimal guard synthesis for memory safety.
In Armin Biere and Roderick Bloem, editors, Computer Aided Verification - 26th International
Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria,
July 18-22, 2014. Proceedings, volume 8559 of Lecture Notes in Computer Science, pages 491–507.
Springer, 2014.

[24] Mnacho Echenim and Nicolas Peltier. A superposition calculus for abductive reasoning. J. Autom.
Reason., 57(2):97–134, 2016.

[25] Mnacho Echenim, Nicolas Peltier, and Yanis Sellami. A generic framework for implicate generation
modulo theories. In Didier Galmiche, Stephan Schulz, and Roberto Sebastiani, editors, Automated
Reasoning - 9th International Joint Conference, IJCAR 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, volume 10900 of Lecture Notes
in Computer Science, pages 279–294. Springer, 2018.

[26] Mnacho Echenim, Nicolas Peltier, and Yanis Sellami. Ilinva: Using abduction to generate loop
invariants. In Andreas Herzig and Andrei Popescu, editors, Frontiers of Combining Systems - 12th
International Symposium, FroCoS 2019, London, UK, September 4-6, 2019, Proceedings, volume
11715 of Lecture Notes in Computer Science, pages 77–93. Springer, 2019.

[27] Mnacho Echenim, Nicolas Peltier, and Sophie Tourret. Prime implicate generation in equational
logic. J. Artif. Intell. Res., 60:827–880, 2017.

[28] Fajar Haifani, Patrick Koopmann, Sophie Tourret, and Christoph Weidenbach. Connection-
minimal abduction in EL via translation to FOL. In Jasmin Blanchette, Laura Kovács, and
Dirk Pattinson, editors, Automated Reasoning - 11th International Joint Conference, IJCAR 2022,

10



SMT Solvers with Abduction in Coq Barbosa, Keller, Reynolds, Viswanathan, Tinelli, and Barrett

Haifa, Israel, August 8-10, 2022, Proceedings, volume 13385 of Lecture Notes in Computer Science,
pages 188–207. Springer, 2022.

[29] Gérard Huet. The gallina specification language: A case study. In Rudrapatna Shyamasundar,
editor, Foundations of Software Technology and Theoretical Computer Science, pages 229–240,
Berlin, Heidelberg, 1992. Springer Berlin Heidelberg.

[30] Daniel Kühlwein, Twan van Laarhoven, Evgeni Tsivtsivadze, Josef Urban, and Tom Heskes.
Overview and evaluation of premise selection techniques for large theory mathematics. In Bern-
hard Gramlich, Dale Miller, and Uli Sattler, editors, Automated Reasoning, pages 378–392, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

[31] Stéphane Lescuyer. Formalizing and Implementing a Reflexive Tactic for Automated Deduction in
Coq. (Formalisation et developpement d’une tactique reflexive pour la demonstration automatique
en coq). PhD thesis, University of Paris-Sud, Orsay, France, 2011.

[32] Christine Paulin-Mohring. Introduction to the Calculus of Inductive Constructions. In
Bruno Woltzenlogel Paleo and David Delahaye, editors, All about Proofs, Proofs for All, vol-
ume 55 of Studies in Logic (Mathematical logic and foundations). College Publications, January
2015.

[33] Andrew Reynolds, Haniel Barbosa, Daniel Larraz, and Cesare Tinelli. Scalable algorithms for
abduction via enumerative syntax-guided synthesis. In Nicolas Peltier and Viorica Sofronie-
Stokkermans, editors, Automated Reasoning - 10th International Joint Conference, IJCAR 2020,
Paris, France, July 1-4, 2020, Proceedings, Part I, volume 12166 of Lecture Notes in Computer
Science, pages 141–160. Springer, 2020.

[34] Armando Solar-Lezama. The sketching approach to program synthesis. In Zhenjiang Hu, edi-
tor, Programming Languages and Systems, pages 4–13, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg.

[35] Laurent Théry, Pierre Letouzey, and Georges Gonthier. Coq, pages 28–35. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2006.

[36] Haiyan Zhu, Thomas Dillig, and Isil Dillig. Automated inference of library specifications for
source-sink property verification. In Chung-chieh Shan, editor, Programming Languages and Sys-
tems - 11th Asian Symposium, APLAS 2013, Melbourne, VIC, Australia, December 9-11, 2013.
Proceedings, volume 8301 of Lecture Notes in Computer Science, pages 290–306. Springer, 2013.

11


	Introduction
	Background
	Coq
	SMTCoq
	Abduction

	Motivating Example
	The abduce Tactic
	Evaluation
	Conclusion and Future Work

