Haniel Barbosa
email: hbarbosa@dcc.ufmg.br

Chantal Keller
email: chantal.keller@lri.fr

Andrew Reynolds
email: andrew-reynolds@uiowa.edu

Arjun Viswanathan
email: arjun-viswanathan@uiowa.edu

Cesare Tinelli
email: cesare-tinelli@uiowa.edu

Clark Barrett
email: barrettc@stanford.edu

An Interactive SMT Tactic in Coq using Abductive Reasoning

A well-known challenge in leveraging automatic theorem provers, such as satisfiability modulo theories (SMT) solvers, to discharge proof obligations from interactive theorem provers (ITPs) is determining which axioms to send to the solver together with the conjecture to be proven. Too many axioms may confuse or clog the solver, while too few may make a theorem unprovable. When a solver fails to prove a conjecture, it is unclear to the user which case transpired. In this paper we enhance SMTCoq -an integration between the Coq ITP and the cvc5 SMT solver -with a tactic called abduce aimed at mitigating the uncertainty above. When the solver fails to prove the goal, the user may invoke abduce which will use abductive reasoning to provide facts that will allow the solver to prove the goal, if any.

Introduction

Interactive theorem provers (ITPs) [START_REF] Bertot | Interactive Theorem Proving and Program Development: Coq'Art The Calculus of Inductive Constructions[END_REF], or proof assistants, are used, among other things, to construct proofs of logical properties in various hardware and software verification tasks. Such proofs are reliable due to the prover's small, highly trustworthy proof kernel; but they are often also tedious, involving elaborate sub-proofs of even simple facts that could easily be proved by automatic theorem provers (ATPs) such as solvers for Satisfiability Modulo Theories (SMT) [START_REF] Barrett | Satisfiability modulo theories[END_REF]. Using SMT solvers to automate the proving of basic proof subgoals in proof assistants is, however, problematic in principle since SMT solvers are generally rather complex systems. They typically have very large code-bases, whose correctness is more difficult to trust than that of ITP kernels. Therefore, using results from an SMT solver in a proof assistant amounts to significantly extending its trust-base.

SMTCoq [START_REF] Armand | A modular integration of sat/smt solvers to coq through proof witnesses[END_REF] is a plug-in for the Coq [START_REF] Théry | Coq[END_REF] proof assistant that provides a trustworthy integration into Coq of selected SMT solvers. Using one of SMTCoq's tactics, a Coq user is able to discharge goals via an SMT solver without expanding Coq's trust-base. SMTCoq does this by requiring the external solver to provide a proof certificate for any goal G the solver claims to have proven. This certificate is used, generally speaking, to construct automatically a proof of G within Coq, fully obviating the need to trust the external solver.

A typically workflow with SMTCoq proceeds as follows. The Coq user calls the smt tactic -provided by SMTCoq -on a goal G, which asks the SMT solver to prove the validity of (an encoding of) G. Optionally, the user can pass a set H of additional facts from Coq to the SMT solver as arguments to the tactic, to be used as hypotheses for G. In other words, the user can ask the SMT solver to prove that H entails G.

Outside of a selection of function and predicate symbols from SMTCoq's supported types (Bool, Z and a custom type for arrays and bit-vectors), all symbols in a goal or its hypotheses are considered uninterpreted by the SMT solver. If the solver succeeds in proving G, it also sends a proof certificate, which SMTCoq then uses to derive a proof of G in Coq's logic via a computational reflection process, in which SMT proof terms are defined in Coq's programming language and lifted to Coq terms by a proof of correctness. [START_REF] Armand | A modular integration of sat/smt solvers to coq through proof witnesses[END_REF]. If the SMT solver finds G to be invalid, it may additionally return a counter-example, which is presented to the Coq user as a witness of G's invalidity. At that point, the user needs to determine whether G is truly invalid in the Coq context or the hypothesis for G provided to the solver did not capture the properties of the uninterpreted symbols of G in the Coq formalization that are needed to prove the goal. A very simple example of this situation would be an arithmetic goal like ∀x, 0 ≤ square(x) ≤ square(x + 1), containing applications of a square function symbol defined in Coq as expected but uninterpreted in the SMT solver. An SMT solver supporting linear integer arithmetic would find this goal invalid unless it received as hypotheses formulas that capture the non-negativity and the monotonicity of square.

Contribution We describe a new capability of SMTCoq, encapsulated in the new tactic abduce, for those cases where the SMT solver finds the goal to be invalid under the given hypotheses H. The new tactic exploits the ability of the cvc5 [START_REF] Barbosa | cvc5: A versatile and industrial-strength SMT solver[END_REF] SMT solver to produce abducts for a goal G invalid under H, i.e., formulas that are consistent with H and entail G [START_REF] Reynolds | Scalable algorithms for abduction via enumerative syntax-guided synthesis[END_REF] when added to H. With this tactic, we envision a more interactive session between the Coq user and the SMT solver, where the solver might help answer the question of what information is missing, if any, to prove the goal. The tactic returns one or more abducts as suggestions for the user on how to strengthen the hypotheses for that invalid goal. If a disjunction of some of the provided abducts is provable in Coq the user can then first prove it and then pass it as an additional hypothesis to the smt tactic, knowing that at that point the original goal will be proved by the SMT solver.

The rest of the paper is structured as follows. In Section 2, we introduce the formal setting of our problem space, summarize the tools involved, and present related work; in Section 3, we give an example to motivate our tactic. Then, in Section 4, we present the abduce tactic, our extension to SMTCoq. Finally, in Section 5, we present some initial experiments, and we conclude with directions of future work in Section 6.

Background

Our logical setting is that of classical many-sorted first-order logic with equality, the base logic of SMT [START_REF] Barrett | Satisfiability modulo theories[END_REF]. In contrast, Coq is based on the Calculus of Inductive Constructions, a constructive higher-order logic with dependent types [START_REF] Paulin-Mohring | Introduction to the Calculus of Inductive Constructions[END_REF]. SMTCoq resolves this mismatch by considering, in effect, only quantifier-free goals of the form φ = True where φ is a term of type Bool, as opposed to terms of type Prop, the designated type for formulas in Coq. This allows SMTCoq to use SMT solvers thanks to a faithful encoding such goals in the logic of SMT.

We restate some central definitions and notation here. We use standard symbols for connectives and quantifiers within formulas, and represent True by , and False by ⊥. In an abuse of notation, we also use ⊥ for the empty clause. We use standard notions of signature, formula and interpretation. A theory T is a pair consisting of Σ, a signature; and I, a non-empty set of Σ-interpretations, called the models of T . A Σ-formula φ is T -satisfiable if there exists a model in I that satisfies it, and unsatisfiable otherwise. A set Γ of formulas T -entails a formula ψ, written Γ |= T ψ, if every model of T that satisfies all the formulas in Γ is also a model of ψ. A Σ-formula φ is weaker (in T) than a formula ψ if {ψ} |= T φ.

Coq

Coq is a theorem prover with a small trusted computing base (TCB), offering strong guarantees about properties proved within this TCB. Coq implements the Curry-Howard isomorphism where properties -stated as logical formulas -are also types, and can be proven by constructing terms of the corresponding type. Via so called conversion rules [START_REF]Conversion rules in coq -coq documentation[END_REF] a proof term in Coq can have two different types as long as they are computationally equivalent. The Coq type-checker plays the role of the guarantor of its TCB. While a user can provide a term of the right type to Coq as a proof, Coq offers an interface to construct proof terms via scripts called tactics. Tactics range from single, one-word invocations of previously proven theorems to complicated scripts involving nested case-splittings that may involve inductive reasoning.

When external tools are used for providing automation in Coq, care must be taken so that the TCB is not extended. One way of ensuring this is to re-implement the external tools within Coq and prove them correct [START_REF] Lescuyer | Formalizing and Implementing a Reflexive Tactic for Automated Deduction in Coq[END_REF]; another is to use the external tool as a guide and reconstruct its proofs within Coq [START_REF] Czajka | Hammer for coq: Automation for dependent type theory[END_REF] (such tools are called hammers and exist for other ITPs as well [START_REF] Christian Blanchette | Extending sledgehammer with SMT solvers[END_REF][START_REF] Christian Blanchette | Hammering towards QED[END_REF]). A different route is to use proof by reflection, which uses proofs of results from external provers to derive checkable results in Coq. This is done by representing external formulas in Coq via Gallina [START_REF] Huet | The gallina specification language: A case study[END_REF] and proving their soundness with respect to formulas in Coq. This is also called computational reflection since this method leverages the conversion rules of Coq to convince the type checker that the external proofs are computationally equivalent to the necessary proof terms in Coq. One of the earliest known tactics to use external SMT solvers in Coq via reflection is the kettle tactic [START_REF] Chlipala | Cooperative integration of an interactive proof assistant and an automated prover[END_REF] that is able to do reasoning over equality and linear integer arithmetic. The one we extend in this work is SMTCoq [START_REF] Armand | A modular integration of SAT/SMT solvers to coq through proof witnesses[END_REF].

SMTCoq

SMTCoq is a skeptical cooperation between the Coq proof assistant and SAT and SMT solvers, implemented as a Coq plugin. SMTCoq requires the solvers to be proof-producing, so that their results can be validated via Coq's TCB. This is done using Coq's computational reflection capabilities to construct proof terms for goals using the proofs from the SMT solver. As a matter of terminology, we will refer to these additional proofs as proof certificates.

The majority of SMTCoq's machinery provides a way to computationally reflect a proof certificate from an external solver into a proof term in Coq of the correct type. This includes a checker for these certificates, and a proof of correctness of this checker in terms of Coq's logic, supported by many efficient data structures to improve scalability.

The goals that SMTCoq can deal with are restricted to a subset of the first-order fragment of Coq's logic. While it can handle solver proofs with "holes" in them by presenting them as new subgoals to the user, interaction between the user and the external solver is limited -SMTCoq's tactics are considered push-button provers that can either succeed in proving the subgoal or fail. The Sniper [START_REF] Blot | Compositional pre-processing for automated reasoning in dependent type theory[END_REF] tool relaxes the first of these two restrictions. It is built on top of SMTCoq with the goal of proving more expressive goals It achieves this via a modular set of transformations that can be applied to a Coq goal to make it suitable for an external solver to solve, and adding to SMTCoq's reflection mechanism to prove these goals while staying true to Coq's TCB. In this work, we address the second shortcoming above.

Abduction

Given a set of formulas H (taken as a conjunction), a goal G, and a theory T , an abduct is a formula φ such that (1) H ∧ φ is T -satisfiable and (2) H ∧ φ |= T G. Abduction has several applications in program verification and static analysis, including loop invariant generation [START_REF] Echenim | Ilinva: Using abduction to generate loop invariants[END_REF], [START_REF] Dillig | Inductive invariant generation via abductive inference[END_REF]; specification inference [START_REF] Zhu | Automated inference of library specifications for source-sink property verification[END_REF], [START_REF] Albarghouthi | Maximal specification synthesis[END_REF]; compositional analysis [START_REF] Calcagno | Compositional shape analysis by means of bi-abduction[END_REF], [START_REF] Dillig | Synthesis of circular compositional program proofs via abduction[END_REF] among others [START_REF] Dillig | Automated error diagnosis using abductive inference[END_REF], [START_REF] Dillig | Optimal guard synthesis for memory safety[END_REF].

Several tools that perform abductive reasoning have also been developed over the years. Echenim et al. [START_REF] Echenim | Prime implicate generation in equational logic[END_REF], [START_REF] Echenim | A superposition calculus for abductive reasoning[END_REF] modify the superposition calculus to present an abductive algorithm for prime implicate generation in the theory of equality. GPiD [START_REF] Echenim | A generic framework for implicate generation modulo theories[END_REF] is a tool for abduction that is built on top of SMT solvers. EXPLAIN [START_REF] Dillig | Explain: A tool for performing abductive inference[END_REF] also leverages SMT technology to perform abduction -in this case, the Mistral [START_REF] Dillig | Minimum satisfying assignments for SMT[END_REF] SMT solver is used. CAPI [START_REF] Haifani | Connectionminimal abduction in EL via translation to FOL[END_REF] uses abduction in descriptive logics to provide explanations for observations that do not hold.

cvc5 performs abductive reasoning via syntax-guided synthesis (SyGuS) [START_REF] Alur | Syntax-guided synthesis[END_REF]. Thus, in addition to the semantics conditions mentioned above, cvc5 constrains abducts to range over formulas generated by a user-provided context-free grammar R. The grammar input is optional, with the default being the grammar that generates the entire language of T .

The solver is driven by a basic CEGIS [START_REF] Solar-Lezama | The sketching approach to program synthesis[END_REF] procedure: candidate abducts φ, formulas generated by R that satisfy the consistency requirement (1) above, are validated by checking whether H ∧ φ |= T G. Valuations that invalidate this entailment (by satisfying H ∧ φ and falsifying G) are collected and used to guide the search of a solution: future candidates φ that are satisfied by any of those valuations are immediately discarded as they are guaranteed to fail the entailment check. cvc5 refines this basic CEGIS procedure with various optimizations and symmetry breaking strategies that eliminate redundant solutions and aim at producing solutions quickly.

In the context of SMTCoq, a more general abduct is preferable to a less general one since the latter is less likely to be provable in Coq. In light of this, we have modified cvc5 to generate a sequence of abducts for the same problem so that their disjunction is typically weaker in T than the individual abducts. This has the effect of producing a progressively more general (disjunctive) abducts at the cost of additional computation. This cost can be controlled by the user by specifying the length of the abduct sequence.

Motivating Example

Suppose our Coq development contains a binary function f of type Z → Z → Z (where Z is Coq's integer type), and many facts about f. Example 3.1. We can invoke SMTCoq through the smt tactic as follows.

Goal forall (x y : Z), x = y → f x 1 = f y (21 -20). Proof. smt. Qed.

In Example 3.1, the SMT solver is able to prove a simple fact about f without using userprovided axioms since it is able to prove the goal using equational reasoning along with linear arithmetic. Now, consider a more interesting goal, whose validity depends on the specific behavior of f. Example 3.2. The following proof cannot be closed, since the tactic fails.

Goal forall (x y z : Z), x = y + 1 → (f y z) = f z (x -1). Proof. smt.

Certificate C

(a) cvc5 finds query to be unsatisfiable The solver gives a counterexample witnessing the failure of the proof, shown to the user:

Counter-example

f → λ x, y =⇒ x, x → 1, y → 0, z → 1
It is possible that the solver failed because the goal is indeed invalid. However, considering that the solver does not have access to a definition of f or an axiomatization of its properties, it is more likely that the solver is missing one of those additional facts from Coq. Instead of trying to determine which one this might be (one that is falsified by this counter-example), the user may invoke cvc5's abduction capability to get a suggestion from the solver.

The abduce Tactic

A goal in SMTCoq is a logical formula to be proven from a (possibly empty) set of premises in some theory T . So we can identify it with the goal of proving the entailment H |= T G. SMTCoq encodes H and G respectively as some SMT formula H and G , phrases the entailment between them as an implication, and sends the negation of this implication to the SMT solver. Thus, the goal of showing that H |= T G holds is converted to that of showing that H ∧ ¬G is T -unsatisfiable. For any particular Coq goal supported by SMTCoq, and sent to the SMT solver, there are three possible outcomes: (i) the solver proves the goal, by finding H ∧ ¬G to be T -unsatisfiable; (ii) it disproves the goal, by finding H ∧ ¬G to be T -satisfiable; (iii) it produces an "unknown" answer from having run out of resources. An acceptable certificate for outcome (i) is a proof of unsatisfiability -the SMT solver produces a formal proof that derives ⊥ from H ∧ ¬G . An acceptable certificate for outcome (ii) is a counterexample, a valuation of the (free) variables of H ∧ ¬G that satisfies H and falsifies G .

Example 3.1 is an illustration of outcome (i), and Example 3.2 demonstrates outcome (ii). Figures 1a and1b show the interaction between Coq and the SMT solver for both situations.

With our new abduce tactic in SMTCoq, a Coq user can ask cvc5 for abducts that would entail a currently failing goal. An integer argument allows the user to request a particular number of independent abducts -with each abduct separately entailing the goal (equivalently, with the disjunction of all abducts entailing the goal) along with the hypotheses. The tactic invokes cvc5's SyGuS-based abduction solver as presented in Section 2.3. This presents three abducts to the user: z = y; z + 1 = x; and f z y = f y z. The third abduct might suggest to the user that cvc5 would prove the goal if it was told that the function is commutative. Moreover, the solver only needs to know the commutativity of f over z and y. If one of our previously-proven facts about f is:

comm f : ∀ m n, f m n = f n m
the user can easily instantiate it in Coq for the necessary variables. A subsequent call to the smt tactic, with this instantiated fact in scope would successfully close the proof. We can now complete the proof.

Goal forall (x y z : Z), x = y + 1 → (f y z) = f z (x -1). Proof. intros. assert (f z y = f y z). { apply comm_f. } smt. Qed.
The intros tactic introduces x, y and z, and the hypothesis x = y + 1 into the scope of the proof. assert is a way to locally introduce a fact into scope, and we use it to state the chosen abduct. The abduct is easy to prove by an application of comm f. At that point, the smt tactic can successfully prove the current goal (f y z) = f z (x -1) from the (automatically collected) local hypotheses x = y + 1 and f z y = f y z.

We point out that in cases where SMTCoq disproves the goal (outcome (ii) above), the abduce tactic can provide a more general explanation of the failure than a counterexample. Counterexamples are single points over which the entailment H |= T G fails whereas an abduct represent a general sufficient conditioin for the provability of the goal that the user might be able to prove and then provide to the SMT solver from the current Coq context. Since there are a large number of these additional hypotheses that might help in proving a given goal, it is impractical to send all of them along with the goal. Abduction is then a way for the SMT solver to tell the user what else it needs. Figure 1c illustrates this case.

Evaluation

In this section, we present a preliminary, proof-of-concept case study on applying the smt and abduce tactics in the Coq library Zorder [2] with the goal of simplifying the proofs in it. 1 The library contains theorems about order predicates over Coq's Z (integer) type. While this library is deprecated, its lemmas are still available in the Coq core libraries.

Our study demonstrates the utility of the smt tactic and provides a proof of concept for interacting with the SMT solver via the abduce tactic in an IDE for Coq. We ran all experiments on CoqIDE version 8.16.1 in a system with 16 GB RAM, running Ubuntu 20.04. Our (b) An alternate interaction with abduction experimental set-up is as follows. Within the Zorder Coq file, we import SMTCoq as a plug-in, and for each goal, we try the smt tactic, which attempts to solve the goal using a combination of the SMT solver CVC4 [] and veriT[], both of which are well integrated in SMTCoq. We define an smt success the case where the goal can be fully solved by the SMT solver (with no additional hypotheses). In cases where the solver finds the goal to be invalid, we call abduce, asking for as many abducts as possible -we stop either if we find a provable abduct, or if a timeout of 20 seconds is reached. Recall that abduce n asks for n disjunctive abducts, each of which independently entail the goal. We define an abduce success the case where cvc5 produces an abduct that is provable in the Coq context, and when added locally to it, it allows smt to prove the goal. Our results are presented in Figure 3. From the 93 goals in the file, 30 goals contain non-linear arithmetic, a theory currently unsupported by SMTCoq; 3 goals relate to decidability in Coq, which cannot be proved by an SMT solver; and 1 contains predicates unrecoqnized by SMTCoq. From the remaining 59 goals, we found 33 (55.9%) smt successes, and 26 candidates for abduction, half of which were abduce successes.

All goals found invalid by the SMT solver were so for containing the Coq's integer successor and integer predecessor functions, Z.succ and Z.pred. When successful, the abduction solver was able to suggest either definitions of Z.succ and Z.pred, or properties satisfied by them in Coq. Both forms of abducts could be proven locally by unfolding the definitions of those functions and calling smt on the ensuing goal. For example, consider goal Znot le succ in Figure 2a (∼ represents logical negation in Coq). time is used to output the duration of the tactic run along with its regular output. The tactic is designed to fail when it successfully finds the abducts, and it prints the abducts as part of its error message. The call to the tactic and its output are commented out. An alternate way to view this tactic is presented in Figure 2b. The SMT solver fails to prove the goal as given, but the abduct returned by smt tactic suggest that all the user needs to do in this case is to unfold the definition of Z.succ. Admittedly, this simple example does not seem very compelling since the user might have guessed from the start that the definition of Z.succ is needed for the SMT solver to prove the goal. Moreover, there is an alternative automated solution provided by the Sniper [START_REF] Blot | Compositional pre-processing for automated reasoning in dependent type theory[END_REF] whose snipe tactic is able to identify function definitions relevant to the goal and send them to the SMT solver. However, for more complicated functions, providing hypothesis capturing relevant properties of the function, as in he case of function f from Section 3, may be more effective than providing their definition since proving such properties may require inductive reasoning, something SMT solvers are not generally capable of. So the abduce can be seen as a complement to snipe in helping the user prove goals. Figure 3: Summary of results of using abduce in Zorder

Although we allowed the tactic 20 seconds to find a useful abduct, all successful calls were made within 8 seconds, with 9 of the 14 taking less than 2 seconds (there were 13 successful goals but 14 calls because one of the goals required two calls, one for Z.succ and one for Z.pred).

Using the same test set, we also confirmed some of our hypotheses about the default grammar to provide, and the configuration with which to call the abduction solver. The first was to remove logical disjunction and the if-than-else (ITE) operator from the grammar. Such operators are not crucial since the user can recover disjunctive information by asking for more than one abduct. We found that eliminating these operators did yield more successful abducts. Second, we tested the ability of cvc5's abduction solver to generate conjunctive solutions quickly through unsat-core learning [START_REF] Reynolds | Scalable algorithms for abduction via enumerative syntax-guided synthesis[END_REF]. We found that, although the solver was much faster in generating solutions with this configuration, in almost all cases, at least one of the conjuncts was too specific, rendering the entire solution useless for not being entailed by the Coq context. For instance, with this option enabled, one of the abducts for Znot le succ from Figure 2a is (&& denotes conjunction):

n <= (Z.succ n) && (not (Z.succ n) = n) && (Z.succ -2) = n && n = -1
We can see that the first conjunct is a useful abduct in isolation, whereas the full conjunction clearly does not hold for the successor function.

Conclusion and Future Work

We have extended SMTCoq by adding the interactive tactic abduce to its set of proof tactics. When cvc5 fails to prove a goal valid, this tactic presents an alternative to returning (possibly spurious) counterexamples. By relying on the abductive capabilities of cvc5, it can to present the user with additional assumption that would make the goal provable. With tools such as hammers [START_REF] Christian Blanchette | Extending sledgehammer with smt solvers[END_REF][START_REF] Czajka | Hammer for coq: Automation for dependent type theory[END_REF] that deal with integrating automated theorem provers (ATPs) into proof assistants, a good hypothesis selection strategy is important to avoid either overloading the ATP with too many facts, or conversely supplying it with insufficient facts to prove the goal [START_REF] Alama | Premise selection for mathematics by corpus analysis and kernel methods[END_REF][START_REF] Daniel Kühlwein | Overview and evaluation of premise selection techniques for large theory mathematics[END_REF]. With the abduction tactic, we allow the ATP to be part of the premise selection process.

Out immediate goal is to have this tactic available in an official release of SMTCoq (it is currently available via a developer branch). Beyond this, there are many ways in which the interaction with the abduction solver could be improved. Currently, we use a default grammar for abducts that has proved to be efficient from some experimentation with the abduction solver. A combination of allowing grammar selection by the user and using automatic methods to reduce the language generated by the grammar would allow for better abducts.

Sending quantified hypotheses to the solver are problematic since SMTCoq has limited support for quantifiers, and because they slow the SMT solver down. By producing ground abducts, and relying on (i) manual quantifier instantiation of lemmas by the user; (ii) utilities such as Coq's Search vernacular to find the relevant lemmas, the abduce tactic offers a way to skirt this issue. While Example 4.1 suggests how this may be done, we aim to to test this ability in a larger Coq development where the abduction tactic may be used within complex proofs possibly with numerous cases to discharge, in tandem with other tactics.

 (b) cvc5 finds query to be satisfiable Abduct P (c) cvc5 returns an abduct

Figure 1 :

 1 Figure 1: Interaction of SMTCoq with the SMT solver. H = {H 1 , H 2 , . . . , H n } is the set of hypotheses sent to the solver.

Example 4 . 1 .

 41 Consider Example 3.2 from Section 3. We can use the abduce tactic on this goal, since smt fails.Goal forall (x y z : Z), x = y + 1 → (f y z) = f z (x -1). Proof. (* smt. Fails with counter-example *) abduce 3.

Lemma

 Znot_le_succ n : ∼ Z.succ n <= n. Proof. (* time abduce 1. *) (* The goal is invalid; the abduce call run for 1.072 secs and returns the abduct 1 + n <= (Z.succ n) *) assert (1 + n <= (Z.succ n)). { unfold Z.succ. smt. } smt. Qed. (a) Example goal proven using smt and abduce Lemma Znot_le_succ n : ∼ Z.succ n <= n. Proof. (* time abduce 1. *) unfold Z.succ. smt. Qed.

Instructions and resources needed to reproduce our experiments can be found at https://homepage.divms. uiowa.edu/ ~viswanathn/lpar23/