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Abstract 22 

Fine-resolution land surface temperature (LST) derived from thermal infrared remote sensing 23 

images is a good indicator of surface water status and plays an essential role in the exchange of 24 

energy and water between land and atmosphere. A physical surface energy balance (SEB)-based 25 

LST downscaling method (DTsEB) is developed to downscale coarse remotely sensed thermal 26 

infrared LST products with fine-resolution visible and near-infrared data. The DTsEB method is 27 

advantageous for its ability to mechanically interrelate surface variables contributing to the spatial 28 

variation of LST, to quantitatively weigh the contributions of each related variable within a 29 

physical framework, and to efficaciously avoid the subjective selection of scaling factors and the 30 

establishment of statistical regression relationships. The applicability of the DTsEB method was 31 

tested by downscaling 12 scenes of 990 m Moderate Resolution Imaging Spectroradiometer 32 

(MODIS) and aggregated Advanced Spaceborne Thermal Emission and Reflection Radiometer 33 

(ASTER) LST products to 90 m resolution at six overpass times between 2005 and 2015 over three 34 

9.9 km by 9.9 km cropland (mixed by grass, tree, and built-up land) study areas. Three typical LST 35 

downscaling methods, namely the widely applied TsHARP, the later developed least median 36 

square regression downscaling (LMS) and the geographically weighted regression (GWR), were 37 

introduced for intercomparison. The results showed that the DTsEB method could more effectively 38 

reconstruct the subpixel spatial variations in LST within the coarse-resolution pixels and achieve 39 

a better downscaling accuracy than the TsHARP, LMS and GWR methods. The DTsEB method 40 

yielded, on average, root mean square errors (RMSEs) of 2.01 K and 1.42 K when applied to the 41 

MODIS datasets and aggregated ASTER datasets, respectively, which were lower than those 42 

obtained with the TsHARP method, with average RMSEs of 2.41 K and 1.71 K, the LMS method, 43 

with average RMSEs of 2.35 K and 1.63 K, and the GWR method, with average RMSEs of 2.38 44 

K and 1.64 K, respectively. The contributions of the related surface variables to the subpixel spatial 45 

variation in the LST varied both spatially and temporally and were different from each other. In 46 

summary, the DTsEB method was demonstrated to outperform the TsHARP, LMS, and GWR 47 

methods and could be used as a good alternative for downscaling LST products from coarse to fine 48 

resolution with high robustness and accuracy. 49 

Keywords: Land surface temperature; Thermal infrared remote sensing; Surface energy balance; 50 

Downscaling; DTsEB 51 
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1. Introduction 52 

As a key parameter in the characterization of energy and water exchange between land and 53 

atmosphere [Li et al., 2013; Duan & Li, 2016; Anderson et al., 2008], land surface temperature 54 

(LST) has been widely applied in a variety of disciplines and related studies on evapotranspiration 55 

estimation [Tang et al., 2010; Tang & Li, 2017a], urban heat island monitoring [Weng et al., 2004; 56 

Quan et al., 2014], forest fire detection [Eckmann et al., 2008] and biogeochemical process 57 

modeling [Zhan et al., 2016]. Satellite-based thermal infrared (TIR) data are directly linked to 58 

LSTs through the radiative transfer equation and are recognized as the most reliable source for 59 

deriving regional LSTs in a globally consistent and economically feasible manner. However, 60 

because of technical constraints, satellite-derived LST datasets always reflect a tradeoff between 61 

temporal and spatial resolutions [Bindhu et al., 2013; Liu et al., 2020]. Even within the same 62 

satellite, thermal sensors have much lower spatial resolution than visible and near-infrared (VNIR) 63 

sensors due to the relatively lower levels of thermal radiation that are emitted by land surface. The 64 

relatively low spatial resolution of satellite-derived TIR LSTs often leads to a thermal mixture 65 

effect (i.e., blending of multiple thermal elements within a single coarse spatial resolution pixel) 66 

[Yang et al., 2011; Zhan et al., 2013] and provides a weak representation of the heterogeneity of 67 

the land surface water status and energy exchange. Therefore, techniques to enhance the spatial 68 

resolution of satellite-derived LST datasets are highly desirable [Atkinson, 2013; Hutengs & 69 

Vohland, 2016]. 70 

Over the past decades, a large number of LST downscaling (also called LST sharpening or 71 

LST disaggregating) methods have been proposed to transform coarse-resolution LSTs to fine 72 

resolution with thermal radiances at the two resolutions invariantly maintained [Kustas et al., 2003; 73 

Zhan et al., 2012, 2013]. Most of these LST downscaling methods assume that the relationships 74 

between surface parameters (e.g., independent variables) and LSTs (e.g., dependent variable) are 75 

scale invariant, and they first construct a mathematical relationship at coarse resolution and 76 

subsequently apply the relationship to surface parameters at fine resolution to obtain fine-77 

resolution LSTs. The surface parameters used in LST downscaling have been collectively referred 78 

to as scaling factors in some studies (also called kernels or modulation factors in some other 79 

studies); they represent indicators that connect the LSTs and should be achieved at both coarse and 80 

fine resolutions [Zhan et al., 2011, 2013; Liu & Moore, 1998; Stathopoulou & Cartalis, 2009; 81 

Chen et al., 2014]. Based on the fact that the regional LST variability is most affected by vegetation 82 
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coverage, vegetation indices (VIs) are the most widely used scaling factors in LST downscaling 83 

algorithms. Since the pioneering LST downscaling methods developed by Kustas et al. [2003] and 84 

Agam et al. [2007] (named DisTrad and TsHARP) were proposed, successful tests and applications 85 

of various VIs, such as the normalized difference vegetation index (NDVI) or its derivatives – 86 

fractional vegetation cover (fc), soil-adjusted vegetation index (SAVI) [Yang et al., 2011], 87 

enhanced vegetation index (EVI) [Zakšek & Oštir, 2012], and green ratio vegetation index (GRVI) 88 

[Bonafoni, 2016] – over different land cover types (especially agricultural areas) have been 89 

reported in the LST downscaling literature [Jeganathan et al., 2011; Essa et al., 2012; Bisquert et 90 

al., 2016a; Bisquert et al., 2016b; Olivera-Guerra et al., 2017]. However, because the LST is 91 

influenced by multiple factors, the relationships between VIs and LSTs display great limitations 92 

for heterogeneous underlying surfaces [Inamdar & French, 2009; Nichol, 2009; Stathopoulou & 93 

Cartalis, 2009; Zakšek & Oštir, 2012]. To compensate for the deficiency of using only simple 94 

vegetation parameters in LST downscaling, spectral indices representing different types of land 95 

surfaces, such as the normalized difference water index (NDWI), the normalized difference built-96 

up index (NDBI), the enhanced built-up and bareness index (EBBI), the bare soil index (BI), and 97 

the temperature vegetation dryness index (TVDI), have also been introduced [Yang et al., 2011; 98 

Zakšek & Oštir, 2012; Merlin et al., 2012; Bonafoni, 2016; Li et al., 2019; Agathangelidis & 99 

Cartalis, 2019; Liu et al., 2020]. In addition, to modulate the land surface energy distribution, 100 

topographic variables, namely, digital elevation models (DEMs) and slope angle, surface 101 

emissivity and broadband albedo, were also suggested to be good scaling factors [Duan & Li, 2016; 102 

Li et al., 2019; Agathangelidis and Cartalis, 2019; Inamdar & French, 2009; Nichol, 2009; 103 

Stathopoulou & Cartalis, 2009; Zakšek & Oštir, 2012; Merlin et al., 2010, 2012; Dominguez et 104 

al., 2011]. However, although many studies have reported that the accuracy of LST downscaling 105 

results increases with the introduction of new or multiple scaling factors, the selection of scaling 106 

factors (usually without explicit physical implications) remains mostly subjective, uncertain, and 107 

application-specific.  108 

For the relationships between scaling factors and LSTs, statistical regression has been widely 109 

used in LST downscaling. Both simple linear or quadratic regression relationships and multivariate 110 

nonlinear regression relationships between single/multiple scaling factors (e.g., NDVI, DEM, 111 

broadband albedo, and surface emissivity) and LSTs were explored in early years [Kustas et al., 112 

2003; Agam et al., 2007; Dominguez et al, 2011; Yang et al., 2011; Merlin et al., 2010, Merlin et 113 
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al., 2012; Bonafoni, 2016; Bisquert et al., 2016a]. In recent years, more advanced regression 114 

methods, including tree-based regression techniques (such as the gradient boosting machine), 115 

kernel-based regression techniques (such as the support vector machine), artificial neural networks, 116 

and random forest techniques, which have great advantages in establishing stable relationships 117 

between multiple scaling factors and LST, have attracted extensive attention [Yang et al., 2010; 118 

Ghosh et al., 2014; Hutengs and Vohland, 2016; Li et al., 2019; Wu and Li, 2019; Agathangelidis 119 

and Cartalis, 2019]. Although great success has been reported for LST downscaling, the lack of a 120 

clear physical mechanism in these empirical regression relationship-based methods has resulted in 121 

difficulties in understanding the interactions of various scaling factors with LSTs and has further 122 

hindered the extension of LST downscaling methods to other study areas. Moreover, the selection 123 

of different scaling factors and the establishment of corresponding empirical relationship between 124 

scaling factors and LST in these different statistics-based methods can even result in different 125 

LSTs for the same pixel under different relationship expression formulas and/or different sizes of 126 

areas of interest (such as the different LST downscaling results for Changping area in the 127 

researches of Yang et al. [2011] and Wu & Li [2019]). To date, compared to the statistics-based 128 

LST downscaling methods, (semi)physical methods for achieving LST downscaling have seldom 129 

been proposed [Bechtel et al., 2012]. While tests have been developed to enhance the thermal 130 

details, the apparently unreasonable assumptions of invariable emitted energy (with surface 131 

emissivity as the sole factor influencing temperature variation) among the subpixels [Nichol, 2009] 132 

or isothermal pixels [Liu & Pu, 2008; Liu & Zhu, 2012] have greatly hindered the wide application 133 

of these (semi)physical methods. The dual band method proposed by Dozier [Dozier, 1981] to 134 

estimate the percentage of thermally anomalous coverage and its temperature also faces technical 135 

limitations because of the requirements of a priori knowledge (such as the predefined specific end 136 

members) [Zakšek & Oštir, 2012; Bechtel et al., 2012]. In fact, in the energy and water exchange 137 

between land and atmosphere, the spatial variation of LST is more physically and fundamentally 138 

linked to the surface energy budget (i.e., the surface net radiation, soil heat flux, sensible heat flux 139 

and latent heat flux) than the land surface vegetation information or land cover details [Zhan et al., 140 

2013]. From this point of view, the surface energy balance is very likely to provide a robust and 141 

physical LST downscaling framework to take into account all parameters that drive the spatial 142 

variation of LSTs [Zhan et al., 2013; Merlin et al., 2010]. 143 
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The objective of this study is to develop a physical surface energy balance (SEB)-based LST 144 

downscaling method (DTsEB) to avoid a subjective selection of scaling factors and the 145 

establishment of statistical regression relationships. To this end, the theoretical relationship 146 

between scaling factors and LSTs is at first deduced from the SEB equation and Penman-Monteith 147 

equation. Subsequently, the DTsEB method is developed by calculating the total differential of the 148 

LST, and then, the fine-resolution LSTs can be obtained by converting the differences between the 149 

LSTs at fine and coarse resolutions into differences between the VNIR/SWIR scaling factors at 150 

the two resolutions. Finally, this new approach is tested on both 990 m resolution Moderate 151 

Resolution Imaging Spectroradiometer (MODIS) LST and aggregated 990 m resolution Advanced 152 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) LST data at six overpass 153 

times between 2005 and 2015 over three 9.9 km by 9.9 km cropland (mixed by grass, tree, and 154 

built-up land) study areas. As a reference, three typical LST downscaling methods, namely the 155 

well-known and most widely applied TsHARP method, the later developed least median square 156 

regression downscaling (LMS) method, and the geographically weighted regression (GWR) 157 

method, are intercompared with the DTsEB method. Section 2 describes the study areas, the 158 

remotely sensed MODIS and ASTER data, and the auxiliary ground-based meteorological data 159 

involved in this study. Section 3 presents the methodology of how LST downscaling is performed 160 

with the DTsEB method. Section 4 provides the LST downscaling results and discusses the 161 

uncertainty, superiority, and weakness of the DTsEB method. Finally, a summary and conclusions 162 

are presented in Section 5. 163 

2. Study Area and Data  164 

2.1. Study area 165 

Three study areas (Figure 1) with spatial dimensions of 9.9 km by 9.9 km and characterized 166 

by different climates and soil types were selected to evaluate the adaptability and accuracy of the 167 

DTsEB method.  168 

Study area A, which surrounds the Yucheng site (36.8291° N/116.5703° E, indicated by 169 

the solid black triangle in Figure 1), is located in the southwestern part of Yucheng County, 170 

Shandong Province, North China. This area is characterized by a subhumid monsoon climate with 171 

a mean annual temperature and precipitation of 13.1 °C and 528 mm, respectively. The soil type 172 

is classified as sandy loam and the land cover types primarily consist of croplands, bare soil and 173 
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built-up lands (including roads and buildings). Winter wheat (seeded in mid-October and harvested 174 

in mid-June) and summer corn (seeded in late June and harvested in early October) are rotated in 175 

this study area. More details of regarding the characteristics of this area can be found in the work 176 

by Tang & Li [2017b].  177 

Study area B, which surrounds the US_Bo1 site (40.0062° N/88.2904° W, marked by the 178 

solid black star in Figure 1), is located in the midwestern part of the United States near Champaign, 179 

Illinois. Study area B has a deep silty clay loam soil type and is characterized by a humid 180 

continental climate with a mean annual temperature of 11 °C and mean annual precipitation of 991 181 

mm. The land cover types mainly include crops, trees, and built-up lands. Corn and soybeans are 182 

rotated annually in this study area. The detailed information on study area B was provided by 183 

Meyers & Hollinger [2004]. 184 

Study area C, which surrounds the US_Ne1 site (41.1651° N/96.4766° W, indicated by the 185 

solid black circle in Figure 1), is located at the University of Nebraska Agricultural Research and 186 

Development Center near Mead, Nebraska, United States. Study area C has a humid continental 187 

climate with a mean annual temperature of 10 °C and mean annual precipitation of 790 mm. The 188 

soil type is classified as deep silty clay loam and the land cover/land use types of this study area 189 

are mainly crops, built-up areas, trees, and grass. Maize and soybeans are seeded under no-till and 190 

are harvested in early November and October, respectively. The detailed information of study area 191 

C was provided by Verma et al. [2005]. 192 

Surface four-component radiation (downwelling and upwelling shortwave and longwave 193 

radiation) and meteorological variables, including precipitation, wind speed, relative humidity, air 194 

temperature, and atmospheric pressure were regularly measured at half-hourly intervals at the three 195 

ground-based sites. The auxiliary meteorological data required for evaluating the LST 196 

downscaling methods were obtained from the three sites over the three study areas (Yucheng site 197 

in study area A, US_Bo1 site in study area B and US_Ne1 site in study area C). 198 
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 199 

Figure 1. Site geolocations (Yucheng site in study area A, US_Bo1 site in study area B and US_Ne1 site in 200 

study area C) and land use/land cover (LULC) types of the three study areas (retrieved from ESA Sentinel-2 201 

imagery at 10 m resolution), including water, trees, grass, flooded vegetation, crops, built-up area, and bare 202 

ground.  203 

2.2 Data  204 

The data used in this study include remotely sensed MODIS and ASTER datasets onboard 205 

the same satellite platform and ground-based meteorological datasets. In each study area, datasets 206 

from two different dates were used to test the LST downscaling algorithm. 207 

2.2.1 MODIS datasets 208 

MODIS data collected from the MODIS/Terra platform, including the MODIS/Terra Land 209 

Surface Temperature/Emissivity Daily L3 Global 1 km SIN Grid product (MOD11A1, Collection 210 

6) and MODIS/Terra Surface Reflectance Daily L2G Global 1 km and 500 m SIN Grid product 211 

(MOD09GA, Collection 6), were used as the original coarse-resolution data in this study. These 212 
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data were downloaded from the National Aeronautics and Space Administration’s (NASA’s) 213 

Level-1 and Atmosphere Archive and Distribution System (LAADS) Distributed Active Archive 214 

Center (DAAC) (https://ladsweb.modaps.eosdis.nasa.gov/search/). The two MODIS products 215 

were acquired on April 24, 2006, and October 3, 2010, for study area A, on April 15, 2005 and 216 

July 29, 2005, for study area B, and on September 2, 2014, and August 20, 2015, for study area C 217 

in HDF-EOS format and were reprojected into UTM WGS 1984 50 N, UTM WGS 1984 16 N, 218 

and UTM WGS 1984 14 N, respectively, with a resampling interval of 990 m by using the MODIS 219 

Reprojection Tool (MRT). 220 

Coarse-resolution parameters, such as the normalized difference vegetation index (NDVI) 221 

and fractional vegetation cover (fc) (used to calculate the soil heat flux), broadband albedo and 222 

surface emissivity (used to calculate the surface net radiation), and surface resistance and 223 

aerodynamic resistance (used to solve the Penman-Monteith equation) at 990 m can be obtained 224 

with the MOD11A1 and MOD09GA products. For example, the NDVI is calculated using the 225 

reflectance values in the red and near-infrared bands; the surface broadband albedo, r, is estimated 226 

using the method of Liang [2001] (the method of Mokhtari et al. [2013] is applied for ASTER 227 

data after April 2008 due to the malfunction of the shortwave infrared detectors), and the surface 228 

emissivity, εs, is calculated using the algorithm proposed by Qin et al. [2004] (see the Appendix 229 

D).  230 

2.2.2 ASTER datasets 231 

Concurrent remote sensing data from the ASTER sensor onboard the Terra satellite, including 232 

the ASTER L2 Surface Kinetic Temperature product (AST_08) and ASTER L2 Surface 233 

Reflectance Visible and Near Infrared (VNIR) and Shortwave Infrared (SWIR) product (AST_07), 234 

were used as the fine-resolution data in this study. These data were collected from NASA’s 235 

Earthdata Search web application (https://search.earthdata.nasa.gov/search/). 236 

The ASTER surface reflectance products (AST_07), with a pixel size of 15 m in the VNIR 237 

region and 30 m in the SWIR region were spatially aggregated to 90 m to match the original spatial 238 

resolution of ASTER LST (AST_08) in this study. The surface parameters, including NDVI, fc, r, 239 

εs, surface resistance, and aerodynamic resistance at 90 m resolution can be calculated with the 240 

AST_07 data (see the Appendix D).  241 

2.2.3 Ground-based meteorological data 242 
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Half-hourly surface meteorological variables from the three ground sites (e.g., the Yucheng 243 

site in study area A, the US-Bo1 site in study area B and the US_Ne1 site in study area C), 244 

including downward solar radiation, wind speed, relative humidity, air temperature and vapor 245 

pressure, were collected at the Terra satellite overpass times as the auxiliary data in this study. 246 

Given the limited spatial dimensions of the study areas, the spatial variation of near-surface 247 

meteorological data was low and might contribute less to the downscaled LST than the subpixel 248 

heterogeneity of surface parameters. The meteorological data from the ground sites were thus 249 

regarded as spatially representative over the entire study area. 250 

2.2.4 Digital elevation data 251 

The digital elevation data (DEM) was used as the auxiliary data in the GWR method. 30 m 252 

DEM data of the three study areas (N36E116 for study area A, N39W089 and N40W089 for study 253 

area B, and N41W097 for study area C) collected from the ASTGTM product (Version 3, 254 

https://search.earthdata.nasa.gov/search/) were spatially aggregated to 90 m and 990 m to match 255 

the fine and coarse resolution ASTER and MODIS datasets, respectively. 256 

3. Methodology  257 

3.1 DTsEB method  258 

LST is a direct indicator in the exchange of long-wave radiation and turbulent heat fluxes at 259 

the land–atmosphere interface and can effectively characterize the physical processes of surface 260 

energy and water balance at local to global scales [Li et al., 2013]. Considering the physical 261 

interconnections between LSTs and land surface energy, we propose the DTsEB method (the flow 262 

chart is shown in Figure 2) by introducing the surface energy balance equation and Penman-263 

Monteith equation, as follows: 264 

n
R G H LE                                                            (1) 265 

 





  


  

n
(R G) C

1

p a

s a

VPD r
LE

r r
                                            (2) 266 

where Rn is the surface net radiation, W/m2; G is the soil heat flux, W/m2; H is the sensible heat 267 

flux, W/m2; LE is the latent heat flux, W/m2; ∆ is the slope of the saturated vapor pressure versus 268 

air temperature curve, kPa/°C; ρ is the air density, kg/m3; Cp is the specific heat of air, J/(kg°C); 269 
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VPD is the vapor pressure deficit of air, kPa; ra is the aerodynamic resistance, s/m; rs is the surface 270 

resistance, s/m; and γ is the psychrometric constant, kPa/°C. 271 

The sensible heat flux (H) can be approximated by combining the difference between LST 272 

and air temperature (Ta) with the aerodynamic resistance (ra), as follows: 273 

a
p

a

LST T
H C

r



                                                         (3) 274 

The soil heat flux (G) is often expressed as a fraction of the surface net radiation (Rn) from 275 

the remote sensing perspective and it is estimated following the work of Su [2002] in this study, 276 

as follows: 277 

  1
n c c s c

G R f                                                           (4) 278 

where fc is the fractional vegetation cover, and Γc and Γs are the fractions of G to Rn for fully 279 

covered vegetation and dry bare soil, respectively. 280 

By combining and rearranging equations (1), (2), (3) and (4), we can mathematically express 281 

the LST with the following equations: 282 

   
   



  

        
     

s
1 1

1 1

a s c c n s a

a

p s a s a

r f R r r VPD
LST T

C r r r r
                 (5) 283 

with 284 

  4 41
n g s a a s
R r R T LST                                                     (6) 285 

2

m

m m

I

I I
in

c

ax in

NDVI NDV
f

NDV NDV

 
  

 
                                                   (7) 286 

2

ln ln

u

u t
m h

om oh

a

Z d Z d

Z Z
r

k

       
       

                                           (8) 287 

   min

1
s

L

r
C m T m VPD LAI

                                                       (9) 288 
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where Rg is the global solar radiation, W/m2; r is the surface albedo; εs is the surface emissivity; εa 289 

is the atmospheric emissivity; σ is the Stefan-Boltzmann constant; and NDVImin and NDVImax are 290 

the minimum NDVI corresponding to bare soil and the maximum NDVI corresponding to fully 291 

vegetated surfaces, respectively; Zu and Zt are the heights at which the wind speed and air 292 

temperature are observed, respectively, m; k is the von Karman constant; u is the wind speed, m/s; 293 

d is the zero plane displacement height, m; zom is the surface momentum roughness height, m; zoh 294 

is the roughness height for surface heat transfer, m; Ψm and Ψh are the stability correction functions 295 

for momentum and heat transfer, respectively [Paulson, 1970]; LAI is the leaf area index; CL is the 296 

mean potential stomatal conductance per unit leaf area; m(Tmin) is a multiplier that limits the 297 

potential stomatal conductance by the minimum air temperature; and m(VPD) is a multiplier used 298 

to reduce the potential stomatal conductance when the VPD is sufficient to reduce the canopy 299 

conductance [Mu et al., 2007, 2011]. In Eq. (5), all the surface environmental and ecophysiological 300 

parameters including the fractional vegetation cover, surface emissivity, broadband albedo, 301 

aerodynamic resistance, surface resistance, and surface net radiation that are involved in the 302 

surface energy budget and drive the spatial variation of the LSTs are mechanically interrelated. 303 

In this work, Γc = 0.05 and Γs = 0.4 are assumed in the soil heat flux calculations [Daughtry 304 

et al., 1990; Li & Lyons, 1999; Tang et al., 2010]; zoh = 0.1zom where zom is 0.125 times the 305 

vegetation height, h (zom = 0.125h), and in this study, following the work of Tang et al. [2013] and 306 

Teixeira et al. [2009], h is estimated as a function of the surface albedo and NDVI. A summary of 307 

how these intermediate variables/parameters are estimated is provided in the Appendix D. 308 
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 309 

 310 

Figure 2. Flow chart of LST downscaling based on the DTsEB algorithm 311 

Given the negligible spatial variations in the atmospheric parameters over the subpixels 312 

within a coarse pixel, the difference between fine-resolution LST and coarse-resolution LST 313 

primarily comes from the heterogeneity of the surface parameters (e.g., albedo, emissivity, 314 

fractional vegetation cover, resistance) within the coarse pixel and can be obtained by calculating 315 

the total differential of Eq. (5), as follows: 316 

   
   

   
n c a s

n c a s

LST LST LST LST
dLST dR df dr dr

R f r r
                         (10) 317 

with 318 

 4 4 34
n g a a CR s s CR

dR R dr T LST d LST dLST                             (11) 319 

We combine equation (11) into equation (10), as follows: 320 
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    

 

         
    







4 4

31 4

g a a CR s c a s

n c a s

s CR

n

LST LST LST LST
R dr T LST d df dr dr

R f r r
dLST

LST
LST

R

     (12) 321 

in which, 322 

   
 



 

       
   

1 1

1

a s s c c s a

n p s a

r f r rLST

R C r r
                                     (13) 323 

   
 



 

  


   

1

1

a s c n s a

c p s a

r R r rLST

f C r r
                                            (14) 324 

   

   

  

  

          
            

22 2

2 2

1 1

1 1

s s c c n s a s a

a p
s a s a

f R r r VPDr rLST

r C r r r r
             (15) 325 

 

   



  

       
            

2 2

1

1 1

s s c c n a

s p
s a s a

f R VPD rLST

r C r r r r
               (16) 326 

where the 
𝜕𝐿𝑆𝑇

𝜕𝑅𝑛
, 

𝜕𝐿𝑆𝑇

𝜕𝑓𝑐
, 

𝜕𝐿𝑆𝑇

𝜕𝑟𝑎
 and 

𝜕𝐿𝑆𝑇

𝜕𝑟𝑠
 can be calculated with the coarse resolution VNIR/SWIR and 327 

ground-based meteorological data, the dRn, dfc, dra, drs, dr, and dεs are the variations of Rn, fc, ra, 328 

rs, r, and εs between fine and coarse resolutions, respectively, and the 
𝜕𝐿𝑆𝑇

𝜕𝑅𝑛
𝑑𝑅𝑛, 

𝜕𝐿𝑆𝑇

𝜕𝑓𝑐
𝑑𝑓𝑐, 

𝜕𝐿𝑆𝑇

𝜕𝑟𝑎
𝑑𝑟𝑎, 329 

and 
𝜕𝐿𝑆𝑇

𝜕𝑟𝑠
𝑑𝑟𝑠 represent the contribution of surface net radiation, the contribution of fraction of the 330 

vegetation, the contribution of aerodynamic resistance, and the contribution of surface resistance 331 

to dLST, respectively. The subscript CR stands for the variable at coarse resolution. 332 

Overall, combining the surface energy balance equation and Penman-Monteith equation, we 333 

can express the differences between LSTs at fine and coarse resolutions as a function of the 334 

differences between the surface parameters (i.e., 
𝜕𝐿𝑆𝑇

𝜕𝑅𝑛
𝑑𝑅𝑛, 

𝜕𝐿𝑆𝑇

𝜕𝑓𝑐
𝑑𝑓𝑐, 

𝜕𝐿𝑆𝑇

𝜕𝑟𝑎
𝑑𝑟𝑎 and 

𝜕𝐿𝑆𝑇

𝜕𝑟𝑠
𝑑𝑟𝑠, which 335 

can be obtained with VNIR/SWIR data) at the two resolutions. The final downscaled fine-336 

resolution LST (LSTFR) can be expressed as the sum of the coarse-resolution LST (LSTCR) and the 337 

LST difference, as follows: 338 
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FR CR
LST LST dLST                                                     (17) 339 

3.2 Model application 340 

To better understand error propagation in LST downscaling and how the reference LST truth 341 

affects the model performance, the proposed physical-based DTsEB method is evaluated for two 342 

different cases. As a reference, the downscaling results from the widely applied TsHARP method 343 

[Agam et al., 2007; Kustas et al., 2003], the LMS method [Mukherjee et al., 2014; Bisquert et al., 344 

2016], and the GWR method [Duan et al., 2016] (see the Appendix A, B, and C for a description 345 

of these three methods) are also intercompared.  346 

Case 1: downscaling of the 990 m MODIS LST product to 90 m and validation against the 347 

concurrent 90 m ASTER LST product. In this case, six scenes of original coarse-resolution 348 

MODIS LST data (990 m) for different growing dates of crops over three study areas were first 349 

downscaled to 90 m. Then, the fine-resolution ASTER LST products at 90 m (AST_08) were used 350 

as the reference LST data to validate the downscaled results. Because both the MODIS and ASTER 351 

sensors are onboard the same satellite platform (Terra), errors caused by altitude and time 352 

differences between different satellites can be eliminated.  353 

Case 2: downscaling of 990 m aggregated ASTER LST data to 90 m and validation against 354 

the 90 m ASTER LST product that was used for aggregation. In this case, the original 90 m ASTER 355 

datasets were first spatially aggregated to a resolution of 990 m by assuming the conservation of 356 

surface emitted energy for AST_08 LST products and by the arithmetic mean for the AST_07 357 

reflectance products. The LST downscaling methods were then performed on these aggregated 358 

datasets. The aggregated 990 m LSTs were used here with an implicit assumption that the coarse-359 

resolution LSTs are highly consistent with the reference fine-resolution LSTs. The uncertainties 360 

introduced by the differences between the coarse-resolution LSTs and reference fine-resolution 361 

LSTs can therefore be excluded to some extent.  362 

During model application, essential quality control procedures were conducted to remove 363 

pixels (~ 0.3%) characterized by low vegetation cover (NDVI < 0.1) with extremely high ra and rs 364 

(> 1,000 s/m) values at 90 m resolution, to reduce the abnormities in the downscaled LSTs in the 365 

DTsEB method. Note that fine-resolution data in this study were from 90 m ASTER NVIR and 366 

SWIR reflectance products. More generally, for a targeted coarse-resolution LST to be downscaled 367 
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in practical applications, concurrent (or adjacent) reflectance measurements with the sensor 368 

onboard the same (or other) satellite platform can be used as the fine-resolution data. 369 

3.3 Statistical Analyses 370 

Once the LST downscaling results are obtained, they were compared with the 90 m reference 371 

fine-resolution ASTER LST. The following statistical metrics, namely the root mean square error 372 

(RMSE), mean absolute error (MAE), mean bias (BIAS), normalized root mean square error 373 

(NRMSE), and correlation coefficient (R), were calculated to measure the model performance, as 374 

shown in Equations (18) - (22): 375 

 




 2

, ,
1

( )
n

dsl i ref i
i

LST LST

RMSE
n

                                               (18) 376 






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1

n
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i
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MAE
n

                                                     (19) 377 
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1
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i

LST LST
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                                                      (20) 378 


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                                                               (21) 379 


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( ) ( )

n

dsl i dsl i ref i ref i
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n n

dsl i dsl i ref i ref i
i i

LST LST LST LST

R

LST LST LST LST

                                (22) 380 

where, LSTdsl is the downscaled LST, LSTref is the reference LST, 𝐿𝑆𝑇𝑑𝑠𝑙
̅̅ ̅̅ ̅̅ ̅̅  and 𝐿𝑆𝑇𝑟𝑒𝑓

̅̅ ̅̅ ̅̅ ̅̅ ̅ are the 381 

average values of LSTdsl and LSTref, respectively, SD is the standard deviation of reference LST. 382 

4. Results and Discussion 383 

4.1 Application to MODIS datasets 384 

Before using the ASTER LST data to evaluate the downscaling results of the coarse-385 

resolution MODIS LST data, the original 990 m MODIS LST data, the aggregated 990 m ASTER 386 
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LST data and the reference 90 m ASTER LST data from study areas A, B and C were compared, 387 

as shown in Table 1 and Figure 3. A deviation was found between the ASTER LST products 388 

(AST08) and the MODIS LST products (MOD11A1) because the former were generated from the 389 

Temperature/Emissivity Separation (TES) algorithm while the latter were generated from the 390 

generalized spilt-window (GSW) algorithm. From a visual comparison, clear spatial pattern 391 

differences between the MODIS LST (Figure 3a) and ASTER LST (Figure 3b) data were observed. 392 

The spatial distribution of the MODIS LSTs was smooth, whereas the ASTER LSTs could more 393 

effectively reflect sharp variations and spatial heterogeneity over the three study areas. In addition, 394 

compared with the ASTER LSTs, the MODIS LSTs were lower overall (approximately 2 K lower 395 

on average, see Table 1), especially in the high value range of LSTs. For example, the differences 396 

between the highest ASTER and MODIS LSTs on April 24, 2006 for study area A, on July 29, 397 

2005 for study area B and on August 20, 2015 for study area C were as great as ~10 K, ~14 K and 398 

~12 K, respectively, while in the low value range of LSTs, the MODIS LSTs were observed to be 399 

somewhat higher than the ASTER LSTs (Figure 3 and Table 1). These differences imply that the 400 

MODIS LSTs had a narrower value distribution than the ASTER LSTs, and this narrower value 401 

distribution was much remarkable than that of aggregated ASTER LSTs.  402 

Table 1. The minimum, maximum, and mean of the coarse-resolution MODIS LSTs and the aggregated ASTER 403 

LSTs for model applications and the reference fine-resolution ASTER LSTs for validation. 404 

Study Area & Date 

MODIS LST  

at 990 m 

Aggregated ASTER LST 

 at 990 m 

ASTER LST  

at 90 m 

Min. 

(K) 

Max. 

(K) 

Mean 

(K) 

Min. 

(K) 

Max. 

(K) 

Mean 

(K) 

Min. 

(K) 

Max. 

(K) 

Mean 

(K) 

A April 24, 2006 294.36 297.80 295.94 295.85 303.43 298.30 294.30 307.34 298.25 

A October 3, 2010 297.64 300.16 298.73 298.63 302.06 300.00 295.20 306.16 299.97 

B April 15, 2005 298.10 303.74 301.28 299.60 307.19 303.89 293.78 310.47 303.86 

B July 29, 2005 299.56 304.18 300.79 300.36 309.91 302.32 298.70 318.20 302.35 

C 
September 2, 

2014 
298.0 301.48 299.19 298.66 304.60 300.84 296.50 312.90 300.83 

C August 20, 2015 298.64 302.04 299.64 300.72 305.93 302.42 296.50 314.30 302.41 
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Figures 3 and 4 show the spatial patterns of the LSTs downscaled from MODIS products 405 

using the DTsEB, TsHARP, LMS and GWR methods and scatter plots of the comparisons between 406 

the downscaled LSTs and ASTER LSTs, respectively. In general, the spatial distributions of the 407 

downscaling results based on the DTsEB (Figure 3c), TsHARP (Figure 3d), LMS (Figure 3(e)) 408 

and GWR (Figure 3(f)) were basically consistent with the spatial distribution of the ASTER LSTs 409 

(Figure 3b). All the four LST downscaling methods were able to enhance the spatial details of the 410 

original coarse pixels to some extent. However, in reference to the ASTER LSTs, the DTsEB 411 

method could more successfully reconstruct the subpixel spatial variations within a coarse MODIS 412 

LST pixel and, in particular, display the texture features better than the TsHARP, LMS, and GWR 413 

methods for all three study areas. For example, from circled region 1 in study area A on April 24, 414 

2006 and circled region 3 in study area C on September 2, 2014, the high-value subpixels within 415 

the low-value coarse-resolution pixels were better reproduced in the DTsEB downscaled LSTs, 416 

whereas smooth subpixel variation was represented in the TsHARP, LMS, and GWR downscaled 417 

LSTs. For the generally high LST values in study area B on April 15, 2005 (see circled region 2 418 

in Figure 3), the spatial details of the low LST subpixels that were mixed with high-value pixels 419 

could also be better displayed by the DTsEB method. In summary, the DTsEB method 420 

outperformed the TsHARP, LMS, and GWR methods in all the study areas, i.e., A, B and C. 421 

Especially for high value ranges of LSTs, the DTsEB method better reproduced the spatial details 422 

of ASTER LSTs (but possibly with some scatters over study areas B and C, as shown in Figure 4) 423 

whereas the TsHARP, LMS, and GWR methods significantly underestimated the reference LSTs. 424 

In addition, the LST downscaling results of study areas A and C were better than those of study 425 

area B regardless of which method was used. Overall, for the six scenes of LST downscaling, the 426 

DTsEB method, with a lower root mean square error (RMSE) of 1.46~3.02 K, mean absolute error 427 

(MAE) of 1.20~2.53 K, mean bias of -2.06~-0.23 K, normalized RMSE (by standard deviation of 428 

90 m reference ASTER data) of 0.70~1.29 and correlation coefficient of 0.38~0.79, achieved a 429 

higher accuracy than the TsHARP, LMS, and GWR methods. By contrast, the TsHARP method, 430 

with RMSE values of 1.57~3.21 K, MAE values of 1.31~2.71 K, mean bias values of -2.43~-1.19 431 

K, normalized RMSE values of 0.90~1.39 and correlation coefficient values of 0.46~0.76, 432 

performed slightly worse than the LMS method, and the GWR method. With an intermediate 433 

performance, the LMS method had RMSE values of 1.56~3.38 K, MAE values of 1.30~2.88 K, 434 

mean bias values of -2.59~-1.04 K, normalized RMSE values of 0.89~1.44 and correlation 435 
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coefficient of values 0.39~0.77 and the GWR method had RMSE values of 1.57~3.25 K, MAE 436 

values of 1.30~2.74 K, mean bias values of -2.41~-1.15 K, normalized RMSE values of 0.90~1.33 437 

and correlation coefficient of values 0.40~0.83 (Table 2 and 4). In other words, the RMSE 438 

decreased by 0.11~0.70 K (~17% on average), 0.04~0.50 K (~14% on average), and 0.08~0.58 K 439 

(~16% on average) and the MAE decreased by 0.11~0.71 K (~16% on average), 0.09~0.51 K (~14% 440 

on average) and 0.10~0.67 K (~15%) when the DTsEB method was applied for LST downscaling 441 

instead of the TsHARP method, the LMS method, and the GWR method, respectively. 442 

As mentioned in the Methodology section, the sum of the surface net radiation (Rn), fractional 443 

vegetation cover (fc), aerodynamic resistance (ra), and surface resistance (rs) contributions 444 

constitutes the final dLST (the difference in LST between 990 m and 90 m resolutions) in the 445 

DTsEB method. Figure 5 displays the spatial distribution of the contributions of the above four 446 

surface parameters in study areas A, B and C. From a visual comparison, the contributions of each 447 

of the four parameters varied both spatially and temporally and were different from each other. 448 

Compared with those of the other three parameters, the spatial variation of the contribution of rs 449 

(Figure 5(d)) was more similar to that of dLST (Figure 5e). The contribution of rs (1.26 ± 1.39 K 450 

on average) had the greatest impact on the final dLST results, especially for the high-value ranges 451 

of dLST, whereas the lowest impacts and narrower variation ranges were found for the 452 

contributions of Rn (0.33 ± 0.21 K on average, Figure 5a). In addition, the contributions of fc 453 

(Figure 5b) were negatively correlated with dLST, while the contributions of rs were positively 454 

correlated with dLST, which means that in the process of LST downscaling from a coarse 455 

resolution to a fine resolution, an increase in fc or decrease in rs could lead to a decrease in LST 456 

and vice versa. However, no simple correlation relationship was found between the contribution 457 

of Rn or ra and dLST.458 
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Table 2. Statistical metrics of the validation of the downscaled 90 m LST by the DTsEB, TsHARP, LMS, and GWR methods from the 6 scenes of 990 m 459 

MODIS LST over three study areas with the corresponding 90 m ASTER LST. RMSE is the root mean square error, MAE is the mean absolute error, and 460 

NRMSE is the RMSE normalized by the standard deviation (SD) of the reference 90 m ASTER LST. 461 

Study area & Date 

Methods 

DTsEB TsHARP LMS GWR 
RMSE 

(K) 

MAE 

(K) 

BIAS 

(K) 
NRMSE 

RMSE 

(K) 

MAE 

(K) 

BIAS 

(K) 
NRMSE 

RMSE 

(K) 

MAE 

(K) 
BIAS 

(K) 
NRMSE 

RMSE 

(K) 
MAE 

(K) 
BIAS 

(K) 
NRMSE 

A 
Apr. 24, 

2006 
1.84 1.37 -0.89 0.70 2.37 1.72 -1.51 0.90 2.34 1.71 -1.51 0.89 2.36 1.69 -1.56 0.90 

A 
Oct. 3, 

2010 
1.46 1.20 -1.04 1.22 1.57 1.31 -1.24 1.31 1.56 1.30 -1.22 1.30 1.57 1.30 -1.23 1.32 

B 
Apr. 15, 

2005 
3.02 2.53 -2.06 1.29 3.21 2.71 -2.43 1.37 3.38 2.88 -2.59 1.44 3.25 2.74 -2.41 1.38 

B 
Jul. 29, 

2005 
2.03 1.26 -0.74 0.79 2.46 1.54 -1.38 0.96 2.32 1.46 -1.27 0.91 2.44 1.53 -1.39 0.95 

C 
Sept. 2, 

2014 
1.92 1.33 -0.23 0.91 2.10 1.52 -1.19 1.00 1.96 1.42 -1.04 0.93 2.00 1.45 -1.15 0.95 

C 
Aug. 20, 

2015 
2.06 1.54 -1.05 1.04 2.76 2.25 -2.22 1.39 2.52 2.05 -2.00 1.27 2.64 2.22 -2.20 1.33 

Overall  2.01 1.54 -1.00 0.99 2.41 1.84 -1.66 1.16 2.35 1.80 -1.61 1.12 2.38 1.82 -1.66 1.14 
 462 

Table 3. Same as Table 2, but for the 990 m aggregated ASTER data. 463 

Study area & Date 

Methods 

DTsEB TsHARP LMS GWR 
RMSE 

(K) 

MAE 

(K) 

BIAS 

(K) 
NRMSE 

RMSE 

(K) 

MAE 

(K) 

BIAS 

(K) 
NRMSE 

RMSE 

(K) 

MAE 

(K) 
BIAS 

(K) 
NRMSE 

RMSE 

(K) 
MAE 

(K) 
BIAS 

(K) 
NRMSE 

A 
Apr. 24, 

2006 
1.54 1.25 0.30 0.59 1.74 1.35 -0.06 0.66 1.69 1.28 0.05 0.65 1.76 1.34 0.05 0.67 

A 
Oct. 3, 

2010 
0.95 0.72 0.12 0.79 1.17 0.90 0.41 0.98 1.10 0.86 0.03 0.92 1.12 0.87 0.03 0.94 

B 
Apr. 15, 

2005 
1.85 1.45 0.14 0.79 2.32 1.73 -0.03 0.99 2.03 1.58 0.03 0.86 2.36 1.79 0.02 1.00 

B 
Jul. 29, 

2005 
1.46 0.99 0.06 0.57 1.97 1.35 -0.24 0.77 2.12 1.30 -0.03 0.83 1.67 1.11 -0.08 0.65 

C 
Sept. 2, 

2014 
1.45 1.03 0.25 0.69 1.53 1.13 -0.09 0.73 1.52 1.10 0.01 0.72 1.59 1.16 -0.01 0.75 

C 
Aug. 20, 

2015 
1.29 0.92 0.24 0.65 1.51 1.11 -0.08 0.76 1.31 0.89 0.01 0.66 1.32 0.90 0.01 0.66 

Overall  1.42 1.06 0.19 0.68 1.71 1.26 -0.02 0.82 1.63 1.17 0.03 0.77 1.64 1.20 0.003 0.78 

 464 

 465 
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Table 4. The correlation coefficient (R) between 90 m downscaled LST by the DTsEB, TsHARP, LMS, and GWR methods and the reference 90 m ASTER 466 

LST over the three study areas. 467 

Study area & Date 

Methods 

DTsEB TsHARP LMS GWR 

MODIS 

LST 

Aggregated 

ASTER LST 

MODIS  

LST 

Aggregated 

ASTER LST 

MODIS 

 LST 

Aggregated 

ASTER LST 
MODIS LST 

Aggregated 

ASTER LST 

A Apr. 24, 2006 0.79 0.83 0.76 0.84 0.77 0.85 0.83 0.85 

A Oct. 3, 2010 0.55 0.63 0.59 0.61 0.58 0.61 0.58 0.57 

B Apr. 15, 2005 0.38 0.63 0.46 0.56 0.39 0.60 0.40 0.47 

B Jul. 29, 2005 0.66 0.82 0.66 0.80 0.67 0.80 0.69 0.80 

C Sept. 2, 2014 0.61 0.75 0.59 0.76 0.63 0.76 0.68 0.74 

C Aug. 20, 2015 0.59 0.78 0.58 0.72 0.64 0.80 0.73 0.79 

Overall  0.60 0.74 0.61 0.72 0.61 0.74 0.65 0.70 

468 
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  469 

Figure 3. Spatial distribution of the (a) 990 m MODIS LST, (b) 90 m ASTER LST, (c) 90 m LST downscaled 470 

by the DTsEB method, (d) 90 m LST downscaled by the TsHARP method, (e) 90 m LST downscaled by the 471 

LMS method, and (f) 90 m LST downscaled by the GWR method for study areas A, B and C. Circles 1, 2 and 3 472 

(in study area A on April 24, 2006, in study area B on April 15, 2005, and in study area C on September 2, 2014, 473 

respectively) are typical areas highlighted for comparison. 474 
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 475 

Figure 4. Comparisons of the 90 m LST downscaled from 990 m MODIS products using the (a) DTsEB (left 476 

panel), (b) TsHARP, (c) LMS, and (d) GWR methods with the ASTER LST for the three study areas. 477 
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  478 

Figure 5. Spatial distribution of the contributions of the four surface parameters to the final dLST results in study 479 

areas A, B and C by using the MODIS datasets: (a) contribution of the surface net radiation, 
𝜕𝐿𝑆𝑇

𝜕𝑅𝑛
𝑑𝑅𝑛; (b) 480 

contribution of fraction of the vegetation, 
𝜕𝐿𝑆𝑇

𝜕𝑓𝑐
𝑑𝑓𝑐; (c) contribution of the aerodynamic resistance, 

𝜕𝐿𝑆𝑇

𝜕𝑟𝑎
𝑑𝑟𝑎; (d) 481 

contribution of the surface resistance, 
𝜕𝐿𝑆𝑇

𝜕𝑟𝑠
𝑑𝑟𝑠; and (e) the estimated dLST. 482 
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4.2 Application to aggregated ASTER datasets  483 

Similar to the application to the MODIS datasets, the DTsEB, TsHARP, LMS, and GWR 484 

methods were also applied to downscale the 990 m resolution aggregated ASTER LSTs to 90 m 485 

resolution. Overall, the aggregated ASTER LSTs (Figure 6a) were higher than the MODIS LSTs 486 

(Figure 3a) in all the study areas, i.e., A, B and C. Especially in the high-value LST ranges, the 487 

aggregated coarse-resolution ASTER LSTs presented a much broader value distribution. The 488 

maximum value of the aggregated ASTER LSTs (Table 1) was approximately 4 K higher than that 489 

of the MODIS LSTs on average. Furthermore, from a visual comparison, the pixel-to-pixel LST 490 

variations were also observed to be larger in the aggregated coarse-resolution LSTs than in the 491 

MODIS LSTs. Compared with the reference ASTER LSTs without aggregation, the aggregated 492 

ASTER LSTs roughly exhibited the expected similar spatial distributions in all the study areas, 493 

i.e., A, B and C. The differences between the mean aggregated ASTER LSTs and the mean fine-494 

resolution ASTER LSTs over the three study areas were less than 0.1 K. The notable  differences 495 

between the coarse-resolution LSTs and fine-resolution reference LSTs were largely reduced with 496 

the use of aggregation datasets. 497 

The spatial patterns of the 90 m LSTs downscaled from the aggregation datasets using the 498 

DTsEB, TsHARP, LMS, and GWR methods over the three study areas are displayed in Figure 6 499 

and a scatterplot of the comparison between the downscaled LSTs and the reference fine-resolution 500 

ASTER LSTs is presented in Figure 7. Overall, although an overestimation of low LST extremes 501 

and an underestimation of high LST extremes were present, the DTsEB, TsHARP, LMS, and 502 

GWR methods could all effectively reconstruct subpixel spatial variations within coarse-resolution 503 

pixels. The spatial distribution and texture characteristics of the three downscaled LST results were 504 

similar and basically consistent with those of the 90 m reference ASTER LSTs. The accuracy of 505 

LST downscaling results obtained by the DTsEB method was higher than that obtained by the 506 

TsHARP, LMS, and GWR methods, while the LMS method slightly outperformed the TsHARP 507 

and GWR method. The RMSE decreased by 0.08~0.51 K (~17% on average) from 1.17~2.32 K 508 

for the TsHARP method, by 0.02~0.66 K (~13% on average) from 1.10~2.12 K for the LMS 509 

method, and by 0.03~0.51 K (~13% on average) from 1.12~2.36 K for the GWR method, to 510 

0.95~1.85 K for the DTsEB method (Table 3). As expected, the normalized RMSE of 0.57~0.79 511 

for the DTsEB method was lower than that for the TsHARP method (0.66~0.99), the LMS method 512 

(0.65~0.92) and the GWR method (0.65~1.00). Except for the results on August 20, 2015, over 513 
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study area C, where the MAE of the LMS method and GWR method was negligibly lower (0.03 514 

K and 0.02 K, respectively) than that of the DTsEB method, the MAE decreased by 0.10~0.36 K 515 

(16% on average) from 0.90~1.73 K for the TsHARP method, by 0.03~0.31 K (9% on average) 516 

from 0.86~1.58 K for the LMS method, and by 0.09~0.34 K (12% on average) for the GWR 517 

method, to 0.72~1.45 K for the DTsEB method. The correlation coefficient (Table 4), which varied 518 

between 0.63 and 0.83, for the DTsEB method was comparable to that for the TsHARP method 519 

(between 0.56 and 0.84), the LMS method (between 0.60 and 0.85), and the GWR method 520 

(between 0.47 and 0.85), while the bias for the DTsEB method was slightly higher than that for 521 

the latter three methods. Furthermore, for all the DTsEB, TsHARP, LMS, and GWR methods, 522 

better LST downscaling results were obtained in study areas A and C. The RMSE values obtained 523 

in the evaluation of the 90 m LSTs downscaled by the DTsEB method on October 3, 2010 in study 524 

area A, for example, were lower than 1 K. However, in the LST downscaling results on April 15, 525 

2005 in study area B, a larger bias was observed in the low-value ranges of LSTs for the TsHARP, 526 

LMS, and GWR methods (Figure 7).  527 

Compared with the application to MODIS datasets, the use of aggregated ASTER LST 528 

datasets for the DTsEB, TsHARP, LMS, and GWR methods all resulted in improved accuracy of 529 

the downscaled results for study areas A, B and C. When using the aggregated ASTER datasets 530 

instead of the MODIS datasets, the mean RMSE (MAE) values of the DTsEB, TsHARP, LMS, 531 

and GWR downscaled results decreased by 0.59 K (0.48 K), 0.70 K (0.58 K), 0.72 K (0.63 K), and 532 

0.74 K (0.62 K), respectively. For study area B on April 15, 2005, the RMSE and MAE values 533 

obtained by using the DTsEB decreased by 39% and 43%, respectively, while the TsHARP yielded 534 

a 28% decrease in RMSE and a 36% decrease in MAE, the LMS produced a 40% decrease in 535 

RMSE and a 45% decrease in MAE, and the GWR yielded a 27% decrease in RMSE and a 35% 536 

decrease in MAE compared to the application to the MODIS LSTs. Furthermore, the obvious 537 

underestimation in the high-value ranges of LSTs by using the MODIS datasets was effectively 538 

improved in the application to the aggregated ASTER LST datasets (see the scatter plot 539 

distribution in Figures 4 and 7).  540 

Figure 8 displays the spatial patterns of the contributions of the four scaling factors (e.g., Rn, 541 

fc, ra, and rs) to the final dLST when the DTsEB method was applied to the aggregated ASTER 542 

LST downscaling. Similar to the findings of the application to the MODIS datasets, the results 543 

showed that the contributions of the four parameters were different from each other and varied 544 
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both spatially and temporally in the application to the aggregated ASTER LSTs; the contributions 545 

of all four scaling factors varied from negative to positive. The contribution of rs was most affected 546 

by environmental variables and had a broader value distribution than the other three scaling factors 547 

whereas the contribution of Rn had the narrowest value distribution. For example, in study area A 548 

on April 24, 2006 and October 3, 2010, the contribution of Rn to the final dLST was less than ±1 549 

K while in study area B on July 29, 2005 and in study area C on September 2, 2015, the greatest 550 

contributions of rs to the final dLST were larger than 18 K and 14 K, respectively. Furthermore, 551 

the contributions of rs (Figure 8c) were positively correlated with the dLST (Figure 8e) and had 552 

the greatest impact on the final dLST results (0.72 ± 0.84 K on average), which was similar to the 553 

findings in the application to the MODIS LSTs. Meanwhile, the contributions of fc (Figure 8b) 554 

were negatively correlated with dLST, which is consistent with the negative correlation 555 

relationship between surface vegetation and LSTs. The lowest impact on the final dLST was found 556 

in the contributions of Rn (0.19 ± 0.18 K on average, Figure 8a). Compared with the application to 557 

the MODIS datasets, the spatial distribution of the contributions of the four scaling factors was 558 

smoother, and the contributions of ra and rs to the final dLST in high-value ranges were larger. 559 
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  560 
Figure 6. Spatial distributions of the (a) 990 m aggregated ASTER LSTs, (b) 90 m reference ASTER LSTs, (c) 561 

90 m LSTs downscaled by the DTsEB method, (d) 90 m LSTs downscaled by the TsHARP method, (e) 90 m 562 

LSTs downscaled by the LMS method, and (f) 90 m LSTs downscaled by the GWR method for study areas A, 563 

B and C. 564 

  565 
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  566 

Figure 7. Comparisons of the 90 m LSTs downscaled from the 990 m aggregated ASTER LSTs using the DTsEB 567 

(a), TsHARP (b), LMS (c), and GWR (d) methods with ASTER LSTs for the three study areas. 568 
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  569 

Figure 8. Spatial distribution of the contributions of four surface parameters to the final dLST results in study 570 

areas A, B, and C determined by using the aggregated ASTER datasets: (a) contribution of the surface net 571 

radiation, 
𝜕𝐿𝑆𝑇

𝜕𝑅𝑛
𝑑𝑅𝑛; (b) contribution of the fraction of vegetation, 

𝜕𝐿𝑆𝑇

𝜕𝑓𝑐
𝑑𝑓𝑐; (c) contribution of the aerodynamic 572 

resistance, 
𝜕𝐿𝑆𝑇

𝜕𝑟𝑎
𝑑𝑟𝑎; (d) contribution of the surface resistance, 

𝜕𝐿𝑆𝑇

𝜕𝑟𝑠
𝑑𝑟𝑠; and (e) the estimated dLST. 573 
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4.3 Discussion  574 

The improvements in LST downscaling methods made in recent years mainly include the 575 

following two aspects: 1) selecting more appropriate scaling factors and 2) establishing more 576 

accurate relationships between LSTs and scaling factors. Regrettably, many of the scaling factors 577 

chosen in previous works simply remedied the regressed negative correlation relationships 578 

between NDVI and LSTs [Merlin et al., 2010; Yang et al., 2011; Bonafoni, 2016; Duan & Li, 579 

2016], which is somewhat arbitrary and site-specific. Furthermore, most of the established 580 

relationships between LSTs and scaling factors were from statistical regressions [Agam et al., 2007; 581 

Bindhu et al., 2013], which limited the applicability and robustness of the LST downscaling 582 

algorithm and even resulted in different LSTs for the same pixel under different regression 583 

equations and sizes of areas of interest. Instead of selecting the scaling factors subjectively and 584 

using statistical regression relationships with no explicit physical mechanism, the DTsEB method 585 

proposed in this paper improves the downscaling of coarse-resolution LSTs by proposing 586 

analytical equations. These equations make use of surface energy balance constraints to provide a 587 

physically intuitive mechanism for combining the thermal infrared spectrum data (coarse 588 

resolution) with the VNIR and SWIR spectrum data (fine resolution).  589 

The performance improvements in the DTsEB method against the TsHARP, LMS, and GWR 590 

methods varied among different scenes and different underlying surface conditions. The DTsEB 591 

downscaled results were better than the TsHARP, LMS, and GWR results, especially in high LST 592 

ranges. The underestimations of TsHARP, LMS, and GWR over high LST value pixels (see the 593 

scatter plots in Figures 4 and 7) indicate the limitations in the extension of regression equations 594 

constructed with narrower NDVI ranges at coarse resolution to applications at wider NDVI ranges 595 

at fine resolution. Taking the concurrent 90 m ASTER LST product as the reference LST, the 596 

TsHARP method yielded average RMSE (MAE) values of 2.41 K (1.84 K) and 1.71 K (1.26 K) 597 

in the downscaling of the 990 m MODIS LSTs and the aggregated ASTER LSTs to 90 m, 598 

respectively. By contrast, for the LMS method the average RMSE (MAE) values were 2.35 K 599 

(1.80 K) and 1.63 K (1.17 K), respectively, and for the GWR method the average RMSE (MAE) 600 

values were 2.38 K (1.82 K) and 1.64 K (1.20 K), respectively. These LST downscaling accuracies 601 

of the TsHARP, LMS, and GWR methods are comparable to those achieved in previous studies. 602 

For example, Hutengs & Vohland [2016] applied TsHARP to downscale 960 m aggregated ETM+ 603 

LST to 240 m resolution and obtained an average RMSE of 1.48 K (referenced to 240 m ETM+ 604 
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LST data). In the downscaling of 990 m MODIS LSTs to 90 m resolution, the TsHARP method 605 

achieved RMSEs of 3.62 K and 2.16 K (referenced to 90 m ASTER LST data) for two different 606 

study areas in Wu & Li’s work [2019]. The LMS method in Mukherjee et al.’s [2014] work 607 

produced an average RMSE of 1.43 K in the downscaling of 1000 m MODIS LSTs to 250 m 608 

(referenced to 250 m TM LST data) and in Bisquert et al.’s [2016] work generated average RMSE 609 

values of 1.80 K and 2.10 K in downscaling 960 m MODIS LSTs and aggregated ETM+ LSTs to 610 

60 m (referenced to 60 m ETM+ LST data), respectively. Duan & Li [2016] introduced the GWR 611 

to downscale the 990 m MODIS LST to 90 m (referenced to 90 m ASTER LST data), and obtained 612 

an average RMSE (MAE) of 3.1 K (2.3 K). Compared to the TsHARP, LMS, and GWR, the 613 

DTsEB method in this study improved LST downscaling, with average RMSEs (MAEs) of 2.01 614 

K (1.54 K) and 1.42 K (1.06 K) in the application to the 990 m MODIS datasets and aggregated 615 

ASTER datasets, respectively, indicating the effectiveness of this new proposed method. The 616 

average RMSE decrease achieved by using the DTsEB (17% and 17% compared to the TsHARP, 617 

14% and 13% compared to the LMS, and 16% and 13% compared to the GWR in application to 618 

the MODIS datasets and aggregated ASTER datasets, respectively) in the LST downscaling 619 

compared favorably to those achieved by the Extended-RFD method (13% to 26% relative to the 620 

TsHARP) in Hutengs & Vohland [2016] and the regression tree-based method (averages of 20% 621 

and 25% relative to the TsHARP for an irrigated agricultural site and heterogeneous naturally 622 

vegetated area, respectively) in Gao et al. [2012]. Furthermore, compared to the downscaling 623 

methods suggested by Merlin et al. [2010], Chen et al. [2014] and Duan & Li [2016], the DTsEB 624 

method is also observed to produce similar or better LST accuracy in downscaling kilometer-625 

resolution LSTs to fine resolution. In the work of Merlin et al. [2010], broadband albedo was 626 

introduced into the TsHARP method to distinguish photosynthetically and nonphotosynthetically 627 

active vegetation and finally achieved average RMSEs of 3.81 K and 2.78 K in downscaling 1 km 628 

resolution MODIS LSTs and aggregated ASTER LSTs to 100 m resolution, respectively. Chen et 629 

al. [2014] combined the TsHARP method with thin-plate spline interpolation to downscale 1-km-630 

resolution MODIS LSTs to 250 m resolution and obtained an RMSE of 2.38 K. Duan & Li [2016] 631 

introduced geographically weighted regression to the TsHARP method and obtained an average 632 

RMSE of 2.7 K in downscaling 990 m resolution MODIS LSTs to 90 m resolution.  633 

The improved LST downscaling results obtained in the application to aggregated ASTER 634 

datasets compared to the application to MODIS datasets for the DTsEB, TsHARP, LMS, and GWR 635 
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methods mainly resulted from the smaller differences between the coarse-resolution aggregated 636 

ASTER LSTs and fine-resolution reference ASTER LSTs than between the coarse-resolution 637 

MODIS LSTs and fine-resolution reference ASTER LSTs, which is consistent with the previous 638 

findings that differences between coarse and reference fine resolution LSTs could directly affect 639 

evaluations of downscaling results [Agam et al., 2007; Merlin et al., 2010]. Yang et al. [2011] 640 

also found that downscaled LSTs often have a relatively high accuracy by using resampling and 641 

aggregation methods. Different from the intercalibration of the coarse- and fine-resolution LSTs 642 

and surface parameters (such as NDVI) that were obtained from different sensors in the works of 643 

Bindhu et al. [2013], the datasets from the MODIS and ASTER sensors onboard the same satellite 644 

platform, which avoided errors caused by different satellite altitudes and overpass times, were used 645 

directly without extra processing in this study. In this aspect, reasonably enhancing the spatial 646 

details of original coarse-resolution MODIS LSTs (Real data) is crucial to LST downscaling 647 

methods. Given the relatively large differences between the LSTs from these two sensors, the 648 

better performance of the DTsEB method compared with the TsHAPR, LMS, and GWR methods, 649 

especially in the high-value ranges of LSTs, highlights the high robustness, generality, and 650 

accuracy of DTsEB. Nevertheless, both the coarse-resolution remotely sensed LST products and 651 

the reference fine-resolution LST products have an intrinsic bias, which is difficult to exclude in 652 

LST downscaling. 653 

Another advantage of the DTsEB method is its ability to properly quantify the contributions 654 

of each scaling factor (e.g., surface net radiation, fraction of vegetation, aerodynamic resistance 655 

and surface resistance) within a physical framework. Although the values of these scaling factors 656 

are likely to vary with the spatial resolution of the VNIR/SWIR images, the physical relationship 657 

remains inviable, whereas the regression-based TsHARP, LMS, and GWR methods and others 658 

only attribute the subpixel spatial variations of LST to one or more vegetation indices and 659 

topographic variables (e.g., NDVI, NDWI, NDBI, EBBI, BI, TVDI, and DEM, see Introduction 660 

Section), and their regression relationships are different from one another. The test results in this 661 

study revealed that the surface resistance and aerodynamic resistance were, overall, the largest and 662 

second largest factors, respectively, which contributed to the subpixel spatial variations of coarse-663 

resolution land surface temperature for the whole spatial domain in the three study areas. An 664 

exception, for which the largest contribution was from the aerodynamic resistance in the 665 

downscaling of MODIS surface temperatures, occurred and was possibly due to the intrinsic 666 
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difference in the surface temperature and reflectance measurements between the MODIS and 667 

ASTER sensors. Different from the DTsEB method, the regression-based downscaling techniques 668 

(e.g., TsHARP, LMS, GWR and other methods) were flawed in their attribution of the 669 

contributions and different attribution results could be obtained from these techniques with 670 

different independent variables (e.g., scaling factors), which clearly does not make sense. 671 

Downscaled LSTs are often accompanied by the notorious “boxy effect” [Agam et al., 2007, 672 

2008; Duan & Li, 2016; Bindhu et al., 2013], which results from the addition of the constant 673 

residuals obtained at coarse resolutions. This addition is necessary and can help improve LST 674 

downscaling when there are LST differences at coarse resolution between the values calculated by 675 

the constructed relationship with the scaling factors and the values extracted from the remotely 676 

sensed image to be downscaled. The boxy effects become more pronounced when the residual 677 

errors are larger and disappear if LST downscaling is performed without adding the constant 678 

residual or the constructed relationship can perfectly (no residual error) represent the remotely 679 

sensed LSTs at coarse resolution. Compared to the TsHARP, LMS and GWR methods, the DTsEB 680 

method makes use of the dLST that represents the differences between LSTs at fine and coarse 681 

resolutions and is expressed as a function of the differences between surface parameters (e.g., dRn, 682 

dfc, dra, and drs). The addition of residual field is actually not applied in the DTsEB method. 683 

Therefore, the DTsEB method can more effectively reduce the “boxy effect” and thus improve 684 

LST downscaling compared to the TsHARP, LMS, and GWR methods because of the higher 685 

accuracy of the physical LST equation relative to the regression equation.  686 

In brief, the TsHARP, LMS, GWR and other regression-based methods are simple in model 687 

structure, do not require auxiliary near-surface data as input but are deficient in their poor 688 

spatiotemporal extensibility and in quantifying the contributions of influencing factors (namely, 689 

attribution analysis). In contrast, the DTsEB method, developed by theoretical derivations of 690 

surface energy balance and Penman-Monteith equation under the assumption of negligible spatial 691 

variations in atmospheric parameters over the subpixels within a coarse pixel, has the advantages 692 

of a solid physical foundation, the capability to separate the contributions of the influencing factors, 693 

and LST downscaling results with a high accuracy. The main limitation of the DTsEB method lies 694 

in the requirements for near-surface meteorological data (e.g., incoming solar radiation, air 695 

temperature, VPD, and wind speed), which may introduce a certain degree of uncertainty in LST 696 

downscaling, especially when the DTsEB method is applied regionally or globally, because pixel-697 
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by-pixel meteorological data (e.g., sourced from reanalysis data) should be introduced to consider 698 

the spatial variation in near-surface meteorology under such conditions. This data requirement 699 

does not add much computational cost. For instance, in-situ meteorological data, such as the 700 

FLUXNET and AMERIFLUX datasets, can be used in small-scale study areas (e.g. the study areas 701 

(Figure 1) with spatial dimensions of 9.9 km by 9.9 km). As for regional or global study areas, 702 

interpolated meteorological data and reanalysis data (such as ERA5 datasets) can be used. 703 

Moreover, the uncertainty of the parameterization in the DTsEB algorithm also introduces biases 704 

in LST downscaling to some extent. For example, the scatters in the downscaling of high LSTs 705 

(primarily over built-up lands) in this study likely resulted from the uncertainty in the 706 

determination of roughness height (influencing aerodynamic resistance) and soil heat flux by 707 

following the general parameterizations over vegetated surfaces (e.g., cropland, grassland, 708 

forestland), indicating that improved parameterization of the DTsEB method for these two 709 

parameters is required over built-up lands (beyond the scope of this study). In particular, we did 710 

not distinguish the parameterization of surface resistance between crop and built-up lands but 711 

applied the same equation as shown in Appendix D to parameterize surface resistance for all land 712 

cover types, primarily because the focus of our study was not on the parameterization but on the 713 

development of DTsEB downscaling method. Parameterizing surface resistance differently are 714 

strongly recommended over cropland, built-up land and other land cover types. In addition, due to 715 

the complexities of LST downscaling that come from the uncertainty/error of coarse-resolution 716 

and fine-resolution LSTs and VNIR/SWIR reflectance products, downscaling algorithm, 717 

parameterization, and inputs, none of the three methods could obtain a normalized RMSE < 0.5 in 718 

this study, although these methods have reported RMSE values of similar magnitude to those from 719 

previous studies. In short, despite the great progress made in the past for LST downscaling, there 720 

remains a long way to go. 721 

5. Summary and Conclusions  722 

A physical LST downscaling method, DTsEB, has been developed to downscale coarse-723 

resolution LST data to a fine resolution. By theoretical derivations of the surface energy balance 724 

equation and Penman-Monteith equation, analytical equations for combining thermal infrared data 725 

with visible and near-infrared data have been constructed in the newly proposed LST downscaling 726 

method. The differences in surface net radiation, fractional vegetation cover, aerodynamic 727 

resistance and surface resistance between coarse and fine resolutions are first calculated, and fine-728 
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resolution LSTs can then be obtained by converting the differences between the LSTs at the two 729 

resolutions to the differences between these surface parameters. The surface energy balance 730 

constraint in the DTsEB method provides a robust and physical connection between the scaling 731 

factors and LSTs and thus avoids the subjective selection of scaling factors and the use of statistical 732 

regression relationships. 733 

Because of the comprehensive consideration of various surface parameters related to LSTs, 734 

the DTsEB method can effectively reconstruct subpixel spatial variations within coarse-resolution 735 

pixels and achieve better downscaling accuracy than the widely adopted TsHARP, LMS, and 736 

GWR methods, when tested on 990 m MODIS and aggregated LST products collected between 737 

2005 and 2015 over three 9.9 km by 9.9 km cropland (mixed by grass, tree, and built-up land) 738 

study areas. The average RMSE (MAE) values in DTsEB decreased by 17% (16%) relative to the 739 

TsHARP method, 14% (14%) relative to the LMS method, and 16% (15%) relative to the GWR 740 

method for application to 6 scenes of MODIS datasets and by 17% (16%) relative to the TsHARP 741 

method, 13% (9%) relative to the LMS method, and 13% (12%) relative to the GWR method for 742 

application to 6 scenes of aggregated ASTER datasets. 743 

In summary, the DTsEB method has great potential in LST downscaling over various land 744 

cover types and satellite sensor data as long as the parameters are properly estimated, because 1) 745 

the solid physical foundation makes it robust and highly accurate and 2) the physical association 746 

between scaling factors and the LSTs can quantitatively separate the specific contributions of 747 

different scaling factors to the LST downscaling results. In the context that most existing LST 748 

downscaling methods are based on statistical regression, the physical DTsEB method proposed in 749 

this study is instructive and worthwhile. When other high-resolution satellite sensor (e.g. Landsat 750 

TM, ETM+, OLI) LST data are used to test the applicability of this new method, one may only 751 

perform a simulation of downscaling coarse-resolution aggregated LST to high-resolution LST (as 752 

in case 2 shown in Section 3.2) because no coarse-resolution satellite sensor LST concurrent with 753 

the high-resolution satellite sensor LST is available. To allow more general conclusions to be made, 754 

further work is recommended to evaluate the DTsEB method and the regression-based LST 755 

downscaling methods in more regions of the world that are characterized by a wider range of 756 

climates and land cover conditions. 757 
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Appendix  770 

A. TsHARP method 771 

For a comparative analysis of the LST downscaling performance of the DTsEB method, the 772 

widely used vegetation-based regression method, TsHARP (more specifically, the TsHARP 773 

version, named TsHARPfcS, which was recommended by Agam et al. [2007]), was applied in this 774 

study. The TsHARP method, a refinement of the disaggregation procedure for radiometric surface 775 

temperatures (DisTrad, proposed by Kustas et al. [2003]), assumes that the relationship between 776 

LSTs and NDVI-based transformed variables is scale invariant. A linear regression between LSTs 777 

and the NDVI-based transformed variable is first performed at coarse resolution, as follows: 778 

     0.625

0 1
(1 )

CR CR
f NDVI a a NDVI                                                 (A1) 779 

where the subscript CR represents the coarse resolution. 780 

Subsequently, the divergence (∆LST) between the regressed LSTs and the source LSTs, 781 

which comes from the spatial variability in LSTs that is driven by factors other than the vegetation 782 

cover fraction at coarse resolution, can be calculated, as follows: 783 

   
CR CR

LST LST f NDVI                                                            (A2) 784 
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This residual field is finally applied to derive the downscaled fine-resolution LSTs 785 

(LSTTsHARP), as follows: 786 

   

    0.625

0 1
(1 )

TsHARP FR

FR

LST f NDVI LST

a a NDVI LST
                                       (A3) 787 

where the subscript FR represents the fine resolution. 788 

B. LMS method 789 

According to the work of Mukherjee et al. [2014], least median square regression 790 

downscaling (LMS), which is less sensitive to outliers than the ordinary least square regression 791 

algorithm (used in TsHARP method), could achieve a better accuracy in LST downscaling.  792 

In the ordinary least square regression, the regression parameters slope and intercept are 793 

estimated by minimizing the sum of square residuals, as follows: 794 



  2

1

( ( ))
n

i i
i

MinSSR LST f NDVI                                                          (B1) 795 

In the LMS, the parameter slope and intercept are calculated to yield the least median of the 796 

square residuals, as follows: 797 

  
  

 

1 1 2 2
( ( )),( ( )),

...,( ( )),)
n n

LST f NDVI LST f NDVI
MinMedSR Median

LST f NDVI
                          (B2) 798 

The least median square regression between LST and NDVI is first performed at coarse 799 

resolution, and the divergence (∆LST) between the regressed LSTs and the source LSTs can be 800 

subsequently calculated. Finally, this residual field ∆LST is added at fine resolution to obtain the 801 

fine-resolution LST. 802 

C. GWR method 803 

Compared with traditional regression method, geographically weighted regression (GWR) 804 

can fully consider the geographic similarity relationship between the dependent variables and the 805 

independent variables. According to the work of Duan et al. [2016], a nonstationary relationship 806 

at coarse-resolution is first established, which can be expressed as: 807 
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         
0 1 2

( , ) ( , ) ( , )CR CR CR CR CR CR CR

i i i i i i i i i i
LST a a NDVI a DEM                 (C1) 808 

where the superscript CR represents the coarse resolution, the α0
CR(μi, νi), α1

CR(μi, νi), and α2
CR(μi, 809 

νi) are the regression coefficients, and the Δi
CR is the residual at coarse resolution. 810 

Subsequently, the coarse-resolution regression coefficients α0
CR(μi, νi), α1

CR(μi, νi) and 811 

α2
CR(μi, νi) and the residual Δi

CR are interpolated to fine resolution by using the ordinary kriging 812 

interpolation technique (according to the work of Duan et al. [2016]). 813 

Finally, the fine resolution downscaled LST can be obtained by using the fine resolution 814 

NDVI and DEM, as follows: 815 

         
0 1 2

( , ) ( , ) ( , )FR FR FR FR FR FR FR

i i i i i i i i i i
LST a a NDVI a DEM                 (C2) 816 

where the superscript FR represents the fine resolution, the α0
FR(μi, νi), α1

FR(μi, νi), α2
FR(μi, νi), and 817 

Δi
CR are the regression coefficients and residual, respectively, which can be obtained with the 818 

ordinary kriging interpolation technique. 819 

D. Parameterization of DTsEB 820 

Table D1. Methods for estimating the intermediate variables/parameters in DTsEB 821 

Parameters  Calculation formula  Description  References 

 r 

for MODIS: 

1 2 3 4

5 7

0.160 0.291 0.243 0.116

0.112 0.081 - 0.015

albedo b b b b

b b

   

 
 

for ASTER: 

before April 2008, 

1 3 5 6

8 9

0.484 0.335 - 0.324 0.551

0.305 - 0.367 - 0.0015

albedo b b b b

b b

  


 

after April 2008, 

1 30.697 0.298 0.008albedo b b    

r is the broadband albedo, 

bi is the short-wave band spectral reflectances. 

Liang, 2003; 

Mokhtari et al., 2013 

 G          1
n c c s c

G R f  
G is the soil heat flux, 

Γc = 0.05; Γs = 0.4. 
Su, 2002 

fc 
 

    

2

m

m m

I

I I
in

c

ax in

NDVI NDV
f

NDV NDV
  

NDVImin = 0.2; NDVImax = 0.86; 

NDVI > NDVImax, fc = 1; 

NDVI < NDVImin, fc = 0. 

Prihodko & Goward, 

1997; Tang et al., 

2010 

ra 

2

ln ln

u

u t
m h

om oh

a

Z d Z d

Z Z
r

k

       
       

           

ra is the aerodynamic resistance, 

Ψm and Ψh are the stability correction functions for 

momentum and heat transfer, respectively.   

Paulson, 1970; 

Li et al., 2009 
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Zom 

VegHeight 

 exp( )
om

aNDVIZ b
albedo

 

 / 0.123
om

VegHeight Z  

Zom is the roughness length for momentum transfer 

a = 0.26; b = -2.21 

Tang et al., 2013;  

Teixeira et al., 2009 

d 
2

3
d VegHeight  d is the zero-plane displacement height Allen et al., 2007 

Zoh  0.1
oh om
Z Z  

Zoh is the roughness length, governing the transfer 

of heat and vapour 
Allen et al., 2007 

rs 

 


  

1 2

2 1
( )
s s cu

s

s s cu

G G G
r

G G G LAI
 

   
1

( min) ( )
s L corr
G C m T m VPD r  

rs is the surface resistance, 

Gs1, Gs2 and GCU is the stomatal conductance, leaf 

boundary-layer conductance, and leaf cuticular 

conductance, respectively. 

CL is the mean potential stomatal conductance per 

unit leaf area, assumed to 0.007 for cropland 

Mu et al., 2007; 

Mu et al., 2011; 

εs 

      (1 )
s v c v s c s

f R f R d  

 0.0585 0.9332
v c
R f  

 0.1068 0.9902
s c
R f  

εs is the surface emissivity, 

εv=0.986 and εs=0.972 are the emissivities of bare 

soil and vegetation, respectively; Rv and Rs are the 

temperature ratio for vegetation and bare soil, 

respectively.  

Qin et al., 2004 

εa    0.2651.08( ln )
a sw

 

εa is the atmospheric emissivity, 

τsw is the atmospheric transmissivity for short 

wave radiation 

Bastiaanssen, 1995 
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