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Global perspectives on biodiversity loss 

 

Despite substantial progress in understanding global biodiversity loss, major taxonomic 

and geographic knowledge gaps remain. Decision makers often rely on expert judgement to 

fill knowledge gaps, but are rarely able to engage with sufficiently large and diverse groups 

of specialists. To improve understanding of the perspectives of thousands of biodiversity 

experts worldwide, we conducted a survey and asked experts to focus on the taxa and 

freshwater, terrestrial, or marine ecosystem with which they are most familiar. We found 

several points of overwhelming consensus (for instance, multiple drivers of biodiversity loss 

interact synergistically) and important demographic and geographic differences in 

specialists’ perspectives and estimates. Experts from groups that are underrepresented in 

biodiversity science, including women and those from the Global South, recommended 

different priorities for conservation solutions, with less emphasis on the establishment of 

protected areas, and provided higher estimates of biodiversity loss and its impacts. This 

may in part be because they disproportionately study the most highly threatened taxa and 

habitats. 
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In a nutshell: 

• Biodiversity experts estimated that about 30% (uncertainty range: 16–50%) of species have 

been globally threatened or driven to extinction since the year 1500 



• There was overwhelming consensus that global biodiversity loss will likely limit ecosystem 

functioning and nature’s contributions to people 

• Global biodiversity loss and its impacts may be greater than previously thought, due to 

higher estimates provided for understudied taxa and by underrepresented experts 

• Experts estimated that greatly increasing conservation investments and efforts now could 

remove the threat of extinction for one in three species that may otherwise be threatened or 

extinct by the year 2100 

 

Recent global reports (Díaz et al. 2019; IPBES Secretariat 2019; CBD 2020) have rigorously 

synthesized the large scientific literature on biodiversity and have identified major knowledge 

gaps. These gaps include large uncertainties in how many species are threatened with extinction 

(Díaz et al. 2019; CBD 2020; IUCN 2020), a lack of estimates for the impacts of global 

biodiversity loss on ecosystems and people (Isbell et al. 2017), and geographic and taxonomic 

biases in the available information (Tydecks et al. 2018). It remains difficult to fill these 

knowledge gaps due in part to the impressive diversity and complex biogeographic patterns of 

life on Earth. For example, in the past two decades, only about 1% of the estimated number of 

species have been assessed for risk of extinction by the International Union for Conservation of 

Nature (IUCN) (Mora et al. 2011; CBD 2020). Additional sources of information are urgently 

needed to inform global biodiversity conservation goals, targets (Díaz et al. 2020; Rounsevell et 

al. 2020; CBD 2021), and the policies and other transformative changes that will be needed to 

achieve them (CBD 2020). 

 Decision makers often rely on expert judgement to fill knowledge gaps (Cooke 1991; 

Sutherland and Burgman 2015; Cooke et al. 2018). Expert judgement has provided estimates and 

predictions of key unknowns in fields as diverse as nuclear-power safety (Cooke 1991), volcanic 

eruptions (Aspinall 2010), climate change (Bamber et al. 2019), and biodiversity loss (Schlapfer 

et al. 1999; Sala et al. 2000). The most accurate estimates and predictions come from large and 

diverse groups of experts, in part because expertise declines precipitously outside an individual’s 

area of specialization (Aspinall 2010; Burgman et al. 2011; Sutherland and Burgman 2015). For 

example, biodiversity experts often study a small subset of taxa and ecosystems, whereas the 

drivers of biodiversity loss and sustainable solutions vary from place to place (Balvanera et al. 

2017). Furthermore, even when small groups of specialists are carefully selected to ensure a 

diversity of expertise and geographic representation, the typical selection criteria (eg academic 

credentials, numbers of publications, years of experience) do not necessarily correspond to an 

expert’s ability to provide accurate estimates or predictions (Burgman et al. 2011; Sutherland 

and Burgman 2015). Instead, the best judgements tend to come from experts who are less self-

assured and assertive, and who integrate information from diverse sources (Sutherland and 

Burgman 2015). Input from a large and diverse group of biodiversity experts could therefore add 

to existing information and help fill remaining gaps in knowledge of global biodiversity loss. 

 Here, our objective was to gather and synthesize estimates and perspectives from 

thousands of biodiversity experts worldwide who collectively study all major taxa and habitats in 



freshwater, terrestrial, and marine ecosystems. We developed a survey to (1) identify points of 

global consensus, (2) help fill knowledge gaps for understudied taxa and regions, and (3) test for 

significant differences in estimates and perspectives among groups of experts. We compared 

survey results to other sources of information, where available (eg for well-studied taxa). Survey 

questions were developed by an international team of biodiversity experts to ensure that they 

were widely relevant and understandable to a geographically and linguistically diverse group of 

experts. Detailed methods are provided in WebPanel 1 and the full survey is provided in 

WebPanel 2. 

 We identified biodiversity experts as corresponding authors of papers published in 

scientific journals over the past decade on the topic of biodiversity (WebPanel 1). Focusing on 

the taxa and ecosystems they are most familiar with, these experts estimated past and future 

global biodiversity loss, which was defined in the survey as the percentage of species that are 

globally threatened or extinct (WebTable 1). Experts also ranked the drivers of global 

biodiversity loss and estimated its impacts on ecosystems and people. We received 3331 

responses from biodiversity experts (WebTable 2) residing in 113 countries and conducting 

research on biodiversity in nearly all (187) countries (WebFigure 1), including all major habitats 

in freshwater, terrestrial, and marine ecosystems. Results reveal a few points on which experts 

overwhelmingly agreed and, notably, substantial differences in estimates and perspectives among 

geographic and demographic groups of experts. A follow-up survey (WebPanel 3) formally 

assessed the accuracy of estimates for a subset of experts (WebPanel 1; Cooke 1991; Colson and 

Cooke 2018; Quigley et al. 2018). 

 

Magnitudes of past and future global biodiversity loss 

Biodiversity experts estimated that about 30% (uncertainty range: 16–50%) of species have been 

globally threatened or driven extinct since the year 1500 (Figure 1a). Estimates of past 

biodiversity loss were highest among experts who study freshwater ecosystems, amphibians, 

mammals, and freshwater plants (Figure 1a; WebTable 3). Many tropical habitats (eg tropical 

and subtropical rivers, wetlands, and forests) were estimated to have the greatest percentage of 

species threatened or driven extinct since 1500 (Figure 2a). 

 Biodiversity experts studying terrestrial or freshwater invertebrates (which are mostly 

insects) estimated that about 30% (uncertainty range: 20–50%) of these species have been 

threatened or driven extinct since 1500 (Figure 1a). For these hyperdiverse and understudied 

taxa, expert estimates help fill an important knowledge gap and suggest that many more species 

may be threatened than previously thought. In particular, insects are the most diverse and 

understudied group of species, given that they make up about 75% of all species of animals and 

plants (Díaz et al. 2019; Purvis et al. 2019; IUCN 2020) and the IUCN has assessed threatened 

status for less than 0.2% of the roughly six million species (Purvis et al. 2019; IUCN 2020). A 

recent estimate that at least one million species of animals and plants are currently threatened 

with extinction assumed that 10% of insect species are threatened, based on a comprehensive 

review of the limited available evidence (Díaz et al. 2019; Purvis et al. 2019). Our survey 



estimates, which were provided by 629 experts who study terrestrial and freshwater 

invertebrates, therefore suggest that the percentage of insect species that are threatened may be 

much higher. Further investigations of the diversity and threatened status of insects and other 

hyperdiverse and understudied taxa are urgently needed (Clausnitzer et al. 2009; Díaz et al. 

2019; Eisenhauer et al. 2019; IPBES Secretariat 2019; Cardoso et al. 2020; van Klink et al. 

2020), especially in light of large recent declines in insect abundance in some locations 

(Eisenhauer et al. 2019; van Klink et al. 2020). 

 For well-studied groups of animals and plants, where at least 80% of the species have 

been assessed by the IUCN (IUCN 2020), expert estimates were not systematically higher or 

lower than IUCN estimates (Figure 1a, paired t test: t = –0.93, P = 0.39), although expert 

estimates were somewhat higher than previous estimates for birds and mammals (IUCN 2020) 

and somewhat lower than previous estimates for plants (Figure 1a; Nic Lughadha et al. 2020). 

Expert estimates would be expected to be slightly higher because they include not only currently 

threatened species but also extinctions since 1500 (Ceballos et al. 2015; Humphreys et al. 2019). 

For the species groups assessed by the IUCN, survey estimates may be partly influenced by 

IUCN estimates, creating an unavoidable circularity in comparisons. When responding to survey 

questions, experts were instructed to use their knowledge of the scientific literature, but to 

provide their current best estimates rather than rely on their recollection of previously published 

estimates. 

 If current trends continue, then further loss of biodiversity is expected, and experts 

estimated that 37% (uncertainty range: 20–50%) of species might be threatened or driven to 

extinction by 2100 (Figures 1a and 2). Furthermore, many currently threatened species were 

predicted to go extinct before the end of this century. Most experts (84%) expected species to go 

extinct less than 100 years after becoming threatened, with 75% of experts expecting extinctions 

to occur within decades (10–100 years) and an additional 9% of experts expecting extinctions to 

occur within 10 years. Alternatively, if conservation investments and efforts are increased now, 

immediately implementing all currently known strategies, then experts estimated that 25% 

(rather than 37%) of species could be threatened or driven to extinction by 2100 (Figures 1a and 

2). Thus, greatly increasing conservation investments and efforts now might remove the threat of 

extinction for about one in three of the species predicted to be threatened or driven to extinction 

by the end of this century (Figures 1a and 2). Reversing past global biodiversity loss (Mace et al. 

2018; Leclère et al. 2020) will require new and ambitious transformative changes (Díaz et al. 

2019). As more threatened species become globally extinct, biodiversity loss becomes 

increasingly irreversible. 

 

Impacts of global biodiversity loss on ecosystems and people 

We found overwhelming consensus (96% of experts agreed) that global biodiversity loss is 

decreasing ecosystem functioning and nature’s contributions to people (NCP; Figure 1b). Experts 

estimated that the global threatening or extinction of species reduces ecosystem functioning and 

NCP by roughly 10–70%, accounting for large uncertainties in both the estimated magnitude of 



past global biodiversity loss and its estimated impacts (Figure 1b). That is, experts estimated that 

a lower bound of global biodiversity loss (10% of species threatened or driven to extinction) 

could decrease ecosystem functioning and NCP by at least 10%, and an upper bound of global 

biodiversity loss (50% of species threatened or driven to extinction) could decrease ecosystem 

functioning and NCP by as much as 70% (Figure 1b). Estimates of the impacts of global 

biodiversity loss were highest for freshwater ecosystems (Figure 1c; WebTable 3; WebFigure 

2b) and for people’s experiences in nature, water quality, opportunities for learning and 

inspiration, and the regulation of detrimental organisms, extreme events, soils, and climate 

(WebFigure 3). These estimated impacts of the global threatening or extinction of species are 

larger than the observed impacts of local species loss, which have been thoroughly studied in 

hundreds of biodiversity experiments and dozens of observational and theoretical studies (Loreau 

2010; O’Connor et al. 2017; van der Plas 2019). However, the impacts of global and local 

biodiversity loss are not expected to be equivalent (Isbell et al. 2017). For example, additional 

effects of biodiversity on ecosystem functioning can arise at larger spatial and temporal scales 

(Yachi and Loreau 1999; Isbell et al. 2011, 2017; Mori et al. 2018; Gonzalez et al. 2020) and 

declines in the abundance of threatened species may have impacts before species are locally or 

globally lost. 

 

Drivers of global biodiversity loss 

Expert rankings of direct drivers of biodiversity loss differed substantially and significantly (P < 

0.05) among taxa and ecosystems (Figure 3, a and c; WebTable 4; WebFigures 4 and 5). 

Previous studies (Wilcove et al. 1998; Sala et al. 2000; Maxwell et al. 2016; Purvis et al. 2019; 

CBD 2020) identified land-use change and overexploitation as top drivers of global biodiversity 

loss, but primarily considered terrestrial ecosystems (Sala et al. 2000) or the few groups of 

species that have been thoroughly assessed by the IUCN (Joppa et al. 2016; Maxwell et al. 

2016). Consistent with previous research (Wilcove et al. 1998; Sala et al. 2000; Maxwell et al. 

2016; Purvis et al. 2019; CBD 2020), we found land- and sea-use change was the top-ranked 

driver of global biodiversity loss (Figure 3a; WebTable 4), overexploitation was ranked as a 

major driver for losses of mammals and fishes (Figure 3c; Maxwell et al. 2016), and climate 

change was ranked as a major driver of losses in some of the most rapidly warming terrestrial 

ecosystems, including the tundra (WebFigures 4 and 5; Sala et al. 2000). We also found that 

climate change and overexploitation were top-ranked drivers of marine biodiversity loss, 

whereas land- and sea-use change and pollution were top-ranked drivers of freshwater 

biodiversity loss (Figure 3c; WebTable 4). Land- and sea-use change was identified as the most 

important driver of biodiversity loss for many well-studied taxa (eg amphibians, mammals, 

reptiles, birds) and for some hyperdiverse taxa whose threats have not yet been widely assessed 

by the IUCN (eg terrestrial invertebrates, some plant groups) (Figure 3, a and c). Climate change 

and pollution were among the major drivers of biodiversity loss for many other understudied 

taxa, including aquatic invertebrates and microbes (Figure 3c). While demonstrating that land- 



and sea-use change is essential to address, our results also indicate that comprehensively 

conserving biodiversity will require tackling many other drivers of biodiversity loss as well. 

 Magnitudes of biodiversity loss are expected to increase with further habitat loss (Haddad 

et al. 2015; Isbell et al. 2015) and climate change (Urban 2015; Trisos et al. 2020). Experts 

estimated that losing 50% or 90% of habitat threatens or drives to extinction about 41% (range: 

30–60%) or 80% (range: 63–95%) of species, respectively (WebFigure 6a). The experts also 

estimated that global warming by 2°C or 5°C threatens or drives to extinction about 25% (range: 

15–40%) or 50% (range: 32–70%) of species, respectively (WebFigure 6b). These estimates are 

higher than some previous related estimates; for instance, previous studies have projected that 

loss of 50% or 90% of habitat could lead to loss of 7–36% or 21–78% of species, respectively 

(Isbell et al. 2015), and that warming of 4.3°C could threaten 16% of species (Urban 2015). 

 Globally, most species are threatened by multiple drivers of biodiversity loss (Maxwell et 

al. 2016). We found overwhelming consensus (94% of experts agreed) that there are synergistic 

interactions between pairs of direct drivers of biodiversity loss, such that the combined effects of 

multiple drivers are greater than the sum of their individual effects. This consensus could help 

improve the specification and accuracy of projections of future changes in biodiversity (Sala et 

al. 2000). When asked about specific pairs of drivers, 90% of experts reported synergistic 

interactions between climate change and invasive alien species, whereas just over half (56%) of 

experts reported synergistic interactions between pollution and invasive alien species (Figure 

3b). 

 Upstream from these direct drivers of biodiversity loss are indirect drivers, which can be 

considered root causes and leverage points for addressing biodiversity loss (Díaz et al. 2019). 

We asked experts to rank the relative importance of five classes of indirect drivers. Experts 

reported that biodiversity loss is driven indirectly, in order of decreasing relative importance, by 

production and consumption, human population growth, governance, trade, and technology 

(Figure 3, a and c; WebTable 4). In contrast to the rankings of direct drivers, these rankings of 

indirect drivers remained fairly consistent across ecosystems, habitats, and taxa (Figure 3c; 

WebFigures 4 and 5; WebTable 4). 

 

Demographic and geographic differences in experts’ estimates and recommendations 

In addition to helping fill knowledge gaps and identify points of consensus, expert judgement 

can also reveal important demographic and geographic differences in perspectives and estimates. 

Demographic and geographic groups of experts provided similar rankings of direct and indirect 

drivers of biodiversity loss (Figure 4b; WebTable 4), but recommendations for allocating 

conservation budgets varied (Figure 4c; WebTable 3). Specifically, we asked experts to indicate 

their recommended allocation of conservation investments to five categories: acquire new 

protected areas, manage protected areas, manage unprotected areas, monitor biodiversity, and 

research biodiversity. Experts who identified as women recommended investing more in 

monitoring biodiversity (P < 0.01) and less in acquiring unprotected areas (P < 0.001) than 

experts who identified as men (Figure 4c; WebTable 3). Experts who live in low- or middle-



income countries recommended investing more in researching and monitoring biodiversity (P < 

0.001), and less in acquiring and managing unprotected areas (P < 0.001), than experts who live 

in high-income countries (Figure 4c; WebTable 3). Experts less than 30 years post-PhD 

recommended investing more in managing protected areas (P < 0.05) and monitoring 

biodiversity (P < 0.01) than experts at later stages in their careers (Figure 4c; WebTable 3). In 

addition, a multivariate analysis of variance indicated a significant two-way interaction between 

gender and income group (F2,2764 = 3.82, P < 0.01), as well as significant main effects of gender 

(F4,2764 = 4.07, P < 0.01), income group (F4,2764 = 32.64, P < 0.001), and career stage (F4,2764 = 

8.67, P < 0.001) on the overall recommended budget allocation strategy. Men from wealthy 

countries, who tend to be overrepresented in biodiversity science and policy (Tydecks et al. 

2018; Maas et al. 2021; Mori 2022), recommended investing in significantly different priorities 

than their colleagues, especially women from the Global South. Experts who recommended 

allocating more funds to research also recommended allocating more funds to monitoring 

(Pearson’s r = 0.27, t = 14.74, P < 0.001). 

 Furthermore, demographic and geographic groups of experts provided significantly 

different estimates for the magnitude of biodiversity loss and its impacts (Figure 4a; WebTables 

2 and 3). Notably, certain groups of experts that have been underrepresented in global 

biodiversity science, including experts who identify as women and who are from the Global 

South (Tydecks et al. 2018; Maas et al. 2021; Mori 2022), provided significantly (P < 0.01) 

higher estimates for past biodiversity loss and its impacts (Figure 4a; WebTables 2 and 3). There 

are several potential explanations for this variability in estimates (Figure 4a). 

 First, groups of experts may provide higher estimates if they disproportionately study the 

places or taxa that are experiencing the greatest biodiversity loss. For example, low- and middle-

income regions are known to harbor a disproportionate share of the world’s ecoregions and 

threatened species (Tydecks et al. 2018). Therefore, it is perhaps unsurprising that experts who 

live in these countries, and who compose the majority (79% of responses) of all experts who 

study biodiversity in those nations, provided higher estimates of biodiversity loss (Figure 4a). 

Indeed, we found that even experts who live in high-income countries provided higher estimates 

of past biodiversity loss if they study biodiversity only in low- or middle-income countries than 

if they study biodiversity only in high-income countries (Mood’s median test, Z = –2.30, P = 

0.021). Moreover, we found that experts who identify as women disproportionately study taxa 

that experts estimated are under greatest threat. That is, estimates of past biodiversity loss were 

higher for the taxa that are disproportionately studied by women, regardless of whether we 

considered all experts (Mood’s median test, Z = 3.21, P = 0.0014) or, to avoid circularity, only 

those who identify as men (Mood’s median test, Z = 3.09, P = 0.0020). Consequently, at least 

some of the geographic and demographic variation in estimates is likely due to underlying 

variation in rates of biodiversity loss and differences in which locations or what taxa various 

groups of experts tend to study. 

 It is also possible that differences in estimates are due to some groups of experts 

providing more accurate estimates than other groups, although we found no evidence of this. To 



formally assess the accuracy and informativeness of expert estimates, a follow-up survey, which 

included test questions with accepted answers, was completed by 59 coauthors of this paper 

(WebPanel 1). We then used the classical model of expert elicitation (Cooke 1991; Quigley et al. 

2018) to analyze results. We found considerable variation in the accuracy and informativeness of 

estimates within all groups of experts (WebTable 5; WebFigure 7), but no significant differences 

between demographic or geographic groups of experts (WebTable 6). We also found no evidence 

that experts who provided higher or lower estimates of past biodiversity loss also tended to 

provide more accurate or informative estimates (WebPanel 1). 

 

Survey limitations 

We acknowledge some limitations of our survey and explain how we attempted to address them, 

even if imperfectly. Our main survey did not include test questions with accepted answers. We 

did, however, include test questions in our follow-up survey to (1) test for systematic bias in 

estimates and (2) assess the statistical accuracy of several equal-weighted or performance-

weighted approaches for combining expert estimates (WebPanel 1). We found no evidence for 

systematic bias in estimates (WebPanel 1; WebFigure 7). We also determined that the equal-

weighted median approach, which we used throughout our analysis to combine expert estimates, 

was sufficiently statistically accurate, albeit less so than performance-weighting (WebPanel 1; 

WebTable 5). 

 Our survey and its sample of biodiversity experts were biased toward experts who 

publish and communicate in English. Although the invitation to complete the survey was 

translated into several languages (see “author contributions” in the Acknowledgements), our 

main survey was offered only in English. In addition, although we received responses from a 

large and diverse group of experts, our process of identifying biodiversity experts as 

corresponding authors of scientific papers published in English failed to include many other 

experts, such as many Indigenous peoples, conservation practitioners (Sandbrook et al. 2019), 

and other experts who primarily publish or communicate in non-English languages. Failing to 

include non-English-language studies can bias ecological meta-analyses (Amano et al. 2016; 

Konno et al. 2020). In an effort to make the survey questions relevant and accessible to experts 

worldwide, we iteratively revised the questions with an international team of experts who 

together study all major taxonomic groups and ecosystem types, and represent multiple career 

stages, genders, and regions of the world. We encourage future studies that collaboratively 

develop and translate surveys into multiple languages and that fully include the perspectives and 

voices of more biodiversity experts worldwide, including those in the Global South and East 

(Mori 2022). 

 Other biases in the sample of biodiversity experts were also apparent. We received twice 

as many responses from experts who identified as men than from experts who identified with 

other genders, and twice as many responses from experts who live in Europe and Central Asia 

than from experts who live in any other region of the world (WebTable 2). Often, the 

overrepresented groups of experts provided relatively low estimates for the magnitude of past 



biodiversity loss and its impacts on ecosystems and people (WebTable 2). Thus, the overall 

values we report likely underestimate the projections that would be provided by a 

demographically or geographically stratified sample. 

 

Conclusions 

Our results help fill knowledge gaps, identify points of consensus, and reveal important 

differences in experts’ estimates and recommendations. The expert estimates reported here 

complement, but do not supersede, other existing empirical evidence. Together, our results 

suggest that more species may be threatened than previously thought, given relatively high 

estimates of biodiversity loss for understudied and hyperdiverse taxa and from some historically 

marginalized groups of experts, including experts who identify as women or are from the Global 

South (Tydecks et al. 2018; Maas et al. 2021). Furthermore, our results suggest that a currently 

emphasized biodiversity conservation solution – the expansion of protected areas (Dinerstein et 

al. 2019; CBD 2021) – is perceived as a higher priority by historically overrepresented groups of 

experts, including experts who identify as men or who live in the Global North (Tydecks et al. 

2018; Maas et al. 2021). We encourage biodiversity experts to use these results to learn how 

their own perspectives differ from those of other experts (Sandbrook et al. 2019; Mori 2022), 

and to ensure that a diversity of perspectives is included when conducting global biodiversity 

assessments, setting global biodiversity goals and targets, and formulating the novel policies and 

other transformative changes needed to conserve biodiversity. 
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Supporting Information 

Additional, web-only material may be found in the online version of this article at 

 

Figure captions 

Figure 1. Expert estimates of (a) global biodiversity loss and (b, c) its impacts. (a) Medians of 

estimates and upper and lower bounds for past biodiversity loss (white circles, lines) and future 

biodiversity loss by 2100 if current trends continue (rightward gray arrows) or if conservation 

efforts are increased (leftward gray arrows). Where available, IUCN estimates are shown (red 

lines). (b) Expert estimates (black) as well as lower (blue) and upper (red) bounds for impacts of 



three levels of biodiversity loss (jittered on the x-axis). (c) Combining estimates of past 

biodiversity loss (a) and its impacts (b, linearly interpolated) shows the estimated impacts of past 

biodiversity loss. 

 

Figure 2. Expert estimates of changes in global biodiversity in terrestrial biomes (left column) 

and marine realms (right column) since 1500 (top row), by 2100 if current trends continue 

(middle row), or by 2100 if conservation efforts are intensified (bottom row). Values represent 

medians across all responses received from experts investigating biodiversity in each terrestrial 

biome and marine realm and are shown for terrestrial biomes and marine realms with at least ten 

responses (minimum = 11, median = 35, maximum = 470 responses per biome or realm). See 

WebFigure 2 for additional marine and freshwater habitats. 

 

Figure 3. Expert (a) rankings of drivers of biodiversity loss, (b) their synergistic interactions, 

and (c) top-ranked drivers by ecosystem type and taxa. (a) Low numbers correspond to large 

impacts on biodiversity. Experts indicated biodiversity loss is driven primarily by changes in 

land use and sea use resulting from production and consumption patterns and human population 

growth. (b) Dark colors indicate that many experts expected the pair of drivers to synergistically 

reduce biodiversity to a greater degree than the sum of their individual effects. See WebTable 4 

for tests of significant differences in rankings and WebFigures 5 and 6 for driver rankings by 

habitat. 

 

Figure 4. Demographic and geographic groups of experts provided (a) different estimates of 

biodiversity loss and its impacts, (b) similar rankings of drivers, and (c) different recommended 

top priorities for conservation budgets. Symbols, lines, and colors in (a) and (b) match those in 

Figure 1 and Figure 3, respectively. Genders were self-identified. NCP = nature’s contributions 

to people. See WebTable 2 for other genders with small sample sizes. For gross domestic 

product (GDP) comparisons, countries were grouped into high-income countries or all other 

income groups, following the World Bank’s classification for 2020. For career stage, the number 

of years of related work post-PhD is provided. 

 


