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Abstract

Cytometry enables precise single-cell phenotyping within heterogeneous populations. These cell types are traditionally annotated via
manual gating, but this method lacks reproducibility and sensitivity to batch effect. Also, the most recent cytometers—spectral flow or
mass cytometers—create rich and high-dimensional data whose analysis via manual gating becomes challenging and time-consuming.
To tackle these limitations, we introduce Scyan https://github.com/MICS-Lab/scyan, a Single-cell Cytometry Annotation Network that
automatically annotates cell types using only prior expert knowledge about the cytometry panel. For this, it uses a normalizing flow—a
type of deep generative model—that maps protein expressions into a biologically relevant latent space. We demonstrate that Scyan
significantly outperforms the related state-of-the-art models on multiple public datasets while being faster and interpretable. In
addition, Scyan overcomes several complementary tasks, such as batch-effect correction, debarcoding and population discovery. Overall,
this model accelerates and eases cell population characterization, quantification and discovery in cytometry.

Keywords: Cytometry, Deep Learning, Normalizing Flows, Cell-type annotation, Batch-effect correction

INTRODUCTION
The simultaneous detection of several cellular proteins by spec-
tral and mass cytometry opens up an unprecedented way to
detect, quantify and monitor the function of highly specific cell
populations from complex biological samples [1]. These rich anal-
yses are made possible using large panels of markers, typically
more than 30 or 40 markers, which considerably increases the
information in the data [2]. They provide key insights to better
understand specific diseases, immune cell functions or monitor
the response to therapies [3]. To obtain such results, population
annotation must be performed to provide each cell with a biolog-
ically meaningful cell type. Yet, due to the data’s high dimension-
ality and complexity, manual annotations become challenging
and labor-intensive [4]. This process, called gating [5], is highly
subjective and sensitive to the batch effect, or non-biological data
variability [4]. These drawbacks are amplified as the number of
cytometry samples increases, reinforcing the need to develop and
use automatic tools in population annotation and data analysis
[4, 6].

Many clustering tools [7–9] have been developed for automatic
data exploration and population discovery. However, a manual
analysis of marker expressions is still required to name each clus-
ter with a meaningful cell type. Indeed, clusters do not necessarily
correspond to one specific cell type, and it is up to the investigator
to decide to which population each cluster corresponds. Mostly,
clustering tools are also not scaling well and are sensible to
batch-effect, making this approach less suited for large datasets
with a large inter-sample variation. An alternative approach to
clustering is to use automatic annotation models. The first cat-
egory of annotation models are supervised or semi-supervised
models [10–13], but they rely on prior manual gating to train the

models. Moreover, these models can only annotate populations
with predefined types of cells, and they cannot be used to discover
new ones. The second category, to which our model belongs,
corresponds to unsupervised annotation models that leverage
prior biological knowledge about the panel of markers. Although
some models have been developed [13–15], they either (i) lack
interpretability, (ii) cannot discover new populations, (iii) require
the usage of batch-effect correction models before being applied
or (iv) scale poorly to large datasets. Surprisingly, deep learning
has been underused for cytometry annotations, while proving
efficient and flexible for many related applications of single-cell
biology [16–18].

In this paper, we introduce a single-cell cytometry annotation
network called Scyan that annotates cell types and corrects batch
effects concurrently without any label or gating needed. Scyan is a
Bayesian probabilistic model composed of a deep invertible neural
network called a normalizing flow [19–21]. This flow transforms
cell data into a latent space that is used for annotation, does not
contain batch effect and is key for population discovery.

We demonstrate Scyan efficiency, scalability and inter-
pretability on three public mass cytometry datasets for which
manually annotated cell populations are used to evaluate
models. We compare Scyan classification performance with two
knowledge-based approaches [14, 15], one clustering method
[7, 14] and two supervised models [11, 12]. Additionally, we
compare Scyan batch-effect correction with four state-of-the-
art batch correction methods [18, 22–24]. We also show that
our model can be used for population discovery, as well as for
the general task of debarcoding. Overall, these properties make
Scyan an end-to-end analysis framework for mass/spectral/flow
cytometry.
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METHODS
Problem definition
Let x1, . . . , xN ∈ R

M represent the vectors of M marker expressions
for N cells. We assume these expression levels have already been
transformed using the asinh or logicle [25] transformation and
standardized (see supplementary Section 11). Our objective is to
associate each cell to one of the P predefined cell types using
a marker-population table ρ ∈ R

P×M, with ρz,m summarizing the
knowledge about the expression of marker m for population z. If
it is known that population z expresses m then ρz,m = 1; if we
know that it does not express m then ρz,m = −1. Otherwise, if
we have no knowledge or if the expression can vary among the
population, then ρz,m = NA. Note that it is also possible to choose
values inR; for instance, for mid or low expressions, we can choose
0 and 0.5, respectively (see supplementary Section 6). In addition,
we can add covariates c1, . . . , cN ∈ R

Mc associated with each cell,
e.g. information about the batch or which antibody has been used
by the cytometer. Mc denotes the number of covariates; it can be
zero if no covariate is provided.

Generative process
In this section, we detail the generative process of Scyan
(illustrated in Fig. 1b/c). Let X be the random vector of size
M representing one cell by its standardized marker expres-
sions; in other words, X is the random variable from which
x1, . . . , xN are sampled. We model X by the following deep
generative process:

Z ∼ Categorical(π)

E | Z = (em)1≤m≤M, where

{
em = ρZ,m if ρZ,m �= NA
em ∼ U ([−1, 1]) otherwise,

H ∼ N (0, σ IM)

U = E + H

X = f−1
φ (U).

(1)

In the above equations, π = (πz)1≤z≤P represents the weights
of each population, with the constraints πz ≥ 0 and

∑
z πz = 1.

Z is the random variable corresponding to a cell type among the
P possible ones. E is a population-specific variable whose terms
are either known according to the expert knowledge table ρ or
drawn from a uniform distribution between negative expressions
(represented by -1) and positive expressions (represented by +1).
H contains cell-specific terms, such as autofluorescence. Finally,
U is the cell’s latent expressions, summing a population-specific
component and a cell-specific one. Note that E, H and U have a
dimension of M. Also, U can be transformed into a measured cell
marker expressions vector X by the inverse of a deep invertible
network fφ detailed below. The normalizing flow aims to learn
an invertible mapping between the actual marker expression
distribution and the target U. By mapping marker expressions to
a biologically defined latent space, we force the transformation
to provide latent expressions on a scale that is shared for every
marker, going from negative (-1) to positive (+1). These latent
marker expressions are meant to be free of batch effect or any
non-biological factor. By the design of fφ and of the objective
function, the normalizing flow is not allowed to make huge space
distortions, which helps preserve the biology. Also, an ablation
study shows that both fφ and the uniform term are key for good
performances (see supplementary Section 3).

Invertible transformation network
The core network, fφ (illustrated in Fig. 1b), is a normalizing flow
[19–21]. It transforms the target distribution pX into the known
base distribution pU, which was described in the previous section.
Using a change of variables, we can compute the exact likelihood
of a sample x by

pX(x; θ) = pU(fφ(x); π) · log
∣∣∣det

∂fφ(x)

∂xT

∣∣∣. (2)

To be able to compute this expression, we need to choose an
invertible network with a tractable Jacobian determinant. We
have chosen a set of transformations called Real Non-Volume-
Preserving (Real NVP [26], we justify this choice in supplementary
Section 1) transformations, which are compositions of functions
named coupling layers fφ := f (L) ◦ f (L−1) ◦ · · · ◦ f (1) with L the
number of coupling layers. Each coupling layer f (i) : (x, c) �→ y
splits both x and y into two components (x(1), x(2)), (y(1), y(2)) on
which distinct transformations are applied. We propose below
an extension of the traditional coupling layer [26] to integrate
covariates c (illustrated in Fig. 1c):

⎧⎨
⎩y(1) = x(1)

y(2) = x(2) 
 exp
(
s([x(1); c])

)
+ t([x(1); c]).

(3)

In the equations above, 
 stands for the element-wise product,
[.; .] is the concatenation operator and (s, t) are functions from
R

d+Mc to R
M−d, where d is the size of x(1). These functions can

be arbitrarily complex, in our case, multi-layer-perceptrons. Note
that the indices used by the coupling layer to split x into (x(1), x(2))

are set before training and are different for every coupling layer.
This way, we ensure that the flow transforms all the markers. Each
coupling layer has an easy-to-compute log Jacobian determinant,
which is

∑
i s([x(1); c])i, and is easily invertible as shown in the

following equations:

⎧⎨
⎩x(1) = y(1)

x(2) = (y(2) − t([y(1); c])) 
 exp
(

− s([y(1); c])
)
.

(4)

As fφ is a stack of coupling layers, it is also invertible, and its
log Jacobian determinant is obtained by summing each coupling
layer log Jacobian determinant. Stacking many coupling layers
is essential to learning a rich target distribution and complex
variables interdependencies. Overall, the normalizing flow has
some interesting properties: (i) the coupling layers preserve order
relation for two different expression values, and (ii) penalize huge
space distortion (the log determinant term). The two properties
are useful to preserve biological variability as much as possible.

Learning process
The model parameters are θ = (π , φ). For computational stability
during training, instead of learning π itself we actually learn logits
(lz)1≤z≤P from which we obtain πz = elz∑

k elk
. By doing this, we ensure

the positivity of each weight and guarantee they sum to 1. To
train the model, we minimize the Kullback–Leibler (KL) diver-
gence between the cell’s empirical marker-expression distribution
pX∗ and our model distribution pX. It is equivalent to minimiz-
ing the negative log-likelihood of the observed cell expressions

−Ex∼pX∗

[
log pX(x; θ)

]
over θ . Using subsection 2 and adapting it to
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Figure 1. Overview of Scyan usage and architecture. A, Illustration of Scyan typical use case. It requires (i) one or multiple cytometry acquisitions and (ii)
a knowledge table that details which population is expected to express which markers: Then, Scyan annotates cells in a fast and unsupervised (or fully
automatic) manner while removing batch effect (if any). After training, we provide interpretability tools to understand Scyan annotations and discover
new populations that can eventually be added to the table afterward. B, Illustration of Scyan architecture: it is composed of two core components: (i)
fφ , a neural network called normalizing flow, and (ii) a latent space on which a target distribution U is defined (cube on the right). The table from (a) is
used to define this target distribution U mathematically. Also, the latent space (on which U is defined) has the same dimension as the original space;
therefore, each marker has its corresponding latent expression. Finally, one cell is represented by its marker expressions vector and eventual covariates.
Once a cell is mapped into the latent space, annotation can be made by choosing the highest probable population, whose distribution is Gaussian-like
and on a hypercube vertex. C, One coupling layer, the elementary unit that composes the transformation fφ , contains two multi-layer perceptrons (s
and t) and uses cell covariates such as the batch information.

integrate covariates leads to minimizing the following quantity:

LKL(θ) = −
∑

1≤i≤N

[
log

(
pU(fφ(xi, ci); π)

)
+ log

∣∣∣det
∂fφ(xi, ci)

∂xT

∣∣∣]. (5)

In the above equation, the term pU(fφ(xi, ci); π) = ∑P
z=1 πz ·

pU|Z=z(fφ(xi, ci)), which is not computationally tractable because
the presence of NA in ρ leads to the summation of a uniform
and a normal random variable. We approximate the density of
the sum of the two random variables by a piecewise density
function that is constant on [−1 + σ , 1 − σ ] with Gaussian
queues outside of this interval. In practice, we choose a normal
law with a low standard deviation, which leads to a good
piecewise approximation (see supplementary Section 2). If we
consider the KL-divergence as described above, some modes may
collapse; that is, one small population may not be predicted.
Indeed, a small population z that has a small weight πz leads to
smaller gradients towards this population. To solve this issue,
we favor small populations once every two epochs. For that,
for all z, we replace πz by π

(−T)
z = e−lz/T∑

k e−lk/T , where T is called

temperature [27, 28] as it increases the entropy of π (−T). Note
that here we added the minus signs to reverse the weights of
the populations so that it favors small ones. A temperature
close to 0 leads to high weights for small populations, while
an infinite temperature leads to equal population weights, i.e.

the maximum entropy. Alternating between π and π (−T) allows
for a better balance of population sizes at the end of the
training.

We optimize the loss on mini-batches of cells using the Adam
optimizer [29]. Once finished training, the annotation process Aθ

consists in choosing the most likely population according to the
data using Bayes’s rule. So, for a cell x with covariates c, we
have

Aθ (x, c) = argmax1≤z≤P πz · pU|Z=z(fφ(x, c)). (6)

We also define a log threshold tmin to decide whether or not to
label a cell (see supplementary Section 4 to determine its value).
That is, we do not label a cell if

max1≤z≤P pU|Z=z(fφ(x, c)) ≤ etmin .

Batch-effect correction
Batch information is one-hot-encoded and added to the covariates
(see covariates usage in Eq. 4). Minimizing LKL(θ) (as in Eq. 5) will
naturally reduce inter-batch variability in the latent space. Note
that we do not need to add any additional loss terms, and Scyan
will naturally use the batch information inside the covariates
to better align the distribution of the different batches on the
target distribution U. Since the normalizing flow is invertible, we
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can conserve this batch alignment when mapping back in the
original space using a simple trick: we map all cells back with the
same reference covariates cref . Note that cref is simply one of the
existing covariates vectors; usually, we choose the covariates of
the patient with the most cells. More formally, to correct the batch
effect of a sample x with covariates c �= cref , we first transform x
into its latent expressions via fφ . Since the latent space is batch-
effect free, latent expressions can then be transformed back into
the original space using the covariates of the reference batch
and f−1

φ . Formally, we denote by x̃ the batch-effect-corrected cell

associated with x, that is, x̃ = f−1
φ

(
fφ(x, c), cref

)
. In this manner, we

get expressions x̃ as if x were cell expressions from the reference
batch. After training, we can also infer the missing values (NA)
from the table using the mean latent expressions for all popula-
tions: it allows to refine batch correction for all markers.

Interpretability and population discovery
Understanding Scyan predictions
One important thing to notice is that U1 | (Z = z), . . . , UM | (Z = z)
are independent for every population z. It means that we can
decompose log pU|Z=z(u) = ∑

m log pUm |Z=z(um), and we can gather

all these terms into a matrix of scores
(
log pUm |Z=z(um)

)
z,m

. The

term log pUm |Z=z(um) can be interpreted as the impact of marker
m towards the prediction of the population z for the latent cell
expression u. Based on that, we can interpret Scyan predictions
for a group of cells (xi, ci)i by transforming the cells into their
latent expressions and then averaging the score matrices. The
resulting matrix is typically displayed on a heatmap (Fig. 4d), and
populations are sorted by their score (sum over a score matrix
row). Note that, in the figure, each population score is scaled to
make it easier to read.

Latent expressions
Considering a cell x and its covariates c, its latent representation
is u = fφ(x, c). The information of which marker is positive or
negative is contained in u. Indeed, um ≈ 1 corresponds to a positive
expression, while um ≈ −1 represents a negative expression,
whatever the marker m (i.e. expression levels for all markers are
unified). Similarly, um ≈ 0 is a mid-expression, and so on. We
average the latent cell expressions over one population to obtain a
latent expression at the population level. These population-level
latent expressions can be displayed for one population (Fig. 4c) or
for all of them at once (Fig. 4b).

Benchmark-related methods
Datasets used
We compare Scyan with the related works on three public mass
cytometry datasets. One is from patients with acute myeloid
leukemia [7] (AML, N = 104 184 cells, mass cytometry), one from
bone marrow mononuclear cells [30] (BMMC, N = 61 725 cells,
mass cytometry) and the last one from peripheral blood mononu-
clear cells (PBMCs) samples of peanut-allergic individuals [31]
(POISED, N = 4178 320 cells, mass cytometry). The latter contains
30 samples, divided among seven batches, and under two different
conditions (peanut stimulated or unstimulated). Finally, one flow
cytometry dataset [32] has been used for debarcoding (N=100
000 cells). Manual gating has been performed in previous studies
[7, 30, 31], providing ground truth labels to evaluate annotation
models. Note that the unsupervised models listed below do not
use these labels during training.

Compared models
We compared Scyan with six other annotation models: three
knowledge-based models (ACDC [14], a baseline model defined by
the authors of ACDC and MP [15]), one clustering method (Pheno-
graph [7]) and two supervised models (LDA [11] and CyAnno [12]).
We also benchmarked our model ability to correct batch effect to
four models: Cydar [23], Combat [24], SAUCIE [18] and Harmony
[22]. We used the POISED dataset on which we had seven biological
batches, and we amplified the batch effect to complex the batch
correction (see subsection 2.7.4).

Evaluation
We evaluated the models for the classification task using accu-
racy, macro-averaged F1-score and balanced accuracy [33]. The
results are detailed in Fig. 2a. For the debarcoding task, the Sil-
houette score and the Calinski Harabasz Score were used. All the
above metrics were implemented in Scikit-learn [34]. Concerning
the batch-effect-correction task, we provide two metrics: the cell-
type LISI (cLISI), which measures if the biological variability is
kept, and the integration LISI (iLISI), which measures how well
the batches overlap, i.e. if the batch-effect was corrected. We used
the implementation from Harmony [22]. For more details, see
supplementary Section 10.

Batch effect amplification
On the POISED dataset, we amplified the batch effect so that the
benchmark becomes more complex. Let σBE > 0 a scale factor, and
b1, . . . , bN ∈ [1 . . . 7] the batch number associated with each of the
N cells. Then, we sample seven matrices S1, . . . , S7 ∈ R

M×M, whose
elements are drawn from N (0, σBE). For a cell i of expression xi, the
batch-effect-amplified expression x

′
i is multiplied by some batch-

relative term: x
′
i = (IM + Sbi

)xi. In this equation, IM is the identity
matrix of size M × M, and the multiplication operation is matrix
multiplication. In practice, we use σBE = 0.01. Note that the UMAPs
were computed on the cell-type-related markers and did not use
cell-state markers.

Implementation details and hyperoptimization
We implemented our model using Python and the Deep Learning
framework Pytorch [35]. We used between six and eight coupling
layers whose multi-layer-perceptrons (s, t) have each between
six and eight hidden layers depending on hyperparameter opti-
mization. The hidden layer size can vary between 16 and 32.
Model hyperoptimization can be performed using an unsuper-
vised heuristic (see supplementary Section 9), but Scyan is robust
to small changes of the main hyperparameter σ (see supplemen-
tary Section 5).

RESULTS
Scyan model
Scyan is composed of two core components: (i) fφ , a neural net-
work called normalizing flow, and (ii) a latent space on which a
target distribution U is defined (Fig. 1b). This target distribution
is a mixture of distributions—one per population—built using
prior biological knowledge about the cell types. This knowledge
is provided as a table: for all populations, each expected marker
expression is given or left unknown (more details in supplemen-
tary Section 6). This table is then used to mathematically define
the target distribution U. Also, the latent space (on which U is
defined) has the same dimension as the original space; therefore,
each marker has its corresponding latent expression.
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Figure 2. Comparison with state-of-the-art unsupervised methods. A, Performance comparison of Scyan and four other unsupervised methods on three
datasets (POISED, AML, BMMC) using three metrics for each. B, UMAP [39] representing the manually annotated populations on the POISED dataset. C,
Models runtime comparison (left) and RAM usage comparison (right) over multiple dataset sizes. D, UMAPs representations of the annotations of all five
models on the POISED dataset. E, Unsupervised metrics for the debarcoding task. F, UMAP representing Scyan debarcoding. Cells that did not correspond
to any desired barcode were left unclassified (NA).

The purpose of the normalizing flow is to learn an invertible
mapping between the actual marker expression distribution and
the target U. By mapping marker expressions to a biologically
defined latent space, we force the transformation to provide latent
expressions on a scale that is shared for every marker, going from
negative (-1) to positive (+1). These latent marker expressions are
meant to be free of batch effect or any non-biological factor. By the
design of fφ and of the objective function, the normalizing flow is
not allowed to make huge space distortions, which helps preserve
the biology. After learning the model parameters φ, annotations
are performed on the latent space. We annotate a cell by choosing
the population distribution whose likelihood is the highest for
the cell latent representation. If a cell latent representation does
not correspond to any component of the mixture, then the cell
remains unlabelled, but population discovery can be run after-
ward to annotate it eventually (see Fig. 4).

Scyan provides a better and faster annotation
than unsupervised methods
Classification metrics comparison
We evaluated Scyan to four unsupervised or semi-supervised
models for the classification task (ACDC and its baseline [14],
MP [15] and Phenograph [7]), on three public datasets, and over
three different metrics (see subsection 2.7 for more details). The
tests show that Scyan outperforms the other models. In particular,
Scyan is about 20 points higher than the other models on POISED
and BMMC for the F1-score and the balanced accuracy, which
is explained by the capacity of Scyan to detect better small
populations (Fig. 2a). On these datasets, multiple populations rep-
resent less than 1% of the total number of cells, making these
populations more difficult to detect and label. Yet, small popu-
lation annotations can still be essential, and thus so is Scyan’s
capacity to detect them. Also, the gap between Scyan and the
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other models is more stringent for POISED, showing our model’s
ability to better annotate large, complex datasets with batch
effect.

Computational speed, scalability and memory usage
To demonstrate the scalability of Scyan on large datasets, we
compare the execution times and the random access memory
(RAM) usage of the different algorithms over multiple dataset
sizes (Fig. 2c). The different sizes were obtained by sub-sampling
the POISED dataset, for various sample sizes from 125 000 to 4
million cells. All experiments were run using the same hardware;
in our case, CPUs only (i.e. no GPU acceleration, even though Scyan
can use GPUs, supplementary Section 12). On N = 4 million cells,
Scyan runs in 5 min, while ACDC/MP/Phenograph need between
1 and 7 days. Scyan scales well to large datasets, as shown by the
low slope on Fig. 2c. Concerning RAM consumption, Scyan uses
less than 4GB of RAM, which means it can be run on any standard
laptop. In comparison, ACDC, MP and Phenograph all require
between 128 and 512GB of RAM, which is only available on large
computer clusters. See supplementary Section 8 for comments
about supervised models runtime.

Comparison for barcoding deconvolution
Barcoding is a method that reduces the batch effect and data
variability by allowing the processing of multiple cell samples
together, each cell sample being labeled—or barcoded—with a
unique combination of antibodies. This protocol requires (i) the
dedication of a few markers to make barcodes and (ii) the identi-
fication of each cell sample based on its barcode. The latter task,
called debarcoding [32], can also be expressed as a knowledge-
based annotation task. In this situation, we annotate samples
instead of populations, and the expert knowledge required for
this task simply corresponds to the known barcodes. Figure 2e
shows that Scyan outperforms ACDC, MP and the baseline on a
public dataset with 20 barcodes and six markers [32]. The UMAP
on Fig. 2f shows a clear separation of the different barcodes, with
some small residual clusters (not to be considered) correspond-
ing to non-existing barcodes. The UMAPs corresponding to the
debarcoding of the other methods can be found in supplementary
figure 7.

Scyan corrects batch effect
A batch effect is a phenomenon that induces data variability
due to non-biological factors such as the use of a different anti-
body or slightly different cytometer settings. In practice, these
factors may introduce variability that interferes with the analysis
and can lead to confusion, over-interpretation and difficulties in
annotating populations. To tackle this issue, Scyan can align the
distribution of different batches (see methods subsection 2.5).
Classically, batch effect correction is performed before annota-
tion, but our method allows for correcting it at the same time
as the annotation. Taking into account the batch helps Scyan
to annotate the populations better. Figure 3a shows the batch
effect we want to correct (from the amplified POISED dataset,
see subsection 2.7.4). The next figures, i.e. Fig. 3b/c, show that
Cydar’s and Combat’s corrections are very limited, even though
they keep the biological variability. SAUCIE provides the best iLISI,
so it mixes well the different batches, but it also removes most of
the biological variability (high cLISI). On the opposite, Scyan and
Harmony successfully remove the batch effect while preserving
the biological variability. Another benchmark on POISED without
amplification can be found in supplementary Section 7.

Scyan latent space provides interpretability and
helps population discovery
Scyan’s latent space (see subsection 2.6.2) is key for interpretabil-
ity. Specifically, it enables the understanding of the Scyan anno-
tation process, and also helps to quickly characterize new pop-
ulations of cells to improve the annotation. We illustrate pop-
ulation discovery on the POISED dataset. For this purpose, we
show that we could annotate six populations that were missed
during manual gating, such as differentiated effector T cells [36]
(TCD8 TEM) and γ δTCR CD16+ cells (Fig. 4a shows the popula-
tions we had before running population discovery). To demon-
strate two different ways of discovering new populations, we show
that we can (i) annotate more precise populations among known
ones using Leiden [8] sub-clustering and Scyan latent space (see
subsection 2.6.2 and Fig. 4b), or (ii) discover a population that
was missing from the table (see Fig. 4c/d). For the latter case,
we show that cells corresponding to a population that is not
in the table will be annotated as ‘unknown’ by Scyan, and its
interpretability (subsection 2.6.1) will help characterize this miss-
ing population. One advantage of Scyan is its table flexibility:
the new populations, once characterized, can be added to the
knowledge table, and Scyan will then be able to annotate them.
This is shown by Fig. 4e that summarizes all the populations we
annotated.

Understanding Scyan annotation process
Scyan annotation process can be interpreted on one cell or a
group of similar cells (see methods subsection 2.6.1). Typically,
we can select one population and interpret Scyan’s annotation
process on this group of cells. First, we can display all the
latent marker expressions corresponding to these cells (Fig. 4c).
It opens up a new simple way to understand which marker is
positive or negative at a glance. Indeed, the latent space has
a shared scale for all markers, and a simple scale indicates
expression levels between Negative (-1) and Positive (+1). But
mostly, we can provide a confidence measure (or log-probability)
to belong to each cell type (Fig. 4d, left column). Then, for
each population, we can decompose the population probability
as a sum of marker impact (expressed as log-probabilities). It
allows explaining which marker contributed the most to the
probability of each of the populations. This interpretability
property can be used to discover new populations (see subsection
3.4.2).

Annotating unknown populations
Sometimes, users may forget some populations in the table given
to Scyan, and the corresponding cells will be left unclassified.
Since every population from the POISED dataset was already
described, we decided to remove two populations from the table
provided to Scyan (non-classical and intermediate monocytes)
to see if we could retrieve them. As shown in Fig. 4a on the red
magnifying glass, cells corresponding to these populations were
annotated as being ‘Unknown’ (light gray color). We can further
investigate these ‘Unknown’ cells to retrieve their corresponding
population, see Fig. 4c/d. To summarize, the process is the
following: (i) we choose a group of cells that were unclassified
by Scyan, (ii) we quickly characterize these cells using Scyan
latent space and (iii) we update the table to annotate them.
Combining Fig. 4c and Fig. 4d provides a description of the Scyan
annotation process that is understandable by humans, through
decomposition into confidence measures by marker and by
population.
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Figure 3. Batch-effect correction on the POISED dataset with batch-effect amplification. A, UMAP showing the seven different batches (before batch
effect correction). The batch effect is visible since different batches form separated clusters. B, Batch-effect correction of Scyan, Cydar, Combat, SAUCIE
and Harmony. A superposition of all batch distributions can show a good batch effect correction. C Batch-effect correction metrics. A low cLISI (at the
top of the figure) denotes good cell-type variability preservation, while a high iLISI (on the right of the figure) denotes better batch mixing.

Comparison with supervised models
Performances on POISED
Two supervised models (LDA [11] and CyAnno [12]) were
compared with Scyan on the POISED dataset. Figure 5a shows
the performances of the three models on POISED. Even though the
benchmark is in favor of supervised models (since they use labels),
Scyan still has a higher performance. Also, since we are comparing
an unsupervised method with supervised methods, comparing
results with manual gating is biased. For this reason, we addition-
ally compare the models’ agreement (in a pairwise manner) using
Cohen’s Kappa score (Fig. 5b). We see that LDA and Scyan are the
two models whose agreement is the highest, even higher than LDA
and CyAnno (while they are two supervised methods trained for
the same task). Concerning the disagreement between Scyan and
the manual gating, we show in the supplementary figure 9a/b
that most disagreement is partly due to the subjective delimi-
tation boundaries between non-classical/intermediate/classical
monocytes. As shown by supplementary figure 9a/b, although
Scyan is also properly annotating these populations, it has
slightly different decision boundaries than manual gating, which
still significantly decreases F1-score or balanced accuracy. It
emphasizes again the importance of comparing the agreement
between all models instead of only comparing with manual
gating.

Annotations of the ungated cells
One key aspect of annotation models is whether they annotate
more cells than traditional manual gating. This can enhance the
biomarker discovery and provides higher statistical significance
during post-annotation analyses. We compared the number of
cells annotated by Scyan, LDA [11] and CyAnno [12] on POISED,
and demonstrated that Scyan annotates more cells than CyAnno,
and a similar amount of cells to LDA (Fig. 5d). Indeed, CyAnno
annotated 15% of the ungated cells, Scyan 97% and LDA was
set up to annotate all cells. Moreover, Scyan annotated six more
populations compared with CyAnno and LDA. Most importantly,
we show by back gating that the annotated cells were properly

classified (see supplementary figure 9c). Indeed, one limitation of
supervised models such as LDA or CyAnno is that they cannot
annotate new populations, i.e. they are limited to manually gated
populations. Although knowledge-based annotation models (like
ours) are limited to populations from the provided table, the table
can be easily extended. This property is, therefore, crucial for
population discovery with Scyan.

Usage for biomarker discovery
The POISED dataset is decomposed into two conditions: peanut-
stimulated samples, and unstimulated ones. We try to find
biomarkers that are differentially expressed on peanut-stimulated
samples. For that, for all models, biomarkers were extracted,
and we ran Wilcoxon signed-rank tests [37] between the two
conditions (we assume patients are independent). On Fig. 5c, we
sorted the biomarkers by P-value for all models, and we display
the −log10(P − value) of the first 400 biomarkers. We show that
Scyan extracts more biomarkers of higher significance. Note that
a similar process could be run for other clinical conditions, such
as the patient response to treatment. Having more significant
biomarkers means it will be easier to predict such an outcome.

DISCUSSION
We have introduced Scyan, a multi-purpose neural network for
cytometry annotation, batch-effect removal, debarcoding, and
population discovery. It provides a robust and broad pipeline to
analyze cytometry cell populations, monitor their dynamics over
time and compare the populations’ proportions among patients.
Such analyses can help discover biomarkers or specific pop-
ulations characteristic of response to treatment, for example.
Scyan can perform fast and automatic annotations for these large
datasets and correct potential batch effects. Some studies use
barcoding to reduce the batch effect, hence requiring a debarcod-
ing step that Scyan can also perform. Thus, Scyan is suitable for
various types of cytometry projects and does not rely on any extra
cytometry analysis library.

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbad260/7231520 by IN

SER
M

 user on 18 Septem
ber 2023



8 | Blampey et al.

Figure 4. Interpretability and population discovery with Scyan. A, UMAP on POISED before population discovery. Two subclusters of TCD4 EM cells
have been defined and characterized in (b). Also, intermediate and non-classical monocytes were removed from the knowledge table to show that we
can retrieve existing populations that are missing from the table: as shown by the red magnifying window, Scyan annotated these cells as unknown,
and (c/d) helped to characterize them as intermediate and non-classical monocytes. B, Latent space expressions for subsets of TCD4 cells, displayed on
a heatmap. We can easily see the difference between the two clusters: one is CD27+, the other CD27-. The subclusters were obtained by running Leiden
[8] clustering on the TCD4 EM populations. C, Scyan helps characterize the unknown cells defined in (a) by showing its latent marker expressions,
displayed on a shared scale going from Negative to Positive expressions. We can see, for instance, that these ‘Unknown’ cells are CD16 positive and
CD14 negative. D, Scyan provides soft predictions for all populations (first column), i.e. a log probability is associated with each population. Then, each
population probability is decomposed into a sum of marker impact on the probability (one row). The dark colors indicate that the corresponding marker
expression decreased the population probability of the corresponding row. According to the first column, we see that the first guesses of Scyan are
classical monocytes (both CD14 high and mid) and mDC1. Then, we look at the three corresponding rows: they correspond to the confidence of Scyan
for these populations decomposed by markers. For instance, we see that the expression of CD14 (which is negative, according to (c)) decreased Scyan’s
confidence toward the prediction of classical monocytes. Thus, based on the first row, we can conclude that the ‘Unknown’ cells are similar to classical
monocytes but are CD14- instead of CD14+, and that these cells are non-classical or intermediate monocytes. Similarly, the third row shows that they
look like mDC1 cells but with a CD16+ expression instead of negative (again, (c) was needed to see the expression of CD16). Once more, we indeed
conclude that these cells are non-classical/intermediate monocytes, and they can be added back to the table for the annotation. E, UMAP of Scyan
annotations after population discovery. The red boxes denote new populations compared with (a): such populations were found using subclustering
and analyzing Scyan’s latent space.

Scyan annotates populations without needing labels and,
therefore, can fully replace manual gating. It uses a marker-
population table containing expert knowledge. The literature
offers many resources and existing knowledge to construct such
tables, but some marker expressions remain unexplored. For
this reason, we offer the possibility to handle ‘not applicable’
values inside the table and, to improve flexibility, intermediate
expressions such as ‘mid’ or ‘low’. In the case where the panel
remains not well known enough to build the input table, Scyan
can help discover new populations: analyses start by annotating
large populations and then gradually target smaller and smaller
cell types. Also, with the increasing usage of cytometry, we expect
the marker knowledge to improve over time, reinforcing Scyan
performance and ease of use.

In terms of model architecture, normalizing flows are a recent
and promising field of research in generative models. They benefit
from interesting mathematical properties such as (i) exact likeli-
hood computation and (ii) invertibility. We show that normalizing
flows can be used to leverage marker knowledge in a biologically
natural way, providing interpretability. Indeed, the network

invertibility allows switching between the measured marker
expressions and their latent expressions. In this space, all latent
markers have unified expression ranges, which is convenient for
human analysis, especially for population discovery. It also makes
the model reliable and transparent to biologists, which can help
build trust toward the model annotations and validate them.
Moreover, normalizing flows are smooth transformations that
control how the space is deformed, ensuring that we do not alter
the biological meaning behind marker expressions. At the same
time, it benefits from the expressiveness and flexibility of deep
neural networks. In fact, the usage of neural networks allows
adding additional terms in the loss function to handle the batch
effect, which is naturally corrected with the network invertibility.
Eventually, we can further push the usage of these convenient
mathematical properties for other tasks in single-cell analysis,
for instance, single-cell RNA sequencing data or imaging mass
cytometry data [38].

Overall, Scyan promises to be powerful in several ways. Scyan
is robust for identifying unique cell populations which, like den-
dritic cells or stromal cells, for instance, are underrepresented in
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A

Figure 5. Comparison with supervised models. The last two figures were done after Scyan’s population discovery. A, Metrics on POISED. Note that
among the three methods tested, CyAnno and LDA are supervised methods (i.e. using training labels from manual gating). B Heatmap representing
pairwise models agreement using Cohen’s Kappa score. A high value indicates a better agreement (the highest value is 1). C, After annotation, one can
extract biomarkers and run differential expression relative to a clinical condition. Here, we show the significance of the biomarkers for all methods
(higher is more significant). D, Number and percentage of cell types that were annotated by the models among the ungated ones.

complex biological samples although they play essential roles in
shaping disease resolution or progression. The ability of Scyan
to analyze large datasets, in a fast and accurate manner, will be
essential for this task and open up the possibility of unraveling
the heterogeneity of such rare populations of cells. Mostly, these
analyses can be made on all types of cytometers, and whatever
the presence or not of batch effect.

Key Points

• We introduce Scyan, an automatic and unsupervised
method for annotating cell populations in cytometry; it
replaces manual gating, which is time-consuming, chal-
lenging, non-reproducible and sensitive to batch effect.

• Scyan annotates cell types using only prior expert
knowledge about the cytometry panel (i.e. no label
needed) and uses a deep generative model called nor-
malizing flow.

• Scyan is fast, scalable, interpretable and significatively
more accurate than existing state-of-the-art methods.

• It also has an integrated batch-effect correction and can
run debarcoding and population discovery.

• The Scyan package is open-source, well-documented,
simple to use and integrates with core frameworks.
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