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We find periodic skyrmionic textures via conformal cartographic projections that map either an
entire spherical parameter space or a hemisphere onto every regular polygon that provides regular
tessellations of the plane. These textures minimize the energy inherent to the mapping and preserve
the sign of the Skyrme density throughout the entire space. We show that 2D spinor fields (e.g., 2D
polarization) that present periodic textures preserving the sign of the Skyrme density, unavoidably
exhibit zeros. We implement these textures in the polarization state of a laser beam.

Introduction.— We refer to a 2D skyrmion as a distri-
bution (or texture) over a plane of a vector field that com-
pletely spans a spherical parameter space, while main-
taining the sign of the Skyrme density ρS (the Jacobian
between the sphere and the planar region occupied by
the skyrmion). By definition, the Skyrme number, NS,
given by the integral of ρS over the region occupied by
the skyrmion, is an integer. Merons are distributions that
span one hemisphere, north or south, their Skyrme num-
ber then being ±1/2 when the hemisphere is spanned
once. Skyrmions and other 2D textures have been ob-
served in a plethora of physical systems, such as mag-
netic materials [1–3], sound waves [4, 5], superfluids [6, 7]
and optical fields [8]. In nonparaxial optical fields, iso-
lated skyrmions whose vector parameter is the normal-
ized photonic spin angular momentum [9, 10] have been
found. Periodic textures, such as skyrmion lattices for
the electric field’s instantaneous orientation in evanes-
cent waves [11] and spin optical meron lattices [12–16]
have also been observed.

In paraxial optics, 2D skyrmionic textures in the
polarization distribution over the transverse plane of
monochromatic beams are often referred to as Stokes tex-
tures [8, 17, 18], since they span all normalized values
of the Stokes vector, that is, the Poincaré sphere. Full
Poincaré beams [19–21], which display a spatially vari-
ant polarization pattern in a transverse section that is
the stereographic projection of the Poincaré sphere, can
be regarded as isolated skyrmions.

Regarding periodic textures, optical polarization lat-
tices of tiles that separately map each Poincaré hemi-
sphere can be recognized as Stokes meron lattices. For
example, the superposition of three plane waves with ap-
propriate polarizations and wavevectors results in a tri-
angular lattice [22]. Note that in this lattice ρS oscillates
in sign, as does that in nonparaxial spin optical meron
lattices [12–15]. This oscillation may lead to cancella-
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tion when integrating ρS, yielding NS ≈ 0 in some re-
gions. In contrast, a few periodic textures turn out to
avoid such cancellation, since they preserve sgn(ρS) over
all space, such as optical nonparaxial skyrmion lattices
[11], meron lattices in superfluid 3He-A [6], or textures
in the velocity field of sound waves [5]. We recently pro-
posed propagation-invariant optical polarization lattices
that were designed to present this property [23].

The first goal of this work is to study skyrmionic tex-
tures that preserve the sign of the Skyrme density. Such
textures would result naturally from the accumulation
of skyrmions with equal (nonzero) Skyrme number. We
show that the subset of these textures for which the
mapping from the sphere to the plane is conformal min-
imize a geometric measure of the energy of the map-
ping. These textures are then stable when the interaction
between skyrmions follows the minimization of this en-
ergy. As it turns out, the periodic conformal maps that
describe these textures were developed in nineteenth-
and twentieth-century cartography, where the sphere is
mapped onto specific regular polygons. Physical space is
then tessellated with these polygons without reflections,
only translations and rotations. The spherical parameter
space is then mapped as if it were the Earth (Fig. 1(a)).

Our second goal is to consider the implementation of
these conformal periodic skyrmion lattices as Stokes tex-
tures in paraxial monochromatic fields, for which the
mapped spherical space is the Poincaré (or Bloch) sphere.
We propose a prescription that generates well-behaved
fields. We also find that the implementation of periodic
skyrmionic structures with uniform sgn(ρS) necessarily
implies that the field must present zeros, which make the
pattern sensitive to perturbations.

Energy minimization.— The Skyrme number, NS,
quantifies how many times the unit vector s =
(sin θ cosϕ, sin θ sinϕ, cos θ) wraps around the sphere, its
sign giving the sense of wrapping. Within a given re-
gion σ, NS = (4π)−1

∫∫
σ
ρS(x, y) dxdy, where ρS(x, y) =

s(x, y)·[∂xs(x, y)× ∂ys(x, y)] is the Jacobian of the trans-
formation. Let us define an energy density of the map-
ping as a measure of the local stretching from the sphere
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FIG. 1. (a) The Earth and a spanned spherical parameter space (e.g. the Poincaré sphere). (b-e) Periodic skyrmionic textures
resulting from conformal cartographic mappings providing regular tessellations: (b) Peirce’s quincuncial projection, (c) Adams’
world in a hexagon, (d) Lee’s world in a tetrahedron, and (e) Wray’s variation of Lee’s projection. For all, the entire sphere
is mapped onto regular polygons (outlined in black), one of them highlighted in darker blue in each case. Rotated versions of
these tessellate the plane. A northern and a southern hemispheres in each case are highlighted in red and purple, respectively.

onto the flat space, namely the Euclidean norm of the
2 × 3 Jacobian matrix: ϵ = ||∇s||2/2. It is shown in
the Supplemental Information, Sec. 1, that, for a peri-
odic texture with constant sgn(ρS), the total energy over
a unit cell has as minimum value 4π|NS|, and this min-
imum energy is achieved when the map is conformal, in
which a case ϵ = |ρS|. Therefore, in physical situations
where the dynamics follow minimization of the energy
as defined earlier, the accumulation of large numbers of
skyrmions whose Skyrme density has equal sign naturally
results in periodic conformal maps.

Cartographic mappings.— We now present the confor-
mal cartographic transformations and their implemen-
tation as skyrmionic textures (Fig. 1). Only three tiles
provide regular tessellations [24]: squares, equilateral tri-
angles and regular hexagons. Here, we explore conformal
maps that yield regular tessellations where either the en-
tire sphere or a hemisphere is mapped onto each regular
polygon. The only case left out is that where a hemi-
sphere is mapped onto a hexagon, since it is impossible
to tile the plane without edge conflicts using only rotated
copies of hexagonal merons.

We begin with Peirce’s quincuncial projection [25],
which maps the whole sphere, and also each hemisphere,
onto a square. The vertices of each square tile mapping
a hemisphere are equally spaced along the sphere’s equa-
tor (Fig. 1(b)). The map is conformal except at these
four points. The resulting meron texture is topologically
equivalent and morphologically similar to a texture re-
sulting from energy minimization in superfluid 3He-A [6].

We consider next Adams’ world in a hexagon projec-
tion [26], which maps the sphere onto a regular hexagon,

while mapping each hemisphere onto an equilateral tri-
angle. This map exhibits singular points at the vertices
of each triangular tile that spans a hemisphere, which are
again equally spaced along the equator (Fig. 1(c)). We
recently generated a Stokes texture corresponding to the
superposition of a few plane waves that is topologically
equivalent to this map, albeit not conformal [23].

Finally, we explore a map of the entire sphere onto
an equilateral triangle, known as Lee’s world in a tetra-
hedron projection [27]. Here, the sphere is divided into
four equal spherical equilateral triangles, each being then
projected onto the corresponding face of a regular tetra-
hedron. Unfolding the tetrahedron yields an equilateral
triangle that tessellates the plane with rotated copies of
itself. Note that one of the tetrahedron’s vertices is cho-
sen to be at the south pole (Fig. 1(d)). This texture is
topologically equivalent and morphologically similar to
one generated recently in the instantaneous velocity field
of sound waves [5]. Wray proposed a modified version of
Lee’s mapping [28] where the two poles are positioned at
the midpoints of two opposing edges of the tetrahedron
(Fig. 1(e)) . Unlike Lee’s original projection, in Wray’s
transformation the equator does not form closed loops
but meandering lines. Upon unfolding the tetrahedron,
the resulting triangle can be rearranged as a rectangle
(with aspect ratio

√
3 : 1), yielding a tessellation of rect-

angles. In both versions of Lee’s projection (Figs. 1(d,e)),
the singular points are placed at the vertices of the tetra-
hedron.

These maps can be expressed as a sequence of two
conformal transformations: a planar map defined by an
analytic function w(z), where z = x + iy (x and y be-
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ing the Cartesian coordinates in physical space), and a
stereographic projection from the north pole. These op-
erations result in a map from the plane to the sphere’s
azimuthal and polar coordinates as ϕ = arg [w(z)] and
θ = 2arctan |w(z)|, respectively. The 3D Cartesian coor-
dinates in the sphere’s ambient space are s1 = sin θ cosϕ,
s2 = sin θ sinϕ and s3 = cos θ.
For Peirce’s and Adams’ projections, w(z) is the in-

verse function of the Schwarz-Christoffel transformation
[29] that maps the unit disk onto a square [30] and an
equilateral triangle [28], respectively. The expressions for
w(z) for each of these projections (Peirce [30], Adams,
Lee, and Wray [28]) are:

wP(z) =
ei(ϕ0+α)

√
2

sd

(
z̃1,

1√
2

)
, (1a)

wA(z) = ei(ϕ0+α)sm(z̃2), (1b)

wL(z) = 21/6ei(ϕ0+α)sm(z̃2)cm(z̃2), (1c)

wW(z) =
ei(ϕ0+α)

2
sd

(
z̃3,

√
3− 1

2
√
2

)
, (1d)

where sd is the ratio between the Jacobi elliptic func-
tions sn and dn, while sm and cm correspond to the
Dixon elliptic functions, which can be expressed in terms
of the Weierstrass elliptic function denoted as ℘(z) and
its derivative ℘′(z): sm(z) = 6℘(z)/(1 − 3℘′(z)) and
cm(z) = (3℘′(z)+1)/(3℘′(z)−1) [31]. The three complex
numbers z̃i are defined as z̃1,2,3 = γ1,2,3 e−iα(z − z0)/d,

with γ1 = Γ2(1/4)/(2
√
2π), γ2 = Γ3(1/3)/(2π), and

γ3 = 31/4Γ3(1/3)/(21/3π), where Γ denotes the gamma
function. The angle α rotates the polygon onto which
the sphere is mapped, while ϕ0 sets the initial value from
which ϕ is swept within this polygon. Note that ϕ0 in-
fluences the type of meron that appears in the textures
(e.g., Neel- or Bloch-type [8]). The real and imaginary
parts of the complex number z0 are the x and y coordi-
nates defining the center of the map. Finally, d sets the
length of the edge of either the square or the equilateral
triangle spanning a hemisphere in the case of Peirce’s and
Adams’ mappings, while for Lee’s and Wray’s mappings
it corresponds to the length of the edge of the triangle
spanning the sphere. Note that, due to the periodicity of
the Jacobi and Dixon elliptic functions, these mappings
work over the whole plane and not only within a central
tile. The periodicity of the tiling is then natural. The in-
verse transformations to each of the mappings in Eqs. (1)
are given in the Supplemental Information, Sec. 2.

The Skyrme number can be expressed as ρS = ρSPρw,
where ρSP = 4(1 + |w(z)|2)−2 is the Jacobian of the

stereographic projection, and ρw = [∂xRe(w(z))]
2
+

[∂yRe(w(z))]
2
is that for the transformation w(z) (sim-

plified by using the Cauchy-Riemann conditions). These
equations imply that ρS is always positive, as shown in
Fig. 2. Within the context of cartography, this means
that the shapes of the continents are never reversed.
A different convention for the stereographic projection

could be used that reverses its sign, leading to textures
with sgn(ρS) < 0.

(a) (b) (c)

max

y

x 0

FIG. 2. Skyrme density for (a) Peirce, (b) Adams, and (c)
Lee/Wray maps within the area displayed in Fig. 1. The unit
cell of each texture is outlined by dashed lines.

Note that NS = 1 within the polygons that map the
entire sphere for all projections in Fig. 1. Peirce’s and
Adams’ projections lead to lattices of square and trian-
gular merons, respectively, in which any two neighboring
merons map different hemispheres. Within each meron,
NS = 1/2. Nevertheless, in the first version of Lee’s pro-
jection (Fig. 1(d)), there are merons that span twice the
southern hemisphere, leading to NS = 1. In fact, both in
Lee’s and Wray’s versions of the tetrahedron projection,
different regions covering the same hemisphere are in di-
rect contact and not separated by a line corresponding
to the equator, so these textures do not classify as meron
lattices according to some definitions [1].
Periodic skyrmionic textures in monochromatic parax-

ial optical fields.— We now explore the implementation
of these skyrmionic textures in the spatial distribution
of polarization for a monochromatic optical beam of fre-
quency ω. The transverse electric field at any point (x, y)
and time t is given by E = Re [E exp(−iωt)], where E
is the complex field, which can be parametrized as E =
E0

[
cos(θ/2)l+ eiϕ sin(θ/2)r

]
= Ell+Err, with E0 being

a complex function of x and y that provides an overall
amplitude and phase and that does not affect the po-
larization (defined by the expression in brackets). Here,

the unit vectors l, r = (x ± iy)/
√
2 represent left- and

right-circular polarization, where x and y are unit vectors
along the x and y axes, respectively. The circular polar-
ization components El,r are complex functions of x and y,
whose relative phase is ϕ = ϕr−ϕl (with ϕr,l = arg[Er,l]).
At each point, E traces over each optical cycle an ellipse
within the transverse plane, whose ellipticity and hand-
edness is determined by θ, while ϕ gives twice the ori-
entation angle of its major axis with respect to x. Each
possible polarization ellipse then corresponds to a point
on the Poincaré sphere (Fig. 1(a)) described by a nor-
malized Stokes vector s = (sin θ cosϕ, sin θ sinϕ, cos θ).
Spanning the Poincaré sphere then means achieving ev-
ery paraxial polarization. The northern and southern
hemispheres correspond to left- and right-handed ellipses,
respectively, with the two poles corresponding to the two
circular polarizations, while linearly polarized ellipses are
positioned along the equator.
We now derive equations for optical fields that im-



4

plement these textures, independently of the mapping
function w(z). Since w(z) = tan(θ/2)eiϕ, E = El(z)[l +
w(z)r], so any reasonable choice for El(z) leads to the de-
sired polarization texture as long as Er(z) = El(z)w(z).
However, it is convenient to choose a functional form
that avoids singularities in the field, and that treats
the two hemispheres similarly. In our convention, the
hemisphere with left(right)-handed ellipses corresponds
to |w(z)| < (>) 1, with the pole representing left(right)-
circular polarization corresponding to w(z) = 0 (∞). It
is then desirable to find an expression for El(z) such that
Er(z) = El(z)w(z) takes a similar functional form except
for the replacement w → w−1. One such solution is

El,r(z) = E
√

−w±1
0

[w±1(z)− w±1
0 ]∗

|w±1(z)|2 + |w±1
0 |2

, (2)

where E is a constant amplitude factor and w0 is a di-
mensionless constant. Note that both polarization com-
ponents vanish at points where w(z) = w0, meaning that
this construction forces zeros in the field at points where
the polarization is such that tan(θ/2)eiϕ = w0. As we
discuss later, this feature has a topological origin. In
what follows we choose w0 = −1 to simplify the expres-
sions, so that the zeros coincide with points of vertical
linear polarization. We now focus on Peirce’s texture as
a representative example, for which Fig. 3 shows the in-
tensity and phase of El,r (a), as well as the polarization
and intensity distributions (b). The figures for the other
maps are shown in the Supplemental Material, Sec. 3,
which also includes plots of the fields’ discrete Fourier
spectra for the four maps.
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FIG. 3. Unit cell of the beam implementing in its polariza-
tion state Peirce’s texture according to Eqs. (1) with α = π/4,
ϕ0 = 7π/6, and z0 = (−1+i)/2. (a) Theoretical intensity and
phase distributions of the circular polarization components
El,r. (b) Polarization and intensity distributions. Phase vor-
tices result in either C-points or scalar vortices.

These textures correspond to optical polarization lat-
tices [32] exhibiting polarization singularities such as L-
lines (lines of linear polarization) and C-points (points
of circular polarization) [33]. C-points emerge in regions
where a vortex in ϕl,r with topological charge ml,r is

superimposed onto a region with no vortex in ϕr,l, ren-
dering a vortex in ϕ with topological charge mϕ = ∓ml,r.
The polarization ellipse undergoes a rotation of mϕπ ra-
dians around the singularity in ϕ. For mϕ > 0, the ellipse
performs a counterclockwise rotation, while for mϕ < 0
it rotates clockwise. In the proximity of C-points with
mϕ = ±1, the ellipses exhibit distinct singular patterns
known as lemons (mϕ = 1) and stars (mϕ = −1) [33].

The polarization distribution in Fig. 3(b) shows an im-
portant feature: For a texture where ρS > 0 everywhere,
all left(right)-handed C-points originate from a ϕ vortex
with mϕ > (<) 0, and then all C-points with mϕ = ±1
manifest as left-handed lemons and right-handed stars
(see discussion in Supplemental Material, Sec. 4). (For
a texture where ρS < 0 everywhere the situation would
reverse.) Together with a well-established result from
index theory, this result implies that paraxial fields dis-
playing periodic skyrmionic Stokes textures that main-
tain sgn(ρS) must inevitably present zeros. This is be-
cause, within a unit cell of a periodic complex scalar field,
the topological charges of its vortices must add up to
zero. However, as just discussed, the vortices for each
circular component that lead to C-points all have the
same charge. Each component must then include extra
vortices with the opposite charge, and the only way for
these not to produce extra C-points is if their locations
coincide for the two circular components, hence giving
rise to field zeros. The field construction in Eqs. (2) nat-
urally introduces these zeros, and places them at points
with a specific polarization.

It is important to emphasize that this result extends
beyond textures implemented in paraxial polarization;
it applies to any texture in a 2D spinor field achieved
through the factorization of a global phase and amplitude
function in a 2D complex vector field. Consequently, in
such fields a periodic texture that preserves sgn(ρS) in-
evitably presents zeros.

We generated the textures experimentally by imple-
menting the circular polarization distributions in Eq. (2)
in a laser beam using a spatial light modulator [34, 35]
(see Supplemental Information, Sec. 5). Figure 4 shows,
for Peirce’s projection, the measured Stokes vector dis-
tribution (a) and ρS (b). Similar results for the other
three projections are given in the Supplemental Mate-
rial, Sec. 6. For all cases, small regions of highly neg-
ative ρS emerge near the points where Eq. (2) predicts
the field’s zeros (corresponding to vertical polarization).
This is because these zeros are unstable: any small rela-
tive misalignment of the polarization components causes
the intensity not to vanish exactly and the polarization
to vary rapidly, covering within a small region the en-
tire sphere in the opposite sense. Possible experimental
sources of zero misalignment are defocus or the clipping
of diffraction orders by the aperture. Excluding some or-
ders carrying low intensities has little effect on the overall
pattern but leads to rapid polarization variation in low-
intensity regions (see Supplemental Information, Sec. 7),
similar to that in the measured data.



5

(a)

0

min

max

(b)

y

x 0.1 mm

x, s1

y, s21

s3

-1

FIG. 4. Unit cell of the measured (a) Stokes vector distribu-
tion and (b) Skyrme density for Peirce’s field.

Conclusions.— The skyrmionic lattices presented here
represent different morphologies and topologies that pre-
serve sgn(ρS). The fact that they are conformal implies
that they minimize the energy inherent to the mapping.
Note that rotated versions of each of these cartographic
maps can also be considered, like the two forms of Lee’s
projection. Similarly, some of these maps accept defor-
mations while still tessellating the plane but not with
regular polygons, and perhaps not conformally. It is pos-
sible, for example, to deform continuously Wray’s map by
transporting the singular points along meridians to the
equator, arriving at a rotated version of Peirce’s map.
This means that Lee’s, Wray’s and Peirce’s maps are
topologically equivalent. Note, however, that changing
the spacing of the singular points in Peirce’s map until
two of them merge would not lead to Adams’ map (and
would not be consistent with tesselation of the plane),
meaning that this latter map (with three singular points)
is topologically different from the others (with four sin-
gular points).

Other conformal projections that tessellate the plane
can also be explored [28, 30], such as maps of the sphere
onto a triangle or a square using Lagrange’s projection

of the sphere onto a disk [36] instead of the stereographic
projection. An interesting case is Adams’ world in a
square projection [37], which renders merons spanning
a hemisphere four times for both hemispheres. Another
texture with merons spanning a hemisphere six times for
one of the hemispheres results from Cox’ world in a tri-
angle projection [38].

For polarization textures (or any spinor field result-
ing from a 2D complex vector field), achieving uniform
sgn(ρS) requires zeros in the vector field, making the tex-
ture unstable to perturbations, although instability un-
der propagation can be reduced in some cases [23]. Ex-
ploring the inevitable occurrence of zeros in spinor fields
beyond optics, such as Bose-Einstein condensates [39],
opens up an area for further investigation.

Finally, it would be interesting to study if periodic
textures with uniform sgn(ρS), conformal or not, ex-
ist for higher dimensionalities. Recently, optical imple-
mentations of skyrmionic structures spanning 3-spheres
[40] and 4-spheres [41] were proposed, the latter corre-
sponding to a space-time periodic texture spanning all
states of monochromatic nonparaxial polarization, but
with nonuniform sgn(ρS).
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SUPPLEMENTAL INFORMATION

1. Energy density and variational calculation

Let us first write the conditions for a map s(x, y) to be
conformal. Infinitesimal changes of the same size in each
of the two flat coordinates x, y must result in changes over
the unit sphere of s also of equal size in two orthogonal
directions. We can write this as

s× ∂xs = sgn(ρS)∂ys, (3a)

s× ∂ys = −sgn(ρS)∂xs, (3b)

where sgn(ρS) is the sign of the Skyrme density (assumed
to be constant), and the operation s× performs a rotation
of 90◦ over the surface of the sphere. We can combine
these equations as

s×∇s = sgn(ρS)σ1∇s, (4)

with

σ1 =

(
0 1
−1 0

)
. (5)

That is, a rotation over the sphere corresponds to a ro-
tation over the plane. The equation above can also be
written as

∇s = −sgn(ρS) s× (σ1∇)s, (6)

where we have to be careful distinguishing the vector op-
erations in the two-dimensional flat space and the three-
dimensional ambient space for s (in this case the cross
product). It is easy to see that

∇2s = −sgn(ρS) [(∇s)× (σ1∇s) + s× (∇σ1∇)s] = 0.
(7)

Now let us consider a measure of stretching of s when
distributed over a plane. This stretching can be consid-
ered as giving a local energy density given by the squared
Euclidean norm of the derivative, that is

ϵ =
1

2
||∇s||2 =

1

2
(∂isj)(∂isj), (8)

where we used Einstein’s convention of implicit sum over
repeated indices, with i = x, y and j = 1, 2, 3. The total
energy over a unit cell σ is then given by

µ =

∫
σ

ϵdxdy. (9)

We now consider the functional derivative with respect
to the function s of this energy. By using integration
by parts to remove the derivatives of each factor of s
and realizing that the integrated terms cancel due to the
periodicity of the pattern, we arrive at

δ

δs
µ = −∇2s. (10)

This variation is then zero for a conformal distribution.
Note that for a conformal map ∂xs and ∂ys have the

same magnitude and are perpendicular, so the magnitude
of the Skyrme density becomes

|ρS| = |s · ∂xs× ∂ys|
= |∂xs||∂ys|

=
|∂xs|2 + |∂ys|2

2
= ϵ, (11)

So for all conformal maps µ = 4π|NS|.

2. Inverse mappings

We provide here the inverse maps of the transforma-
tions wi(zi) in Eqs. (1) in the main text, where i =
P,A,L,W stand for the Peirce (P), Adams (A), Lee (L)
and Wray (W) projections:

zP(wP) = z0 +

√
2d

γ1
eiαF (arcsin w̃P, i) , (12a)

zA(wA) = z0 +
d

γ2
w̃Ae

iα
2F1

(
1

3
,
2

3
;
4

3
; w̃3

A

)
, (12b)

zL(wL) = z0 +
d

γ2
f(w̃L)e

iα
2F1

[
1

3
,
2

3
;
4

3
; f3(w̃L)

]
,

(12c)

zW(wW) = z0 +
d

γ3
eiαsd−1

(
2w̃W,

√
3− 1

2
√
2

)
, (12d)

with

f3(w̃L) =
1

2

(
1−

√
1− 2

√
2w̃3

L

)
, (13)

and

w̃P,A,L,W = e−i(ϕ0+α)wP,A,L,W, (14)

where F represents the incomplete elliptic integral of the
first kind, 2F1 stands for the ordinary hypergeometric
function, and sd−1 denotes the inverse of the Jacobi el-
liptic function sd, and the parameters γ1,2,3 are given
in the main text, as is a description of the effect of the
parameters α, ϕ0, z0 and d.
Equations (1) in the main text define complex quan-

tities, wi(zi), which, via an inverse stereographic projec-
tion, yield values for the azimuthal and polar spherical
angles, ϕ = arg [wi(zi)] and θ = 2arctan |wi(zi)|, respec-
tively, for any point on the plane. The x and y Cartesian
coordinates of this point correspond to the real and imag-
inary parts of the complex number zi, respectively. On
the other hand, the real and imaginary parts of the in-
verse transformations zi(wi) provide a pair of Cartesian
coordinates on the plane where a specific value of ϕ and
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S. P

I. S. P

Im(w), s2

Re(w), s1

Im(wP), s2

Re(wP), s1

(a)

zP(wP)

wP(zP)

(b)

(c)

zA(wA)

wA(zA)

s1
s2

s3

Im(zP), s2

Re(zP), s1

Im(zA), s2

Re(zA), s1

Im(wA), s2

Re(wA), s1

FIG. 5. (a) Depiction of the stereographic projection (S. P)
and of the inverse stereographic projection (I. S. P) between
a meron within the unit disk and the unit sphere’s northern
hemisphere. (b,c) Schwarz maps and their inverse transforma-
tions between a meron within the unit disk and a (b) squared
and a (c) equilateral triangular meron.

θ is mapped. The spherical coordinates are related to wi

through a stereographic projection as wi = tan(θ/2)eiϕ.
Equations (12a) and (12b) are well-known Schwarz

maps. The interior of the unit disk can be mapped con-
formally onto the interior of a regular polygon of n sides
through the Schwarz integral [29]:

z =

∫ w

0

1

(1− wn)
2/n

dw, (15)

where the real and imaginary parts of w are the Cartesian
coordinates within the disk, and the real and imaginary
parts of z are the Cartesian coordinates within the poly-
gon. The first two equations result from this integral for

a square (n = 4) and for an equilateral triangle (n = 3)
[31], but we introduced the additional parameters α, ϕ0,
z0 and d to control certain properties of the map, as ex-
plained in the main text.
Figure 5(a) illustrates the transformation between a

meron within the unit disk and the northern hemisphere
of the unit sphere through the stereographic projection
and its inverse. Figures 5(b,c) illustrate the Schwarz
maps, zi(wi), and their inverse functions, wi(zi), between
a meron within the unit disk, and a meron within a square
(i = P) and within an equilateral triangle (i = A), re-
spectively. When these maps are extended to the whole
plane, they yield the entire Peirce and Adams textures
shown in Fig. 1 of the main document.
The inverse map of wL(zL) (namely zL(wL) in

Eq. (12c)) was derived by expressing the Dixon elliptic
function cmz in the transformation wL(zL) (Eq. (1c) in
the main text) in terms of the Dixon elliptic function
smz using the fact that cm3z + sm3z = 1. We then use
Eq. (12b), which is the inverse function of smz up to cer-
tain multiplicative and additive factors, to calculate the
inverse of wL(zL).

3. Additional theoretical distributions of the
textures and fields

Here, we show additional results for the textures and
present the optical fields implementing the Adams, Lee
and Wray textures. The parameters in Eqs. (1) in the
main text are set as follows. For Adams’ projection:
α = 0, ϕ0 = π/2 and z0 = −1/

√
3. For Lee’s projec-

tion: α = 0, ϕ0 = −5π/6 and z0 = 1/
√
3. For Wray’s

projection: α = π/2, ϕ0 = −7π/12 and z0 =
√
3/4. We

show a representation of the parameters ϕ and s3 for ev-
ery field in Fig. 6. The intensity and phase distributions
of the circular polarization components, El,r, as well as
the polarization distributions, are presented in Fig. 7 for
Adams, Lee and Wray fields. As pointed out in the main
text, the fields display a discrete spatial Fourier spec-
trum. The intensity and phase of the first diffraction
orders of the spectrum for each field, which contain most
of the energy, are presented in Fig. 8.

4. Topological implications of Skyrme density sign
preservation in skyrmionic textures

In the main text, a mathematical result was utilized to
demonstrate that all paraxial optical fields implementing
periodic skyrmionic Stokes textures preserving the sign of
the Skyrme density, sgn(ρS), exhibit zeros. The employed
result establishes that for a Stokes texture with ρS > 0
throughout space, all left(right)-handed C-points arise
from a vortex in the relative phase between the circular
polarization components, denoted as ϕ, having a positive
(negative) topological charge, mϕ. Consequently, it fol-
lows that all C-points with |mϕ| = 1 present left-handed
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y

x

FIG. 6. Distributions of ϕ, s3 for the textures resulting
from (a) Peirce’s, (b) Adams’, (c) Lee’s and (d) Wray’s pro-
jections. The plot shown in (a) constitutes the entire unit cell
of Peirce’s texture. The unit cells in (b-d) are delimited by
dashed lines.

lemons and right-handed stars. It is worth noting that
the forthcoming result we demonstrate can be extended
to fields characterized by a negative sgn(ρS) across the
entire space, where the scenario would be reversed.

Consider mapping a small patch of the sphere. Let the
polar coordinates of the local planar map be (r, φ). When
mapping the north pole, r ≈ κθ, φ = ϕ, where κ is a
positive constant. The Skyrme density has the same sign
as the Jacobian between (θ, ϕ) and (r, φ), which equals
1/κ > 0. Now consider transporting continuously the
map to the south pole without reversing local directions
(i.e., ρS does not change sign). At the south pole the
coordinates can be set to r ≈ κ(π − θ), φ = −ϕ, which
yield the same positive Jacobian. However, mϕ = ∂φϕ is
positive at the north pole (left-circular polarization) and
negative at the south pole (right-circular polarization).

5. Experimental setup

As explained in the main text, the generation of the
skyrmionic textures requires the control of the ampli-
tude and phase of the transverse polarization compo-
nents. There are several experimental proposals to gener-
ate complex vector fields based on the modulation of two
orthogonal polarization components. Here, we adapt the
approach of Maurer et al. [34] combined with the algo-
rithm introduced by Bolduc et al. [35] for encoding am-
plitude and phase in a phase-only hologram. The setup
for the generation and measurement of the skyrmionic
textures is shown in Fig. 9(a).

(a) (b)

x

arg(El)|El|2

arg(Er)|Er|2

(c) (d)arg(El)|El|2

arg(Er)|Er|2

(e) (f)arg(El)|El|2

arg(Er)|Er|2

y

2π0 0 -1 1max

PhaseIntensity

0 max

Intensity

C-point Scalar vortex

s3

FIG. 7. (a,c,e) Theoretical intensity and phase distributions
of the circular polarization components, and (b,d,f) polariza-
tion and total intensity distributions, for (a,b) Adams, (c,d)
Lee and (e,f) Wray fields. We indicate which vortices in the
circular components render either C-points or scalar vortices.

To modulate independently the two transverse polar-
ization components of a laser beam, the SLM screen is
divided into two regions. In each of these regions, a circu-
lar area is defined where the holograms are displayed. For
simplicity, we modulate the horizontal and vertical com-
ponents of the skyrmionic texture. These components
are computed from Eqs. (2) of the main text as

Ex,y =
cx,y√

2
(Er ± El) , (16)

where x, y are the horizontal and vertical lineal polar-
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(a)

max

0

0

2π

arg(El) arg(Er)|El|2 |Er|2

arg(El) arg(Er)|El|2 |Er|2

arg(El) arg(Er)|El|2 |Er|2

arg(El) arg(Er)|El|2 |Er|2

(b)

(c)

(d)

FIG. 8. Intensity and phase of the first diffraction orders of
the spatial spectrum of the circular polarization components
of (a) Peirce, (b) Adams, (c) Lee and (d) Wray fields.

ization components, cx = 1 and cy = i.

According to Ref. [35], if A and Φ are the desired
amplitude and phase modulated by the SLM, then the
displayed hologram is given by Ψ = MMod(F ,2π) (as-
suming an incoming beam with constant amplitude and
phase), where M = 1+ 1

π sinc
−1(A) and F = Φ−πM . In

order to perfectly recombine the two components with
a Wollaston prism (WP), a blazed phase ΦB of op-
posite sign must be displayed in each area. In addi-
tion, a correction phase ΦC (provided by the manufac-
turer) must be used to account for the intrinsic aber-
rations of the SLM, so that the final desired amplitude
is given by Ax,y = |Ex,y| and the final desired phase is
Φx,y = Mod(arg[Ex,y]± ΦB +ΦC , 2π).

As shown in Fig. 9(a), a telescopic system projects the
SLM plane onto the camera, and a spatial filter (SF) is
used to remove spurious contributions. By rotating a lin-
ear polarizer (LP), the intensities of the components in x,
y, p and m (the latter two at ±45◦ from x, respectively)
are measured. By placing a quarter-wave plate (QWP)
with fast axis at ±45◦ with respect to x, the intensities
of the r and l components are measured. Let us refer to
these intensities as Ii with i = x,y,p,m, l, r, (see Fig.
10). We also measure the total intensity I by removing
the LP and the QWP. We can then calculate the Stokes

(a)

Laser:

λ = 532 nm

(b)

L1 L2

L3 L4

HWP2

QWP LP CAMERA

HWP1

SLM
BS WP

M1

M2

0

2π

SF

FIG. 9. (a) Experimental setup (not to scale). A linearly
polarized continuous-wave (CW) laser beam (λ = 532 nm)
passes through a half-wave plate (HWP1) that controls the
direction of polarization. The beam is then redirected by
a 50:50 beamsplitter (BS) to a Wollaston prism (WP) that
separates it into two orthogonal linearly polarized beams by
1◦. The two beams are magnified by a telescope composed
of lenses L1 and L2 with focal lengths of f1 = 100 mm and
f2 = 500 mm, respectively. Due to the fact that the SLM
can only modulate the horizontal polarization, a HWP2 ro-
tates the vertical polarization by 90◦. When the two beams
are reflected by the SLM, the HWP2 rotates by 90◦ the beam
polarization again. The two orthogonal polarized beams are
then recombined by the WP and are separated from the initial
beam by the BS. With a second telescope (composed of lenses
L3 and L4 with focal lengths of f3 = 300 mm and f4 = 400
mm, respectively) the SLM plane is imaged onto a CMOS
camera. A spatial filter (SF) is placed at the Fourier plane
of L4. In order to measure the polarization projections, a
retractable quarter wave-plate (QWP) and a retractable lin-
ear polarizer (LP) are placed in front of the camera (enclosed
within dashed lines). (b) Example of two holograms displayed
on the SLM in order to modulate the horizontal (top) and ver-
tical (bottom) components of the Wray field. Each circular
area has a diameter of 260 pixels.

parameters according to:

S0 = I,

S1 = Ix − Iy,

S2 = Ip − Im,

S3 = Il − Ir.

(17)

We compute the normalized Stokes vector as s′ =
(S1, S2, S3)/S0. Ideally this is a unit vector given that the
field is fully polarized. However, due to noise in the mea-
surements and the spatial extent of the pixels, the norm
of this vector can be smaller (and in some cases higher)
than unity. We therefore renormalize it as s = s′/|s′|.
The components of s = (s1, s2, s3) are used to compute

the experimental values of the azimuthal and polar angles
on the Poincaré sphere, ϕ and θ respectively, as

ϕ = atan2(s2, s1), (18)

θ = arccos s3. (19)

The semi-major and semi-minor axes of the polarization
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FIG. 10. Measurements of the total intensity and of the
intensities of each of the six polarization projections: x, y, p,
m, r and l for (a) Pierce, (b) Adams, (c) Lee and (d) Wray
fields. All the images are normalized with respect to their
maximum. The circular area has a diameter of 261 pixels,
with a pixel size of 5.20 µm. The exposure time for each
image is 2.6 s.

ellipses are obtained from

a =

[
1 +

tan(θ − π/4)

2

]−1/2

, (20)

b =
√
1− a2. (21)

6. Additional experimental results

The measured Stokes vector distribution and the
Skyrme density for Adams, Lee and Wray fields are
shown in Fig. 11. Figure 12 shows the experimental
distributions of ϕ and s3 for all the fields. The mea-
sured polarization map and the intensity distribution for
the Peirce, Adams, Lee, and Wray fields are depicted in
Fig. 13. Like for the Peirce field, the Skyrme density
for the other three fields exhibits highly negative regions
near points where Eqs. (2) in the main text predict the
field’s zeros.
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1
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0

max

min

max

min

max

min
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(e) (f)
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ρS

ρS

y

x

s3

x, s1

x, s1

x, s1

y, s2

y, s2

y, s2

0

FIG. 11. Measured (a,c,e) Stokes vector distribution, and
(b,d,f) Skyrme density for (a,b) Adams, (c,d) Lee and (e,f)
Wray fields.
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FIG. 12. Experimental ϕ, s3 distributions for (a) Peirce, (b)
Adams, (c) Lee and (d) Wray fields.
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FIG. 13. Experimental polarization maps for (a) Peirce, (b)
Adams, (c) Lee and (d) Wray fields.

7. Instability of the zeros in the field

In Fig. 4(b) in the main text, we demonstrate that
Peirce’s optical field exhibits regions of highly negative
Skyrme density, ρS, at the positions where the zeros of
the field are predicted to be. In fact, this occurs for all
fields, as shown in Fig. 11. As explained in the main
text, the clipping of higher orders of the fields’ spectra
gives rise to ρS < 0 in these regions. Figure 14 shows the
polarization map and the intensity of the field obtained
considering only the diffraction orders we observed in the
spectrum of our experimental field, which are illustrated
in Fig. 8(a). Note that this polarization distribution is
closer to the measured polarization distribution shown in
Fig. 13(a), especially around the points where zeros were
expected had the full spectrum been considered. It is also
shown in Fig. 14 that a right-handed lemon/left-handed
star pair is generated near these points, heralding zones
of highly negative Skyrme density. Right at the points
where the zeros were expected, ρS can take arbitrarily
large values following a small perturbation.

x y

ρS
0

max

-1

0

1

s3

In
te
n
si
ty

y

x

FIG. 14. Illustration of the impact of aperture size limita-
tions for Peirce’s field. When considering the entire spatial
frequency spectrum of the field, the polarization state distri-
bution matches the one depicted in Fig. 3(b) in the main text.
However, when only the diffraction orders in Fig. 8(a) are
taken into account, the polarization state distribution changes
to the one shown here. Near the zeros of the field in Fig. 3(b)
in the main text, now a pair of C-points emanates from them.
The behavior of both the polarization state and the Skyrme
density near these points is illustrated here.
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