
HAL Id: hal-04286930
https://hal.science/hal-04286930

Submitted on 15 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Whole-body planning for humanoids along deformable
tasks

Marco Cognetti, Valentino Fioretti, Giuseppe Oriolo

To cite this version:
Marco Cognetti, Valentino Fioretti, Giuseppe Oriolo. Whole-body planning for humanoids along
deformable tasks. 2016 IEEE International Conference on Robotics and Automation (ICRA), May
2016, Stockholm, Sweden. pp.1615-1620, �10.1109/ICRA.2016.7487301�. �hal-04286930�

https://hal.science/hal-04286930
https://hal.archives-ouvertes.fr


Whole-Body Planning for Humanoids along Deformable Tasks

Marco Cognetti, Valentino Fioretti, Giuseppe Oriolo

Abstract— This paper addresses the problem of generating
whole-body motions for a humanoid robot that must execute
a certain task in an environment containing obstacles. The
assigned task trajectory is deformable, and the planner may
exploit this feature for finding a solution. Our framework
consists of two main components: a constrained motion planner
and a deformation mechanism. The basic idea is that the
constrained motion planner attempts to solve the problem
for the original task. If this proves to be too difficult, the
deformation mechanism modifies the task using appropriate
heuristic functions. Then, the constrained motion planner is
invoked again on the deformed task. If needed, this procedure
is iterated. The proposed algorithm has been successfully
implemented for the NAO humanoid in V-REP.

I. INTRODUCTION

In recent years, humanoid robots have been the subject
of constantly increasing attention. While earlier work was
mostly aimed at obtaining stable and efficient walking gaits,
many researchers are now looking at the generation of task-
oriented, whole-body motions for humanoid robots.

Motion planning for humanoids is particularly challeng-
ing for various reasons. First, the planning space is high-
dimensional because these robots possess many degrees of
freedom. Second, a humanoid robot is not a free-flying
system in its configuration space. The various kinematic
and dynamic constraints of the specific robot must also be
taken into account, as does the necessity of maintaining
equilibrium (either static or dynamic) at all times. In view
of this all complexity, the problem is usually addressed by
making simplifying assumptions on either the robot geometry
or the environment [1-7].

Assigning a task to the robot further increases the planning
difficulty. The task may be a single action (e.g., ‘grasp this
object’) or a sequence of navigation and manipulation actions
(‘take that object and bring it in the other room’).

A common approach for generating task-constrained
movements is kinematic control. One popular example is
the task-priority method [8], extended to handle inequality
constraints in [9]. This framework was used in [10] for
computing footsteps of humanoids that must execute ma-
nipulation tasks. Despite its efficiency, kinematic control by
itself remains a purely local technique, well suited for re-
active behaviors but in general outperformed by full-fledged
planning techniques.

Three main approaches can be found in the literature for
task-oriented humanoid planning: (i) separating locomotion

The authors are with the Dipartimento di Ingegneria Informatica, Auto-
matica e Gestionale, Sapienza Università di Roma, via Ariosto 25, 00185
Roma, Italy. E-mail: {cognetti, oriolo}@diag.uniroma1.it. This work is
supported by the EU FP7 COMANOID project.

from task execution [11], [12]; (ii) planning statically stable
collision-free trajectories, later converted to dynamically
stable motions [13]; (iii) achieve acyclic locomotion and
task execution through whole-body contact planning [14].

A fundamentally different approach, which we introduced
in [15], is to solve the task-constrained planning problem
without separating locomotion from whole-body motion
generation. Our method hinges on the concept of CoM
movement primitives, defined as precomputed trajectories of
the CoM that are associated to specific actions. The proposed
planner builds a tree in configuration space by concatenating
feasible, collision-free whole-body motions that realize a
succession of CoM movements and, at the same time, the
assigned task. Results showed that the planner was able
to generate sensible plans for a variety of composite tasks
requiring a combination of navigation and manipulation.

In [15], it was assumed that the assigned task is not
modifiable. While this may sometimes be the case, it is often
just a working assumption that does not represent an actual
requirement. For example, suppose we want the humanoid
to move an object from a location to another: the actual
trajectory of the object may not be relevant, provided that it
is reasonably efficient (e.g., it does not wander too much).
Typically, the user may specify1 a very simple tentative task
trajectory (e.g., a line segment joining the initial and the final
task point), which can be deformed by the planner if this is
convenient for finding a solution.

Task path/trajectory deformation was considered in [16],
via length and clearance optimization, and in [17], where
multiple trajectories are maintained and deformed in real-
time using a genetic algorithm. The approach of [18], [19]
combines motion planning with reactive behaviors to gen-
erate task trajectories for mobile manipulators. Functional
gradient techniques are used in [20] to improve the quality of
an initial trajectory. However, none of these works addresses
the specific problems posed by humanoid robots.

The method proposed in this paper consists of two main
components: a constrained motion planner and a deformation
mechanism. The basic idea is that the constrained motion
planner attempts to solve the problem for the original task.
If this proves to be too difficult, a deformation mechanism is
triggered that modifies the task path using simple heuristic

1The reader may argue that no trajectory at all is needed in this situation,
as one may simply specify the final task value as a set-point. However,
it should be realized that even in this case the use of a pseudoinverse-
based kinematic control method (by itself or within a planner) implicitly
determines which trajectory will be followed in task space. For example, it
is easy to verify that using diagonal gain matrices for error feedback yields
a rectilinear trajectory to the set-point in task space.

To be presented at ICRA 2016, Stockholm, Sweden, May 2016



functions, and the constrained motion planner is invoked on
the deformed task. If needed, the procedure is iterated.

The paper is organized as follows. In the next section, the
planning problem is formulated. A quick overview of the
planner is given in Sect. III. The constrained motion planner
is described in Sect. IV, while the deformation mechanism
is presented in Sect. V. Motion planning experiments for
the NAO humanoid robot are presented in Sect. VI. Future
research directions are briefly discussed in Sect. VII.

II. PROBLEM FORMULATION

Before formulating the planning problem, we recall the
motion model of [15] for generating humanoid motion.

A. Humanoid Motion Model

A configuration q of a free-flying humanoid can be iden-
tified by its joint n-vector qjnt ∈ Cjnt and the pose (position
plus orientation) qCoM∈SE(3) of a reference frame attached
to the robot Center of Mass (CoM):

q =

(
qCoM

qjnt

)
.

In our planner, CoM motions will be generated by patching
CoM subtrajectories taken from a catalogue of CoM move-
ment primitives, that represent typical humanoid motions,
e.g. static steps, dynamic steps, crouching, and so on. Each
primitive has a certain time duration and may specify a tra-
jectory for other points of the robot, in addition to the CoM;
for example, a stepping primitive will include a trajectory
for the swing foot. Once a CoM movement primitive has
been selected, the joint trajectory can still be chosen by the
planner among the infinite whole-body motions compatible
with the primitive, in such a way that other requirements are
met (task execution, obstacle avoidance, etc).

The above approach to motion generation is reflected in
the hybrid (partly algebraic, partly differential) model

qCoM(t) = qCoM(tk) +A(qCoM(tk))uCoM(tk) (1)
q̇jnt(t) = vjnt(t) (2)

describing the robot motion in an interval [tk, tk+1 = tk+Tk]
in which the CoM is performing a primitive movement of
duration Tk. Here, qCoM(tk) is the CoM frame pose at
the start of the interval; A(qCoM(tk)) is the transformation
matrix from the CoM frame at tk to the world frame;
uk
CoM(t) is the pose displacement of the CoM frame at t,

relative to its pose at tk; vjnt is the vector of joint velocities.
Note that in (1–2) the CoM displacement and the joint

velocity profile are not independent: as explained in detail
in Sect. IV, vjnt|[tk,t) is chosen so as to realize the CoM
movement primitive uk

CoM(t).

B. Task-Oriented Planning

We consider tasks defined as trajectories for the position
(and possibly the orientation) of a specific point (body) of
the humanoid: e.g., a manipulation task may be a trajectory
for one hand of the robot, while a navigation task may be
a trajectory for the midpoint between its feet. Denoting task

coordinates by y, a forward kinematic map relates them to
generalized coordinates

y = f(q) = f(qCoM, qjnt).

An initial task trajectory y[0](t), t ∈ [ti, tf ], is assigned2

composed by a geometric path y[0](s), s ∈ [si, sf ], and a
time history s[0](t), t ∈ [ti, tf ], with si = s(ti), sf = s(tf ).
In particular, the geometric path y[0] is assumed to be a
deformable curve in task space: this means that the endpoints
y[0](si) and y[0](sf ) are fixed, but the actual shape of the
curve may be changed if necessary by acting on certain
parameters. For illustration, in the rest of the paper we
will consider B-splines as deformable curves, and the action
parameters will be control points. The planner is allowed
to change the shape of the task path (and adapt the time
history), if this is deemed necessary to find a solution.

The considered planning problem consists in finding a
feasible whole-body motion of the humanoid that realizes
the task trajectory, possibly deformed, while avoiding colli-
sions and satisfying kinematic constraints. More formally, a
solution to our problem consists of:

1) A final task trajectory y∗(t), t ∈ [ti, tf ], consisting
of a geometric path y∗(s), s ∈ [si, sf ], obtained by
(repeated) deformation of y[0](s), and an associated
time history s∗(t), t ∈ [ti, tf ].

2) A whole-body motion of the humanoid q∗(t), [ti, tf ],
that satisfies the following requirements:
R1 The final task trajectory is realized:

f(q∗(t))=y∗(s∗(t))=y∗(t), t ∈ [ti, tf ].

R2 The robot maintains static or dynamic equilibrium.
R3 All collisions with obstacles are avoided.
R4 Joint limits and velocity bounds, respectively ex-

pressed in the form qjnt,m < qjnt < qjnt,M and
vjnt,m < vjnt < vjnt,M, are satisfied.

The above formulation includes directly two special cases
of practical interest:
• Set-point task: When the task reduces to a desired set-

point y(tf ) (e.g., bring the humanoid hand to a certain
placement), the initial task path y[0](s) may be chosen
as any deformable curve (e.g., a line) joining the starting
task position y(ti) = f(q(ti)) with the final task
position y(tf ). The time history may be simply set as
s[0](t) = t, ∀t ∈ [ti, tf ]. See also footnote 1.

• Partially deformable task: In some problems, it may be
desiderable to allow deformation only on a subset of
task components. For example, consider a manipulation
problem in which the robot has to carry a glass contain-
ing some liquid. The glass should be kept vertical, so
as not to spill the liquid. A deformation can therefore
be applied only to the position components of the task
(i.e., to the Cartesian trajectory of the glass), whereas
the orientation components should not be affected.

2Since we are addressing a planning problem, it will be assumed that the
initial configuration q(ti) is assigned, and that the corresponding task value
matches the starting point of the trajectory, i.e., y[0](ti) = f(q(ti)).



Algorithm 1: Planner
1 sol found ← false; i ← 0;
2 get the initial task path y[0] and time history s[0];
3 repeat
4 build the current task trajectory y[i]←y[i](s[i]);
5 [T , ỹ] ← ConstrainedMotionPlanner(y[i]);
6 if ỹ = y[i](tf ) then
7 sol found ← true;
8 y∗ ← y[i]; s∗ ← s[i];
9 else

10 [y[i+1], s[i+1]] ← TaskDeformation(y[i], s[i], T , ỹ);
11 end
12 i← i+ 1;
13 until sol found = true or i = MAX DEFORM;

III. PLANNER OVERVIEW

The underlying principle of the proposed planner, whose
pseudocode3 is given in Algorithm 1, is simple.

First, we invoke a constrained motion planner that expands
a tree T in configuration space in the attempt to find a whole-
body motion realizing the initial task trajectory y[0] and
satisfying requirements R2-R4 (line 5). If this proves to be
too difficult, the planner returns a partial solution whose limit
task point ỹ (defined as the furthermost task point realized
by configurations contained in the tree T ) is different from
y(tf ). In this case, the initial task path is modified using
deformation actions which take place at the limit task point
(lines 9-10), and the constrained motion planner is invoked
again. This deformation-planning cycle is repeated until a
solution is found.

In the following sections we describe in detail the two
main components of our algorithm, i.e., the constrained
motion planner and the deformation mechanism.

IV. CONSTRAINED MOTION PLANNER

The constrained motion planner, whose pseudocode is
shown in Algorithm 2, is essentially the same of [15]. The
task trajectory to be realized is denoted by yd; in the i-th
iteration of Algorithm 1, the planner is invoked with yd set
to y[i]. The goal is to find a whole-body motion that realizes
yd and is feasible, i.e., satisfies requirements R2-R4.

The planner works in an iterative fashion and builds a
tree T in configuration space, rooted at q(ti). The nodes
are configurations associated with a time instant and realize
samples of yd, while arcs represent feasible whole-body
motions that join adjacent nodes and realize portions of yd.

The planner uses a task compatibility metric γ over
the configuration space. In particular, γ(q, ȳ) defines the
compatibility of the robot configuration q with respect to
a certain sample ȳ of the task trajectory.

The generic iteration starts by selecting a random sample
yd
rand from the task trajectory yd (Algorithm 2, line 6). A

configuration qnear is then randomly extracted from the tree

3For compactness, we omit arguments t and s and their range of variation
in all pseudocode; for example, y[0](t), t ∈ [ti, tf ], is simply denoted by
y[0]. We use the same notation in the text when no confusion is possible.

Algorithm 2: ConstrainedMotionPlanner(yd)
1 root the tree T at q(ti);
2 q̃ ← q(ti); ỹ ← yd(ti); j ← 0 ;
3 ỹ.exp fail ← 0; ỹ.coll fail ← 0; ỹ.jnt fail ← 0;
4 repeat
5 j ← j + 1;
6 select a random sample yd

rand from the task trajectory;
7 select a random node qnear from T with probability

proportional to γ(·,yd
rand);

8 get the time instant tk associated with qnear;
9 [qnew,qnearqnew,tk+1,ỹ]←MotionGeneration(qnear,tk,ỹ);

10 if qnew 6= ∅ then
11 add node qnew and arc qnearqnew to T ;
12 end
13 until tk+1= tf or ỹ.exp fail=MAX FAIL or j=MAX IT;
14 return [T , ỹ];

Procedure 1: MotionGeneration(qnear, tk, ỹ)

1 pick from (3) a random CoM primitive uk
CoM of duration Tk;

2 compute the associated CoM trajectory zd
CoM and swing foot

trajectory zd
swg;

3 extract the portion of task trajectory yd in [tk, tk + Tk];
4 build the augmented task ya = (y,zCoM,zswg) ;
5 repeat
6 generate motion by integrating joint velocities (4);
7 if collision then
8 if yd(tk) = ỹ then
9 // (expanding from a limit configuration);

10 ỹ.exp fail ← ỹ.exp fail + 1;
11 ỹ.coll fail ← ỹ.coll fail + 1;
12 end
13 return [∅, ∅, ∅, ỹ];
14 else if joint limit/velocity bound violation then
15 if joint limit violation then
16 if yd(tk) = ỹ then
17 // (expanding from a limit configuration);
18 ỹ.exp fail ← ỹ.exp fail + 1;
19 ỹ.jnt fail ← ỹ.jnt fail + 1;
20 end
21 end
22 return [∅, ∅, ∅, ỹ];
23 end
24 until t = tk + Tk;
25 if new limit task point reached then
26 ỹ ← yd(tk + Tk) // (update the limit task point);
27 ỹ.exp fail ← 0; ỹ.coll fail ← 0; ỹ.jnt fail ← 0;
28 end
29 return [qnew, qnearqnew, tk + Tk, ỹ]

using γ(·,yd
rand) to bias the process (line 7). Once qnear has

been selected, the associated time instant tk defines the start
time for the subsequent motion generation (line 8).

Procedure 1 contains a pseudocode for motion generation.
This starts by randomly choosing a CoM movement primitive
uk
CoM(·) of duration Tk, simply denoted by uk

CoM so forth,
from the set4

U =
{
US
CoM ∪ UD

CoM ∪ free CoM
}
. (3)

4For the sake of illustration, we consider a catalogue that contains only
stepping primitives, plus a non-stepping primitive. Other CoM movements
may be obviously added to improve the versatility of the planner.



US
CoM and UD

CoM collect stepping primitives, respectively
extracted from a static and a dynamic gait; the former subset
includes forward, backward, left and right steps, whereas
the latter contains starting, cruise and a stopping steps for
various directions. All these primitives satisfy requirement
R2 by construction. As for free CoM, the CoM movement
is unconstrained, but both feet must remain fixed and the
robot should maintain static equilibrium at all times. The
duration of this primitive is free, and the planner can use it
to adjust the total plan duration (remember that all the other
primitives have a fixed duration).

Plugging uk
CoM in the algebraic equation of (1) yields the

desired trajectory qdCoM of the CoM frame within [tk, tk+1],
with tk+1 = tk + Tk. Denote by zdCoM the position com-
ponents of this trajectory. If the chosen primitive is of the
stepping type, the swing foot trajectory zdswg is also assigned
within the time interval.

Joint motions are then generated so as to realize the
portion of the task trajectory yd between tk and tk+1,
together with zdCoM and zdswg. Let ya = (y, zCoM, zswg) be
the augmented task vector (ya = (y, zswg) for free CoM),
and denote by Ja its Jacobian matrix w.r.t. qjnt. Moreover,
define the augmented task error e(t) = yd

a(t) − ya(t),
where yd

a(t) is the reference value of the augmented task
in [tk, tk+1]. Joint velocity commands are computed as

vjnt = J†a(qjnt)(ẏ
d
a+Ke)+(I−J†a(qjnt)Ja(qjnt))w, (4)

where J†a is the pseudoinverse of Ja, K is a positive definite
gain matrix, and w is a randomly chosen n-vector which is
projected in the null space of Ja through the orthogonal
projection matrix I − J†aJa. Use of eq. (4) guarantees that
ė = −K e, i.e., exponential convergence of the augmented
task vector to the desired trajectory yd

a; since we start on the
trajectory, stable exact tracking is achieved.

The whole-body motion generated by (4) is continuously
checked for collisions as well as w.r.t. joint limits and veloc-
ity bounds; if free CoM is used, static equilibrium is also
checked (equilibrium is guaranteed by construction when
using stepping primitives). If no violation occurs, integration
proceeds up to tk+1; we have then obtained a feasible joint
motion qjnt(t), t ∈ [tk, tk+1], that complies with a portion
of the task. If this portion extends beyond the current limit
task point ỹ, the latter is updated accordingly (Procedure 1,
lines 25–28). On termination, control goes back to Algorithm
2, which adds any generated joint motion as an arc (and its
final configuration as a node) in T (lines 10–12).

In the presence of a violation, motion generation is inter-
rupted and no node is added to T (Procedure 1, lines 7–23).
In the particular case yd(tk) = ỹ (i.e., a tree expansion
was being attempted from a configuration associated to
the current limit task point), a failed expansion counter is
incremented together with a specific counter recording the
nature of the violation (Procedure 1, lines 8-12 and 16-20).

At the end of each iteration (Algorithm 2, line 13), the
constrained motion planner checks whether the final task
point yd(tf ) has been reached. In this case, a solution has
been found for the current task trajectory yd = y[i], which

is returned, together with the joint motions that realize the
associated whole-body motion plan. If, however, yd(tf ) has
not been reached, the following conditions are checked:
• if a maximum number of iterations has been reached;
• if the number of failed expansions from the current limit

task point has reached a predefined threshold.
Whenever one of these becomes true, we argue that the

planner is not likely to find a solution constrained to the
current task trajectory yd = y[i], which is then deformed as
explained in the next section.

V. TASK DEFORMATION

The pseudocode of the task deformation procedure is given
in Algorithm 3. In addition to the latest task trajectory y[i],
the procedure receives in input the limit task sample ỹ
reached on y[i] by the constrained motion planner, as well
as the associated exploration tree T .

Recall that the current task path5 y[i] is parametrized by a
set of control points, collected in a vector σ[i]; the endpoints
are however fixed. The idea is to deform y[i](s) by inserting a
new control point in σ[i]. The time history s[i](t), t ∈ [ti, tf ]
will then be adapted to the new path. Two heuristics are used
to choose where to place the new control point.

The first heuristic is obstacle-based. Its rationale is very
simple: pushing the task path away from the closest obstacle
may increase the possibility of finding a solution. To this
purpose, the limit task point ỹ is considered: a new control
point is inserted on the line joining ỹ with a representative
point of the closest obstacle (e.g., its closest point) at a
predefined distance from ỹ. The result is that the entire task
path is pushed away from the obstacle, as shown in Fig. 1.

The second heuristic we use is robot-based. The intuition
behind this mechanism is that constrained planning is more
difficult if the task path is far from the humanoid CoM,
because (1) motion generation must realize an extended
task which includes both the original task variables and the
CoM position (2) outstretched postures typically push the
joints towards the limit of their available range. To bring
the task path closer to the humanoid, a limit configuration
is associated to the limit task point ỹ by extracting from T
a node q̃ such that ỹ = f(q̃), and a new control point is
inserted on the line joining ỹ with the humanoid CoM at q̃,
again at a predefined distance from ỹ (see Fig. 2).

It is relatively easy to devise a policy that automatically
selects among the two deformation heuristics. Recall that de-
formation is invoked after a predefined number of expansion
attempts from ỹ have failed due to joint limit violations or
collisions. If the number of failures due to the first is larger
(Algorithm 3, lines 1–5), the robot-based heuristic is used;
otherwise (lines 6–10), the obstacle-based heuristic is used.
This selection strategy is a straightforward consequence of
the above discussion on the rationale of each heuristic.

Finally, the time history s[i+1] is adapted to the deformed
task path y[i+1] via uniform scaling within a total duration
proportional to the new path length.

5With a slight abuse of notation, in this section (and in Algorithm 3) y[i]

stands for the path y[i](s), s ∈ [si, sf ], rather than the full trajectory.



Algorithm 3: TaskDeformation(y[i], s[i], T , ỹ)
1 if ỹ.jnt fail ≥ ỹ.coll fail then
2 // (robot-based heuristic);
3 retrieve a limit configuration q̃ from the tree T ;
4 compute the line joining the limit task point ỹ to the

CoM at q̃CoM;
5 deform y[i] by adding to σ[i] a new control point along

this line, obtaining y[i+1];
6 else
7 // (obstacle-based heuristic);
8 compute the line joining the limit task point ỹ to the

closest obstacle point;
9 deform y[i] by adding to σ[i] a new control point along

this line, obtaining y[i+1];
10 end
11 compute s[i+1] proportional to the path length of y[i+1];
12 return [y[i+1], s[i+1]]

limit task point
new control point

obstacle closest point

deformed task

current task

Fig. 1. Obstacle-based deformation heuristic. For the sake of clarity, only
the obstacle point closest to the limit task point is shown.

limit task point

new control point
robot CoM

current task

deformed task

Fig. 2. Robot-based deformation heuristic. Obstacles are not shown because
they do not play a role in this heuristic.

VI. PLANNING EXPERIMENTS

The proposed planner has been implemented in V-REP on
an Intel Core 2 Quad at 2.66 GHz using NAO by Aldebaran
Robotics as humanoid robot. As deformable descriptions of
the task path, we have used B-splines. Since manipulation
tasks were considered in all experiments, the task compati-
bility metric γ(ȳ, q) has been defined as the inverse of the
distance between the task point ȳ and the robot CoM at q.

The CoM movement primitive set is defined as in (3). For
the static step set US

CoM, we have used different lengths in
the range [0.03, 0.08] m for forward and backward steps, and
[0.01, 0.03] m for lateral steps. A composition of the two is
used for diagonal steps. All these steps have a fixed duration
of 2 s. The dynamic set UD

CoM is composed by a starting
step with length 0.038 m and duration 1.6 s, a cruise step
with length 0.04 m and duration 0.425 s and a stopping step

with length 0.038 m and duration 1.325 s, all in the forward
direction. A total of 14 CoM movement primitives were used.
In motion generation (4) we use K = diag{2, 2, 1} and a
norm bound at 0.4 rad/sec on the null-space component.

We present two planning scenarios (see the accompanying
video for details). In the first, the humanoid must pick up a
ball and move it from one end of a long table to the other
(Fig. 3). The initial task path y[0] is a simple line segment
in task space, obtained as a B-spline with only the endpoints
as control points. The initial time history is set to s[0] = t
with ti = 0 s and tf = 17.2 s. The constrained motion
planner is not able to find a solution for the initial task path:
after covering less than one third of it, further expansion fails
repeatedly due to joint limit violations as the robot extends
its upper body and arm in order to stay on the path while
avoiding collisions between its legs and the table. The robot-
based deformation heuristic is then automatically activated
and a new control point is generated that brings the task
path closer to the robot. The constrained motion planner is
then able to find a feasible solution.

In the second scenario, the robot must place a ball on a
small round table (Fig. 4). As before, the initial task path
y[0] is a line segment in task space and the time history is
s[0] = t, with ti = 0 s and tf = 13.3 s. Once again, the
constrained motion planner cannot find a solution for the
initial task path: this is due to the stool located halfway,
which prevents further expansion of the exploration tree due
to repeated collisions with the left leg of the humanoid. As
a consequence, obstacle-based deformation is automatically
triggered and a new control point is generated that pushes the
task path away from the stool. This allows the constrained
motion planner to identify a feasible solution.

These results show that our simple policy for selecting the
deformation heuristic is effective. Indeed, it is easy to realize
that obstacle-based deformation would not work in the first
scenario (the task path would move away from the table in
the vertical direction, and hence further away from the robot),
and conversely robot-based deformation would not work in
the second scenario (the task path would be pushed towards
the robot, and hence even closer to the stool).

Note that the final whole-body motion in both experiments
is composed by different kinds of CoM movement primitives:
dynamic steps are chosen for the walking phases, whereas
free CoM is used for picking up and releasing the ball in
double support. We emphasize that this natural choice is
automatically made by the planner.

Table I collects some averaged performance figures for
the two scenarios: planning time until task deformation is
activated, time needed for path deformation and planning
time on the deformed task, plus the number of nodes in the
final tree and the motion duration.

VII. CONCLUSIONS

We have presented a two-level framework aimed at solving
task-constrained motion planning problems for humanoid
robots. The task is assigned as a deformable trajectory in
task space, a feature that the planner may exploit if this is



Fig. 3. Planning experiment 1: Snapshots from a solution. Dotted line:
initial task path; solid line: final task path.

Fig. 4. Planning experiment 2: Snapshots from a solution. Dotted line:
initial task path; solid line: final task path.

data exp 1 exp 2

initial planning time (s) 26.1 19.3
deformation time (s) 1.33 2.32

final planning time (s) 15.9 10.2
final tree size 68.1 61.9

motion duration (s) 17.2 13.3

TABLE I
PLANNER PERFORMANCE AT A GLANCE

considered convenient for finding a solution. Our planner
automatically detects when the task path must to be deformed
and selects one of two heuristic deformation actions, i.e.,
obstacle-based and robot-based. Results obtained in V-REP
for the humanoid robot NAO show that the proposed method
performs successfully in a variety of scenarios.

We are currently working to improve this work in several
directions, including an extension to on-line replanning, in
which the nominal plan must be adapted at runtime to
cope with dynamic scenarios. A preliminary result of this
extension is included in the accompanying video.

Another interesting development would be to allow defor-
mation (rather than simple adaptation) on the time history as

well. For example, this may allow to solve difficult planning
problems where the main reason for failed expansions is
violation of joint velocity bounds (rather that collision or
violation of joint limits) by slowing down the motion.

REFERENCES

[1] J. Kuffner, J.J., K. Nishiwaki, S. Kagami, M. Inaba, and H. In-
oue, “Footstep planning among obstacles for biped robots,” in 2001
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2001, pp. 500–
505.

[2] J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue, “Motion
planning for humanoid robots,” in Proc. 11th Int. Symp. of Robotics
Research (ISRR 2003), 2003.

[3] J. Chestnutt, M. Lau, G. Cheung, J. Kuffner, J. Hodgins, and
T. Kanade, “Footstep planning for the honda ASIMO humanoid,” in
2005 IEEE Int. Conf. on Robotics and Automation, 2005, pp. 629–634.

[4] N. Perrin, O. Stasse, L. Baudouin, F. Lamiraux, and E. Yoshida, “Fast
humanoid robot collision-free footstep planning using swept volume
approximations,” IEEE Trans. on Robotics, vol. 28, no. 2, pp. 427–439,
2012.

[5] J. Pettré, J.-P. Laumond, and T. Siméon, “A 2-stages locomotion
planner for digital actors,” in 2003 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, 2003, pp. 258–264.

[6] E. Yoshida, I. Belousov, C. Esteves, and J.-P. Laumond, “Humanoid
motion planning for dynamic tasks,” in 2005 5th IEEE-RAS Int. Conf.
on Humanoid Robots, 2005, pp. 1–6.

[7] J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, and H. Inoue,
“Dynamically-stable motion planning for humanoid robots,” Au-
tonomous Robots, vol. 12, pp. 105–118, 2002.

[8] B. Siciliano and J.-J. Slotine, “A general framework for managing mul-
tiple tasks in highly redundant robotic systems,” in Fifth International
Conference on Advanced Robotics, 1991, pp. 1211–1216.

[9] O. Kanoun, F. Lamiraux, and P. B. Wieber, “Kinematic control of
redundant manipulators: Generalizing the task-priority framework to
inequality task,” IEEE Trans. on Robotics, vol. 27, no. 4, pp. 785–792,
2011.

[10] O. Kanoun, J.-P. Laumond, and E. Yoshida, “Planning foot placements
for a humanoid robot: A problem of inverse kinematics,” Int. J. of
Robotics Research, vol. 30, no. 4, pp. 476–485, 2011.

[11] F. Burget, A. Hornung, and M. Bennewitz, “Whole-body motion
planning for manipulation of articulated objects,” in 2013 IEEE Int.
Conf. on Robotics and Automation, 2013, pp. 1656–1662.

[12] K. Hauser and V. Ng-Thow-Hing, “Randomized multi-modal motion
planning for a humanoid robot manipulation task,” Int. J. of Robotics
Research, vol. 30, no. 6, pp. 678–698, 2011.

[13] S. Dalibard, A. El Khoury, F. Lamiraux, A. Nakhaei, M. Taı̈x, and
J.-P. Laumond, “Dynamic walking and whole-body motion planning
for humanoid robots: An integrated approach,” Int. J. of Robotics
Research, vol. 32, no. 9–10, pp. 1089–1103, 2013.

[14] K. Bouyarmane and A. Kheddar, “Humanoid robot locomotion and
manipulation step planning,” Advanced Robotics, vol. 26, no. 10, pp.
1099–1126, 2012.

[15] M. Cognetti, P. Mohammadi, and G. Oriolo, “Whole-body motion
planning for humanoids based on com movement primitives,” in 2015
15th IEEE-RAS Int. Conf. on Humanoid Robots, 2015, pp. 1090–1095.

[16] R. Geraerts and M. H. Overmars, “Creating high-quality paths for
motion planning,” Int. J. of Robotics Research, vol. 26, no. 8, pp.
845–863, 2002.

[17] J. Vannoy and J. Xiao, “Real-Time Adaptive Motion Planning (RAMP)
of Mobile Manipulators in Dynamic Environments with Unforeseen
Changes,” IEEE Trans. on Robotics, vol. 24, no. 5, pp. 1199–1212,
2008.

[18] O. Brock and O. Khatib, “Elastic strips: A framework for motion
generation in human environments,” Int. J. of Robotics Research,
vol. 21, no. 12, pp. 1031–1052, 2002.

[19] Y. Yang and O. Brock, “Elastic roadmaps - motion generation for
autonomous mobile manipulation,” Autonomous Robots, vol. 28, no. 1,
pp. 113–130, 2010.

[20] M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith,
C. M. Dellin, J. A. Bagnell, and S. S. Srinivasa, “CHOMP: Covariant
Hamiltonian optimization for motion planning,” Int. J. of Robotics
Research, vol. 32, no. 9-10, p. 11641193, 2013.




