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ABSTRACT: Presently, there is no standardized framework or metrics identified to assess regional climate model precipi-
tation output. Because of this, it can be difficult to make a one-to-one comparison of their performance between regions or
studies, or against coarser-resolution global climate models. To address this, we introduce the first steps toward establishing
a dynamic, yet standardized, benchmarking framework that can be used to assess model skill in simulating various charac-
teristics of rainfall. Benchmarking differs from typical model evaluation in that it requires that performance expectations
are set a priori. This framework has innumerable applications to underpin scientific studies that assess model performance,
inform model development priorities, and aid stakeholder decision-making by providing a structured methodology to iden-
tify fit-for-purpose model simulations for climate risk assessments and adaptation strategies. While this framework can be
applied to regional climate model simulations at any spatial domain, we demonstrate its effectiveness over Australia using
high-resolution, 0.58 3 0.58 simulations from the CORDEX-Australasia ensemble. We provide recommendations for
selecting metrics and pragmatic benchmarking thresholds depending on the application of the framework. This includes a
top tier of minimum standard metrics to establish a minimum benchmarking standard for ongoing climate model assess-
ment. We present multiple applications of the framework using feedback received from potential user communities and en-
courage the scientific and user community to build on this framework by tailoring benchmarks and incorporating
additional metrics specific to their application.

SIGNIFICANCE STATEMENT: We introduce a standardized benchmarking framework for assessing the skill of
regional climate models in simulating precipitation. This framework addresses the lack of a uniform approach in the
scientific community and has diverse applications in scientific research, model development, and societal decision-
making. We define a set of minimum standard metrics to underpin ongoing climate model assessments that quantify
model skill in simulating fundamental characteristics of rainfall. We provide guidance for selecting metrics and defining
benchmarking thresholds, demonstrated using multiple case studies over Australia. This framework has broad applica-
tions for numerous user communities and provides a structured methodology for the assessment of model performance.

KEYWORDS: Precipitation; Model comparison; Model evaluation/performance; Regional models

1. Introduction

The Sixth Assessment Report (AR6) by the Intergovernmen-
tal Panel on Climate Change (IPCC) highlights the exacerba-
tion of water-related crises in a changing climate. According to
this report, nearly half of the global population is facing annual,
severe water shortages, and over 50% of disaster events since
1970 are due to rainfall extremes, including floods and droughts

(Caretta et al. 2023). Despite the widespread impact of these
water crises and rainfall-related disasters driving international
efforts to adapt to changing rainfall patterns, global climate
models (GCMs) still struggle to simulate many aspects of rain-
fall. Most notably attributed to GCM rainfall biases are model
parameterizations and coarse model resolution that cannot re-
solve key thermodynamic and dynamic processes relevant to
rainfall simulation (Flato et al. 2013). There has been improve-
ment across generations of the Coupled Model Intercomparison
Project (CMIP) (Flato et al. 2013; IPCC 2021). However, these
improvements are heterogeneous across regions, timespans,
and rainfall characteristics. Many studies detail sustained prob-
lems in how GCMs simulate tropical rainfall (Oueslati and
Bellon 2015; Fiedler et al. 2020), rainfall extremes (Sillmann
et al. 2013), seasonal rainfall patterns (Dunning et al. 2017),
long-term annual precipitation trends (Vicente-Serrano et al.
2022), the diurnal cycle (Covey et al. 2016), and the “drizzle
bias” where models tend to rain too little, too often (Dai 2006;
Chen et al. 2021). A lack of consistency in the methods or
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metrics used to quantify models’ skill in simulating different as-
pects of rainfall makes it difficult to make a one-to-one compar-
ison between studies, or efficiently track progress across CMIP
generations. However, recent efforts have prompted standardi-
zation in assessing how GCMs simulate rainfall (Eyring et al.
2016; Baker and Taylor 2016; Eyring et al. 2019; Lauer et al.
2020; U.S. DOE 2020; Ahn et al. 2023).

A standardized benchmarking framework to assess simu-
lated precipitation in GCMs across different generations of
models was outlined in U.S. DOE (2020). They identify a set
of performance metrics that can serve as a baseline to gauge
model performance in simulating the spatial distribution, sea-
sonal cycle, temporal variability, observed distributions of
intensity and frequency, wet extremes, and drought. This
“benchmarking” framework was primarily established to bet-
ter gauge progress across CMIP generations. Benchmarking
differs from standard model evaluation in that benchmarking
requires performance expectations to be defined a priori
(Abramowitz 2005, 2012). Since its publication, many addi-
tional studies have investigated the diurnal cycle (Tang et al.
2021), temporal variability (Ahn et al. 2022), and daily distri-
butions of rainfall (Martinez-Villalobos et al. 2022) in GCMs,
underpinned by the work presented in U.S. DOE (2020).

International efforts to coordinate the production and eval-
uation of dynamically downscaled models and reanalyses
(Giorgi and Gutowski 2015) have allowed for far greater ac-
cessibility of high-resolution regional climate model (RCM)
simulations to the scientific community and regional decision-
makers. While there has been progress to standardize how
GCM simulations of rainfall are assessed, efforts to standard-
ize the assessment of RCMs have been regionally heteroge-
neous. Presently, there is no standardized framework or
metrics identified to assess RCM precipitation output. Previ-
ous studies have shown that RCMs tend to differ in magnitude
and spatial variability when compared to GCMs. However,
these studies are frequently limited in the scope of perfor-
mance metrics evaluated, and commonly only assess a handful
of indices using the ensemble mean instead of individual
model performance. There are also regional inconsistencies
where RCMs tend to run wetter than their forcing GCM [e.g.,
over Europe (Boé et al. 2020) and Southeast Asia (Nguyen
et al. 2022)], and RCMs tend to run drier over Africa (Dosio
et al. 2021). However, there is little consistency between the
metrics used in these evaluation studies, which makes it diffi-
cult to make a one-to-one comparison or properly assess
RCM performance in simulating precipitation.

To address this inconsistency, we present a standardized
benchmarking framework underpinned by the work pre-
sented in U.S. DOE (2020) to holistically assess the skill of
downscaled precipitation simulations. This framework could
be used to guide scientific studies to assess model perfor-
mance and inform model development priorities, and for
stakeholders to identify fit-for-purpose model simulations to
underpin climate risk assessments and inform climate adapta-
tion strategies.

This paper is organized as follows: section 2 presents the bench-
marking framework, with sections 2b and 2c describing tiers of
performance metrics and section 2d describing recommendations

for defining a priori benchmarking thresholds. Section 3 show-
cases multiple applications of the benchmarking framework to
the CORDEX-Australasia ensemble prefaced by a description of
the data used and preprocessing steps completed. We summarize
and discuss key points in section 4.

2. The benchmarking framework

Model evaluation and benchmarking differ in significant
ways. Model evaluation gauges how well a model simulates a
given variable compared to observations (Flato et al. 2013).
Benchmarking seeks to understand how well a model should per-
form by defining performance expectations a priori (Abramowitz
2005, 2012). Benchmarking reframes traditional model evaluation
by incorporating predefined performance thresholds. This step is
equally beneficial and challenging, as we discuss in section 2d. An
established benchmarking framework already exists for land sur-
face models (Best et al. 2015), and early work has been completed
to benchmark precipitation in GCMs (see section 1). While pre-
cipitation encompasses liquid precipitation (rainfall) and solid pre-
cipitation (snow, hail, etc.), we use rainfall synonymously with
precipitation in this paper as solid precipitation is negligible for
our case study region of Australia.

We have developed this framework to establish a consis-
tent, systematic, foundational methodology to quantify RCM
skill in simulating precipitation for various user communities.
The benchmarking framework (BMF) consists of two tiers of
metrics: the first tier defines a set of minimum standard perfor-
mance metrics, and the second tier encourages user-defined
metrics relevant to the study. The BMF can be applied to
RCM simulations across any region at any spatial resolution.
This framework can be used by stakeholder user communities
to distill a subset of fit-for-purpose model simulations or subset
model simulations to develop storylines for informed decision-
making. Scientific and research user communities can use this
framework for innumerable applications to highlight gaps in
model performance and guide model development priorities.
Model developers can use the BMF as a first step to effi-
ciently assess model performance, broadly quantify biases and
uncertainties, and identify the sources of these uncertainties.
Model developers and evaluators can also use the BMF to test
the impact of higher spatial resolutions (Bador et al. 2020a;
Nishant et al. 2022) or bias correction techniques (Casanueva et al.
2016), quantify model progress across generations (Alexander
and Arblaster 2009; Flato et al. 2013; Sillmann et al. 2013;
Alexander and Arblaster 2017; Fiedler et al. 2020), test dif-
ferent model setups and parameterizations (Ji et al. 2014),
or assess model performance when different downscaling techni-
ques are used, such as spectral nudging, statistical downscaling,
or machine learning (Hobeichi et al. 2023). Additionally, scien-
tific researchers can use this framework to underpin studies as-
sessing regime- and process-oriented properties of rainfall, such
as frontal precipitation (Berry et al. 2011) and teleconnections
(Fita et al. 2017), respectively. These more complex assessments
of simulated rainfall are essential for better understanding model
biases and limitations, improving future simulations of rainfall,
and improving the scientific community’s physical interpretation
of performance metrics.
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a. Observational uncertainty

A common, yet unavoidable, problem in traditional model
evaluation to quantify model skill in simulating precipitation
is observational uncertainty (Evans et al. 2016; Gibson et al.
2019); this is true for benchmarking as well. It is well known
that there are vast differences in global observations of precip-
itation (Sun et al. 2018), particularly for extreme precipitation
(Herold et al. 2017; Alexander et al. 2020; Bador et al. 2020b).
This tends to be true regionally as well (see Figs. S1–S3 in the
online supplemental material; Contractor et al. 2015; Yin et al.
2015), especially as there are significant regional heterogene-
ities in data quality and spatial and temporal availability
(Alexander et al. 2019). Because of these regional differences in
observational data quality and coverage, there is not one best
way to quantify observational uncertainty. We acknowledge that
further research is required in this area, and it is likely better to
quantify observational uncertainty differently depending on the
spatial/temporal scale and region of study. In the following sec-
tions, we discuss using a single observational product to quantify
model skill for simplicity, acknowledging that real-world applica-
tions of the benchmarking framework should incorporate multi-
ple observational products (see the supplemental material) or
other methods to quantify observational uncertainty.

b. Minimum standard metrics

We first define a set of foundational, minimum standard
metrics (MSMs) that address very fundamental characteristics
of rainfall to provide consistency, simplicity, and pragmatism
in how RCM skill is measured (Table 1). We define four
equally weighted MSMs that quantify mean-state biases in
model performance with respect to the amount of rainfall, the
spatial distribution of rainfall, the timing of rainfall, and the
temporal variability of rainfall. The MSMs are calculated us-
ing area-weighted, average total rainfall, providing a well-
rounded synopsis of RCM performance and mean-state biases
in simulating rainfall that accounts for the different sizes of
grid cells across latitudes. Before more complex processes or
rainfall characteristics are assessed, a model should meet per-
formance expectations (i.e., benchmarks; see section 2d) for
all the MSMs.

To quantify the mean-state model skill in simulating the
amount of rainfall, we recommend the mean absolute percentage

error (MAPE), where n is the number of grid cells in the spatial
domain [Eq. (1)]:

MAPE 5
1
n
∑
n

i51

|modeli 2 obsi|
obsi

: (1)

This provides a metric that is robust against large biases in a
small region of the study domain and expresses the relative
error of the model simulation compared to observations. Be-
cause the MAPE can quickly be converted to a percentage er-
ror, it is also easy to interpret by non-research communities.
To quantify the mean-state spatial distribution of simulated
rainfall, we recommend using the spatial correlation tested
against the observational product. The spatial correlation is a
standard metric for quantifying the agreement of spatial pat-
terns between two datasets and ranges from 0 to 1. Because
both metrics can be thought of as a percentage error of differ-
ent rainfall characteristics, they are easy to compare. Further,
the definition of benchmarking thresholds is very intuitive.
For example, if a user wants to identify models that capture
the spatial variability across at least 65% of their study do-
main with a wet/dry bias of no more than 70% compared to
observations, then the user would define a benchmarking
threshold for the spatial correlation as $0.65 and the thresh-
old for the MAPE as #0.7 (see section 2d for more on defin-
ing benchmarking thresholds).

To quantify model skill in simulating the timing of rainfall,
we prescribe a simple quantification of the seasonal cycle that
emphasizes quantifying model skill in simulating the phase of
rainfall. We recommend calculating the climatological total
monthly precipitation across the study domain and ranking
the months from driest to wettest for the observational prod-
uct and the RCM simulations. Then, for a unimodal (bimodal)
seasonal cycle, we use the three (six) wettest and driest
months of the observational product to quantify the phase of
the seasonal cycle. 100% of the three (six) wettest observed
months must be among the six wettest modeled months, and
100% of the three (six) driest observed months must be
among the six driest modeled months. Models with rainfall
peaks or troughs slightly out of phase with observations will
likely still pass this metric. Again, the MSMs are intended
to highlight any fundamental flaws in the simulation of basic
characteristics of rainfall. This metric will flag simulations
where the seasonal cycle is inverted or largely out of phase
with observations. This metric establishes a consistent and
simple assessment among studies with flexibility appropriate
for the large differences in rainfall seasonality between re-
gions. While this metric does neglect the amplitude of the sea-
sonal cycle, the purpose here is to broadly quantify model skill
in simulating the timing of precipitation (Table 1). More de-
tailed assessments of the seasonal cycle, including the ampli-
tude, can be incorporated in further steps as outlined later [see
sections 2c(1) and 4b].

For a low-level quantification of the temporal trend, we rec-
ommend using the direction of a significant trend, tested using
at least a 10% significance level, in the time series of the refer-
ence observational dataset using at least 30 years of data.

TABLE 1. The minimum standard metrics (MSMs) quantify
very fundamental characteristics of rainfall. These metrics should
be calculated based on area-weighted, average total rainfall for
the region of interest.

Fundamental rainfall
characteristic Quantifying metric

How much does it rain? Mean absolute percentage error
(MAPE)

Where does it rain? Spatial correlation
When does it rain? Seasonal cycle
How does rainfall change

over time?
Direction of a significant trend
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Ideally, a longer time series will be used if data are available.
We recommend using standard, nonparametric statistical
methods that do not assume a Gaussian distribution including
the Thiel–Sen trend tested for significance using the Mann–
Kendall significance test (Hamed 2008). This metric tests the
direction of the simulated trend in precipitation, neglecting
the magnitude of the trend. If the model does not have a sig-
nificant trend in the same direction as the observational data-
set, then the model would not meet minimum performance
standards. The models that meet performance expectations
for all the MSMs can then be assessed against the more com-
plex metrics in the second tier (Fig. 1) based on the need and/
or scientific interest of the user.

c. Versatility metrics

Quantifying model skill in simulating regional rainfall is
very complex, regardless of the region of interest, aspect of

rainfall, or the spatial or temporal scale. The second tier, also
referred to as the versatility tier, provides a nonexhaustive list
of recommended metrics and indices to quantify model skill
across rainfall characteristics (Fig. 1). These metrics were
largely consolidated from the scientific literature by a group of
international experts in U.S. DOE (2020) but were amended
here to apply to downscaled data. Primarily, we have added the
user-defined column to explicitly address the diverse applica-
tions of RCMs across stakeholder and research communities.
RCMs are commonly used to inform climate adaption planning
and risk assessments or research atmospheric phenomena that
are not resolved at the coarser spatial resolutions of GCMs. We
also explicitly incorporate user-defined benchmarking thresh-
olds (see section 2d) to identify fit-for-purpose simulations
wherein the U.S. Department of Energy (U.S. DOE 2020) es-
tablished a framework intended to gauge model performance
across CMIP generations. We encourage users to apply other

FIG. 1. Schematic for the tiers of metrics for the benchmarking framework, underpinned by U.S. DOE (2020). The minimum standard
metrics quantify very basic characteristics of rainfall. The second-tier metrics offer a nonexhaustive list of metrics to further assess addi-
tional characteristics of rainfall. These were largely consolidated by a group of international experts specializing in various aspects of mod-
eled and observed rainfall (U.S. DOE 2020) and have been updated for downscaled rainfall. We encourage users to incorporate additional
metrics relevant to their application of the framework.
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metrics and develop additional techniques to better quantify
model skill for any standard characteristic of rainfall (e.g., sea-
sonality, temporal variability, intensity/frequency distributions,
wet extremes, or rainfall deficits). Additionally, the user-defined
column prompts users to incorporate additional metrics for
more complex aspects of rainfall and broader characteristics of
the water cycle. For example, users can define and develop met-
rics based on the region and/or sector of interest, to quantify a
specific rainfall regime or process, or incorporate any other met-
ric or technique that is relevant to the research question. It is
expected that this collection of recommended metrics will be
updated as further research is completed.

1) SEASONALITY

The low-level quantification of the seasonal cycle used in the
MSMs will not be sufficient for many applications of the BMF
especially in regions largely impacted by interannual and/or de-
cadal variability. Many users will require a deeper analysis that
better captures the amplitude, phase, onset/cessation, or other
characteristics of rainfall seasonality. For instance, sector users
in agriculture (Basso et al. 2012), hydroelectric power supply
(de Jong et al. 2018), or water resource management (Barua
et al. 2013) could be interested in assessing long-term variability
in the seasonal cycle and would benefit from applying more ad-
vanced techniques to calculate the onset and cessation of the
rainy season(s). This could include calculating the cumulative
rainfall anomaly (Dunning et al. 2017, 2016) or setting a fixed
threshold for continued rainfall as is frequently used in the agri-
culture sector (Liebmann et al. 2012).

Additionally, a better scientific understanding of the physi-
cal drivers of regional rainfall seasonality}and a quantifica-
tion of how well models capture the influence of these
drivers}would require a more complete breakdown of the
seasonal cycle. Therefore, it could be beneficial to employ
harmonic analysis (Wang and LinHo 2002) to quantify the
amplitude and phase of the seasonal cycle for efficient com-
parison against observations. Further, due to the vast regional
variability in rainfall seasonality, many studies have shown
the benefits of tailoring metrics and analysis techniques to the
region of interest to quantify rainfall seasonality (Seregina
et al. 2019; Dey et al. 2021).

2) TEMPORAL VARIABILITY

Quantifying model skill in simulating the temporal variabil-
ity of rainfall is challenging as rainfall varies at time scales
ranging from subdaily to multidecadal. The simplest way to
quantify temporal variability is to calculate the standard devi-
ation at different time scales, although this provides limited
insight into model performance. Advanced methods can yield
a more comprehensive assessment of model performance at
different time scales. As an example, Covey et al. (2016) pro-
pose the “harmonic dial” diagram, created by vector spatial
averaging Fourier amplitude and phases across land and
ocean separately, to assess the diurnal cycle of rainfall simula-
tions. Using this method, they find that members of the
CMIP5 ensemble tend to rain too early in the day. Other
methods such as harmonic analysis and principal component

analysis (EOFs) are frequently used to distill modes of tempo-
ral variability such as those from El Niño–Southern Oscilla-
tion (ENSO), the Atlantic multidecadal oscillation (AMO),
the Indian Ocean dipole (IOD), or long-term trends (Cai et al.
2011; Roundy 2015; Xiao et al. 2015; Yang et al. 2015; Chen
and Tung 2018; Tippett and L’Heureux 2020). Ahn et al.
(2022) also introduce techniques to quantify temporal variabil-
ity at subdaily to interannual scales using power spectra analysis
and time-averaging, highlighting that these robust methods are
not sensitive to differences in observations. These techniques
can be effective ways to investigate different drivers of temporal
rainfall variability.

3) INTENSITY AND FREQUENCY DISTRIBUTIONS

While the MSMs provide a low-level quantification of how
well models simulate fundamental characteristics of rainfall,
they do not capture the full distribution of rainfall. Quantify-
ing the intensity and frequency distribution of rainfall pro-
vides a deeper insight into the strengths and weaknesses of
simulated rainfall. This can also provide insight into the
causes of biases and limitations (i.e., model setups and param-
eterizations). RCM performance in simulating the distribution
of rainfall can be quantified using many established techni-
ques. For instance, established skill scores can be used to
quantify how well models simulate the distribution of rainfall
compared to observations (Perkins et al. 2007; Nguyen et al.
2022). Martinez-Villalobos et al. (2022) outline the strengths
and limitations of several metrics that quantify GCM perfor-
mance in simulating the distribution of daily rainfall that
could be applied to RCMs. This study also highlights the ne-
cessity of incorporating multiple metrics in studies of modeled
rainfall as model performance varies across metrics.

4) WET EXTREMES

Rainfall extremes are of high importance for stakeholder
decision-making and climate adaptation planning but are not
explicitly captured in the MSMs. There are numerous climate
indices defined by the World Meteorological Organization
(WMO) and the World Climate Research Program (WCRP)
such as those by the former Expert Team on Climate Change
Detection and Indices (ETCCDI) to quantify the intensity, se-
verity, and frequency of moderately extreme rainfall (Zhang
et al. 2011; Alexander et al. 2019). However, users should be
thoughtful in the selection and interpretation of these climate
indices. Percentile indices, such as very wet days as defined by
rainfall in the 95th percentile of a given time period (R95p)
and extremely wet days as defined by rainfall in the 99th per-
centile (R99p), are particularly subjective to the reference pe-
riod (Alexander et al. 2019; Bador et al. 2020b). Further, it is
pertinent to acknowledge the large variability between rain-
fall extremes in global observational datasets (Bador et al.
2020b) and the impact of different preprocessing steps used in
the creation of gridded observational datasets (Alexander
et al. 2019). When using the BMF to benchmark model perfor-
mance in simulating wet extremes, it is highly recommended to
incorporate multiple observational datasets to quantify model
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performance (see Figs. S2 and S3 in the online supplemental
material).

5) RAINFALL DEFICIT

While impacts are felt during periods of severe dryness, a
deficit of rainfall is not always extreme. It is very dependent
on the spatiotemporal scale in which a deficit occurs. There
are many established metrics and methods to quantify how
well models simulate a lack of rainfall, extreme or otherwise.
In this section, we focus primarily on an extreme deficit of
rainfall or conditions that lead to meteorological drought.
Metrics, indices, and thresholds used to quantify meteorologi-
cal drought vary based on the study region. However, one
universal index that works well globally (WMO and GWP
2016) is the standardized precipitation index (SPI) (McKee
et al. 1993). The SPI is a measure of how much rainfall devi-
ates from the long-term average and can be calculated at dif-
ferent time spans. Then, users can calculate how often rainfall
falls below a given threshold; thresholds are standardized to
indicate the severity of drought (see section 3d for an exam-
ple). Another commonly used index to study meteorological
dryness is the maximum annual number of consecutive dry
days (CDD), which quantifies the duration of dry spells (Chu
et al. 2010; Haylock and Goodess 2004). However, this index
is not appropriate for regions with a distinct dry season or
general arid climate (see Alexander et al. 2019).

6) USER-DEFINED

All performance metrics discussed previously are limited in
scope in that they only require precipitation data for their cal-
culation. The user-defined column explicitly encourages users
to incorporate and develop additional metrics and techniques
to evaluate rainfall and broader aspects of the water cycle.
This could include established rainfall indices that incorporate
other meteorological variables, such as the standardized precipi-
tation and evapotranspiration index (SPEI), which is calculated
using temperature and rainfall data and is commonly used to
study drought (Spinoni et al. 2021). This could also include sector-
or research-specific metrics or indices. For instance, stakeholder
user communities can incorporate user-defined metrics or indices
to benchmark aspects of rainfall that are specific to their decision-
making process. This can facilitate broader opportunities for co-
designed research and help stakeholders optimize the utility of
downscaled data and climate information. Additionally, users can
incorporate metrics specific to their application of the BMF. For
instance, if the BMF were used to underpin added value studies
(Choudhary et al. 2019; Torma et al. 2015; De Haan et al. 2015;
Di Virgilio et al. 2020; Solman and Blázquez 2019; Rummukainen
2016), then users would ideally incorporate established added
value metrics (Kanamitsu and Dehaan 2011; Di Luca et al. 2012;
Di Virgilio et al. 2020; Ciarlo et al. 2021) to quantify RCM perfor-
mance compared to GCMs. Further, certain methods have been
shown to better capture intricate rainfall characteristics in differ-
ent regions. For example, Seregina et al. (2019) found that replac-
ing Fourier harmonics (Wang and LinHo 2002) with a low-pass
Lanczos filter better captured the complex seasonality of rain-
fall in the Greater Horn of Africa. There are many established

methods and metrics that can be incorporated when using the
BMF to quantify model performance in simulating rainfall be-
yond what is explicitly listed in Fig. 1.

Additionally, there are many aspects of rainfall that require
additional research to determine appropriate benchmarking
metrics. For instance, as computing capabilities improve, we
can simulate rainfall at higher resolutions. This facilitates the
development and application of methods and metrics that
are effective in quantifying model performance in simulating
complex rainfall regimes, such as frontal systems or mesoscale
convective systems, and rainfall processes, such as teleconnec-
tions and orographic rainfall. For example, methods that are
frequently used in forecast verification can be leveraged for
RCM assessment at higher resolutions such as the fraction
skill score to assess the distribution of precipitation in convective-
permitting models (Prein et al. 2013) or storm tracking methods
to identify the source of simulated precipitation (Feng et al.
2021). There are many benefits to further developing metrics to
quantify these complexities of rainfall. Outside of improving our
scientific understanding of these processes, scientists can identify
parameterizations and other model structures that cause biases
and other erroneous representations of different rainfall charac-
teristics. We strongly encourage users to incorporate, develop,
and test other performance metrics to improve ongoing bench-
marking capabilities.

d. Defining a benchmark

Benchmarking requires that model performance expecta-
tions are defined prior to the analysis. Therefore, we must de-
fine performance benchmarks (the criteria that will be used to
assess model performance) and benchmarking thresholds
(how well a model should score against a given metric). There
is no one-size-fits-all definition for performance benchmarks.
The benchmarking definition, and associated benchmarking
thresholds, that define acceptable model performance should
be informed by strong scientific reasoning, the scientific re-
search question, the region or sector of interest, and the gen-
eral purpose for benchmarking model performance.

Benchmarks can be defined more objectively for some met-
rics and applications than for others. For instance, as is done
in standard model evaluation, we can use observational prod-
ucts (see section 3) or a range of observational uncertainty
from multiple observational products (Martinez-Villalobos
et al. 2022; see our supplemental Figs. S1–S3) as the benchmark
and benchmarking thresholds as appropriate in certain cases.
However, other performance metrics must be informed more
subjectively using strong scientific reasoning based on the appli-
cation of the framework. This is particularly important when
working with stakeholder user communities to identify fit for
purpose simulations. Scientific expertise should be used to define
reasonable model performance expectations that fall within the
current capabilities of the modeling community. For the MSMs,
benchmarking thresholds that are generous in the definition of
“reasonable performance” are encouraged because these met-
rics are intended to identify models with fundamental shortcom-
ings in simulating precipitation.
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Due to the diverse applications of the BMF, the range of ef-
fective benchmarking definitions and thresholds is also vast.
For instance, model evaluators can use the BMF to gauge
model improvement across generations. A reasonable bench-
marking definition here could be that models must perform at
least as well as the previous generation of models. Since
GCM–RCM pairings typically change across generations, the
users could define the benchmarking thresholds as the range
of performance from the ensemble of the previous genera-
tion(s) against a selection of metrics. Likewise, model devel-
opers could use the BMF in a similar way to adjust model
setups and parameterizations in response to performance against
the MSMs (Table 1). Further, the BMF can underpin “added
value” studies (Choudhary et al. 2019; Torma et al. 2015; De
Haan et al. 2015; Di Virgilio et al. 2020; Solman and Blázquez
2019; Rummukainen 2016) that seek to quantify the benefits
of downscaling GCMs. For these studies, the benchmarking
definition and thresholds could be that RCMs must perform
at least as well as their forcing GCM against a given set of
metrics.

We do not seek to prescribe the best definition of a bench-
mark or the associated benchmarking thresholds. Instead, we
provide guidance, emphasizing again that benchmarks should
be informed by the purpose of applying the benchmarking
framework and should be fit for purpose. As different user
communities apply the BMF, this process may become more
prescriptive over time. In the next section, we use scientific
expertise to translate stakeholder performance needs into rea-
sonable definitions of performance benchmarks using the
CORDEX-Australasia ensemble as a case study.

3. Benchmarking the CORDEX-Australasia ensemble

In this section, we showcase an application of the bench-
marking framework over terrestrial Australia where we have
confidence in our observational record (defined in section 3a)
using 24 simulations from the CORDEX-Australasia ensem-
ble (Table 2).

Using feedback from discussions with potential users in hu-
manitarian aid, water resource management, and the scientific
research community, we present two simplified hypothetical
applications of the framework. While these stakeholders spe-
cifically had very different concerns depending on their loca-
tion in Australia, in-house scientific resources, and the aspect
of their decision-making in question, we distilled their feed-
back to create a simplified case study to test the BMF.
Broadly speaking, these stakeholders wanted models that best
captured Australia’s highly variable rainfall seasonality (with
equal emphasis on the spatial variability, timing, and quantity
of rainfall) and the frequency of rainfall deficits. We present
these as two different case studies for simplicity. For the
MSMs, these stakeholders emphasized the need for models
that are skilled in capturing the spatial distribution of rainfall.
Specifically, it was important for these stakeholders to know if
rain would fall in a particular watershed or catchment area to
use in allocating water resources or where areas would not re-
ceive rainfall and may need more aid or water conservation
actions. It was less important to identify models that have a

large wet or dry bias as these stakeholders are accustomed to
Australia’s characteristically extreme wet and dry periods.

In the following sections, we translate these qualitative
stakeholder needs into quantitative model performance ex-
pectations. The performance expectations for the MSMs will
be the same for both hypotheticals. Then, one application will
seek to identify models better at simulating the amplitude and
phase of the seasonal cycle, and the other application will
seek to identify models better at simulating the frequency of
rainfall deficits over Australia. Again, the benchmarks used to
test the MSMs are not meant to be too restrictive. At this
stage, we only want to remove models that have low-level,
systematic biases in simulating fundamental characteristics of
rainfall. The benchmarks should reflect the stakeholder needs
while also incorporating scientific expertise to inform reason-
able model performance expectations. We will use a regionally
developed observational product for Australia to quantify
model skill, noting again the need to account for observational
uncertainty in real applications of the BMF (see section 2a
above and examples within the supplemental material).

a. Data and preprocessing

We use daily precipitation from 24 simulations of the
CORDEX-Australasia ensemble that includes 7 RCMs forced
by 10 GCMs (Evans et al. 2021) and daily precipitation obser-
vations from the Australian Gridded Climate Dataset (Jones
et al. 2009) for 1976–2005 (Table 2). By only using the AGCD
product instead of global, gridded observational products (i.e.,
Roca et al. 2019; see our supplemental material) we can assess
RCM performance at a higher resolution. We improve confi-
dence in our observational dataset by creating a quality mask
that removes grid points not containing at least one observing
station based on the Global Historical Climatology Network
daily (GHCN-daily) database (see Fig. 2). This removes
grid points where rainfall observations are artificially created
through the interpolation algorithms used to create the
gridded dataset. We also remove grid points that contain more
than 50% ocean.

First, all datasets were interpolated to a Cartesian coordi-
nate system with a spatial resolution of 0.58 3 0.58 using first-
order conservative interpolation to better capture the spatial
discontinuity of precipitation (Jones 1999). This meant inter-
polating the AGCD data and some of the CORDEX simula-
tions to a coarser resolution so all datasets were on a common
grid. Then, we used Climpact, an open-source software pack-
age developed under the auspices of the World Meteoro-
logical Organization (WMO) (Alexander and Herold 2015;
see https://climpact-sci.org), to calculate a set of 51 climate in-
dices for the AGCD data and the CORDEX-Australasia en-
semble (Isphording et al. 2023). This order of operations is
recommended as it has been shown to be less sensitive to the in-
terpolation methods used in regridding (Avila et al. 2015). It is
also recommended that a gridded observational product is
used to assess model performance against the MSMs because
RCMs provide area-averaged values at each grid point; it is
therefore pertinent that a fair assessment of model perfor-
mance is based on a comparison to observed area-averaged
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values. See our supplemental Fig. S1 for additional guidance
in selecting observational products to use for benchmarking.

b. Minimum standard metrics

1) MAPE AND SPATIAL CORRELATION

The first two MSMs we use to benchmark the CORDEX-
Australasia ensemble are the MAPE and spatial correlation.
As these metrics are tested against the AGCD dataset and re-
quire users to specifically define a benchmarking threshold,
we define the benchmarking thresholds based on scientific
reasoning, feedback received from the potential user commu-
nities, and the objectives of the two hypothetical applications.
Feedback from stakeholder user communities across Austra-
lia (i.e., humanitarian aid and water resource management)
emphasized the need for RCMs that reasonably capture the
spatial distribution of rainfall, while their decision-making allows
for a generous amount of wet or dry bias due to Australia’s char-
acteristically extreme rainfall variability. Further, during data
preprocessing and data exploration, we evaluated several precip-
itation indices (Zhang et al. 2011) of the CORDEX-Australasia
ensemble at a coarser resolution to incorporate additional global
gridded observational datasets, with and without the quality
mask (see our supplemental material). We also evaluated gridded
observational products against the AGCD product to determine
a range of observational uncertainty across different characteris-
tics of rainfall. This preliminary assessment underpinned our
understanding of reasonable model performance based on the
current scientific capabilities in both regional climate modeling
and gridded observations over Australia that was used to define
the benchmarking thresholds for the MAPE and the spatial

correlation. Further, since both hypothetical user case studies will
later distill a subset of models without a strong wet or dry bias, we
set the benchmarking threshold for the MAPE as #0.75. How-
ever, in setting the benchmarking threshold for the spatial
correlation we are stricter because we do want models that
reasonably capture Australia’s highly variable spatial rain-
fall patterns. We set the benchmarking threshold for the
spatial correlation as $0.7.

In Fig. 2, we show the climatological (1976–2005) rainfall
bias for each model against AGCD, ranked from wettest to
driest based on the weighted spatial average of the bias. Areas
in gray show where the quality mask has been applied. At the
bottom of each plot the MAPE and the spatial correlation,
calculated against the AGCD data, are shown where values
highlighted in purple indicate those that meet the performance
benchmarking thresholds. Two models fail these benchmarks.
The HadGEM2-ES RegCM4-7 fails due to the rainfall bias be-
ing too large, and the CanESM2 WRF360K fails as it does not
reasonably capture the mean spatial distribution of rainfall. It
is important to note how the definition of the benchmarking
thresholds for these two metrics impacts how we assess the
performance of the simulations. For instance, if the MAPE
benchmarking threshold had been lower (higher) or the spatial
correlation higher (lower), more simulations would fail (pass)
this test. We would need to increase the MAPE threshold by
over 50% for all models to meet performance expectations,
but the CanESM-2 CCAM-2008 would not meet our perfor-
mance expectations if the MAPE threshold was any lower. If
we decreased the spatial correlation by approximately 5%
then all models would meet the benchmark for this metric. In
this case, our thresholds largely identify outliers within the

TABLE 2. Summary of CORDEX-Australasia simulations used in this study (Evans et al. 2021).

Institute RCM Driving CMIP5 GCM Available experiments Available time period

CSIRO CCAM-1704 ACCESS1-0 Historical, RCP4.5, RCP8.5 1960–2099
CNRM-CM5
GFDL-ESM2M
HadGEM2-CC
MIROC5
NorESM1-M

CCAM-2008 ACCESS1-0 Historical, RCP4.5, RCP8.5 1960–2099
CanESM2
GFDL-ESM2M
MIROC5 1961–2099
NorESM1-M 1960–2099

CLMcom-HZG CCLM5-0-15 HadGEM2-ES Historical, RCP8.5 1950–2099
MPI-ESM-LR 1950–2100
NorESM1-M

ICTP RegCM4-7 HadGEM2-ES Historical, RCP8.5 1970–2099
MPI-ESM-MR
NorESM1-M

GERICS REMO2015 HadGEM2-ES Historical, RCP8.5 1970–2100
MPI-ESM-LR
NorESM1-M

UNSW WRF360J ACCESS1-0 Historical, RCP4.5, RCP8.5 1951–2100
CanESM2 1951–2099

WRF360K ACCESS1-0 1951–2100
CanESM2 1951–2099

J OURNAL OF CL IMATE VOLUME 371096

Unauthenticated | Downloaded 01/25/24 08:35 AM UTC



FIG. 2. The climatological (1976–2005) bias for each model against the AGCD observational product, ranked from wettest to
driest based on the area-weighted spatial average of the bias. Areas in dark gray indicate grid boxes where we do not have at
least one observation station within that grid box. In the bottom-left corner, we show the MAPE and the spatial correlation
(SCor) calculated against the AGCD data. Values highlighted in purple indicate values that meet our defined benchmarking
thresholds. The AGCD climatology for this period is provided as supplemental Fig. S2.

I S P HORD I NG E T A L . 109715 FEBRUARY 2024

Unauthenticated | Downloaded 01/25/24 08:35 AM UTC



ensemble. The bias maps in Fig. 2 also show the substantial
variability among simulations of climatological rainfall across
Australia, highlighting the need to have metrics that quantify
both spatial variability and biases in routine studies assessing
model performance.

2) SEASONAL CYCLE

The quantification of the seasonal cycle for the MSMs dif-
fers from the seasonality column within the versatility tier
metrics. For our example, there is a unimodal seasonal cycle
when averaging rainfall across all of Australia (Fig. 3). We as-
sess model performance in simulating the seasonal cycle by
ranking the months from wettest to driest and define our
benchmarking threshold as the three wettest and driest ob-
served months must be among the six wettest and driest mod-
eled months (Fig. 4). This method captures the unimodal
structure and the phase of the observed seasonal cycle at a
low level. This method also does not restrict how the models
simulate the onset and offset of the climatological wet season.
Using this definition, two models fail this benchmark as both
models have one of the wettest six months falling within
AGCD’s driest three months (Fig. 4). The NorESM1-M
CCLM-0-15 and NorESM1-M CCAM-2008 simulations fail as
the sixth wettest months (ranked as the seventh driest month
in Fig. 4) falls within the climatological driest three months of
AGCD (Fig. 4).

While this is an easy way to capture the phase and structure
of the seasonal cycle, it provides limited information as to the
amplitude of the seasonal cycle. For instance, the CanESM2
WRF360K simulation has a somewhat muted seasonal cycle:

the range between the driest month and the wettest month is
substantially smaller than that in AGCD (Fig. 3). Based on
the monthly rankings, this model would pass the benchmark.
This is acceptable as the MSMs are meant to be very low
level. If a more precise quantification of model skill in simu-
lating the seasonal cycle is required, then more complex anal-
yses can be completed as recommended in the section on the
versatility tier (see section 3c).

3) DIRECTION OF A SIGNIFICANT TREND

The final MSM is the direction of a significant observed
trend using the annual time series of annual average total pre-
cipitation. We use the direction of the significant Thiel–Sen
trend of the AGCD product spatially averaged over all of
Australia after the quality mask has been applied (Fig. 5) as
the benchmark. We test the significance of the trend using the
Mann–Kendall significance test at a 5% significance level
(Hussain and Mahmud 2019). There is no significant positive
or negative trend for the AGCD product, so our benchmark-
ing threshold is “no trend” (Fig. 5). We replicate this analysis
for each simulation (Fig. 5). All models pass this benchmark
as no trends are significantly positive or negative, meeting our
performance benchmark. Because the RCMs, and their forc-
ing GCMs, are not forced by observational datasets, we do
not expect the time series of the simulations to be aligned
with that of observations. We are only concerned with the direc-
tion of a significant trend}neglecting magnitude and a compre-
hensive quantification of interannual temporal variability}once
again emphasizing that the MSMs are low-level performance
metrics. If simulations are driven by reanalysis data, then it is

FIG. 3. The climatological (1976–2005), latitudinally weighted, average total monthly rainfall (prcptot) across
Australia with the combined quality mask applied. Colors indicate the RCM, and the line styles indicate the forcing
GCM. The AGCD data, used as the benchmark, are shown in black.
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expected that users would quantify temporal consistency as ap-
propriate in the versatility metrics.

4) SUBSET OF MODELS

After testing the CORDEX-Australasia ensemble against
the four MSMs, 20 simulations out of 24 meet the minimum
performance requirements for the hypothetical case studies
(Fig. 6). At this point in applying the benchmarking frame-
work, we eliminate the four simulations that failed the mini-
mum performance standards from further analysis. However,
nearly all the simulations within the CORDEX-Australasia
ensemble assessed here simulate the fundamental characteris-
tics of precipitation quite well over Australia, noting regional
biases (Fig. 2). Further, we cannot identify any RCM or forc-
ing GCM that is routinely less skillful in simulating these char-
acteristics across all of Australia.

It is important to note that the model subset depends on the
performance requirements (i.e., benchmarks and benchmarking
thresholds) defined in the earlier section. Because the bench-
marking thresholds so strongly influence the quantification of
model performance, it is critical to define them in a way that is
fit for purpose and incorporates strong scientific reasoning.

c. Hypothetical user 1: Seasonality

Australia’s climate is characterized by highly diverse rainfall
patterns, which vary significantly across different regions and
seasons. For the first hypothetical case study, we seek to identify
models that best capture the amplitude and phase of the

seasonal cycle across Australia as compared to observations.
We will emphasize benchmarking the models against the ampli-
tude as our assessment of the seasonal cycle in the MSMs ne-
glected amplitude. This means that we will be stricter in our
definition of the benchmarking threshold for the amplitude
than for the phase. To calculate the amplitude and phase of the
seasonal cycle, we first calculate the climatological seasonal
cycle (Fig. 3) at each grid point. We define the amplitude as the
difference between the maximum and mean monthly rainfall
(Fig. 7) and the phase as the month of maximum rainfall
(Fig. 8). To benchmark the subset of simulations from the
CORDEX-Australasia ensemble (Fig. 6), we calculate the cir-
cular spatial correlation against the AGCD observational prod-
uct for the phase and the normalized root-mean-square error
(NRMSE) for the amplitude. For the phase, we assign an inte-
ger to each month (1–12) and calculate the circular spatial cor-
relation against the maps of these values using Eq. (2)
(Jammalamadaka and SenGupta 2001, 176–178), where a and
b indicate the month value of the observational product and
model simulation, respectively, expressed as angles around a
circle, and a and b are the circular mean of this angle taken
over all grid cells across Australia. We use this metric to ac-
count for the circularity of the seasonal cycle:

rc(a, b) 5
∑
n

i51
sin(ai 2 a) sin(bi 2 b)��������������������������������������

∑
n

i51
sin2(ai 2 a) sin2(bi 2 b)

√ : (2)

FIG. 4. The climatological (1976–2005) area-weighted, average total monthly rainfall across Australia with the combined quality mask
applied (see Fig. 3) are ranked from driest (1) to wettest (12) for each CORDEX simulation, grouped by RCM. Brown shades (1–6) indi-
cate the driest six months and teal colors (7–12) indicate the wettest six months. The monthly rankings for the AGCD data, used as the
benchmark, are in the top row, and the instances where the two simulations fail the benchmark are outlined in red.
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Similar to how we defined benchmarking thresholds for the
MAPE and spatial correlation of the MSMs, benchmarking
thresholds for these seasonality metrics must be defined using
scientific reasoning and the purpose for applying the BMF.
We set the benchmarking threshold for the amplitude as $0.6

to identify models that best simulate the amplitude of the sea-
sonal cycle across Australia with a maximum relative error of
0.6. To set this benchmarking threshold, we explored the skill
of each of the simulations in simulating the seasonal cycle at
smaller scales (see supplemental Fig. S6) and in simulating

FIG. 5. The observed (shown in the top row) and modeled (in the remaining rows) area-weighted annual average total precipitation
across Australia, with the combined quality mask applied, for 1976–2005. The direction of the observed Thiel–Sen trend is the benchmark
(see top row). The Thiel–Sen trend line for each of the simulations is plotted in purple. The magnitude of the trend is noted in the
bottom-left corner and the results of the Mann–Kendall significance test (Hussain and Mahmud 2019) is noted in the bottom-right corner.
Models are sorted based on the magnitude of the latitudinally weighted spatial average to match the order of Fig. 2. All models pass the
benchmark.
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the amplitude across our domain. Then, we intuitively set a
threshold that is rather strict given our understanding of
model performance across Australia (see the supplemental
material) but is also a reasonable performance expectation.
As another example, a less subjective threshold could have
been to identify the 50% best performing models and not
identify a specific benchmarking threshold. While benchmark-
ing does require a priori performance expectations, it is very un-
likely that benchmarking thresholds can ever truly be informed
without any relevant assessment of model performance to es-
tablish scientific expertise. Using the benchmarking threshold
of 0.6, nine models meet our performance expectations (Fig. 7).
Recognizing that rainfall may peak in the same season but in a
different month, we benchmark the phase as a statistically sig-
nificant, positive circular correlation tested at the 5% signifi-
cance level. We compute the 95% confidence interval (see
supplemental Table S2) by applying bootstrapping methods
that randomly resample the rainfall phase data across 60% of
our domain for the observations and the model simulations. We
use identical subsets of the observations and simulations in each
of our 5000 iterations to retain the spatial relationship between
our datasets. We calculate the circular correlation coefficient on
our resampled datasets to create our confidence interval. This
definition does not overextend our expectations of reasonable
model performance but is strict enough to eliminate models
that too often peak early or late in the rainy season across

Australia. The AGCD product also captures much finer-scale
features of the rainfall phase than the models do, leading to
consistently low correlation values (Fig. 8). If we smoothed the
rainfall phase using a low-pass filter or similar techniques, we
would expect the simulations to have a higher correlation.
Based on this benchmarking definition, all models except the
NorESM-1 REMO2015 simulation pass our performance expect-
ations (Fig. 8). There are eight models that meet performance
expectations for both seasonality benchmarks (amplitude and
phase) and would therefore be the subset of models that meet all
our performance expectations for the MSMs and our first hypo-
thetical case study.

These methods to quantify the seasonality of rainfall will
likely be too restrictive for most applications of the BMF, es-
pecially over a large spatial domain with high seasonal vari-
ability. Observations will likely capture finer features of
seasonality that are smoothed by models. There are many
other ways to quantify rainfall seasonality [see section 2c(1)],
and we emphasize that users should select metrics and bench-
marks that are appropriate for their study.

d. Hypothetical user 2: Rainfall deficit

Australia can be thought of as “always being in drought”
broken up by periods of drought-breaking rains. Drought is a
very complex hazard, and there are many ways to define
drought. Further, there are many metrics and methods that

FIG. 6. Summary of model performance against the MSMs; 20/24 models pass all the MSMs,
highlighted in green in the far-right column.
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FIG. 7. The climatological (1976–2005) amplitude of rainfall. The AGCD dataset, used as the benchmark, is in the top-left
panel. Each of the models from Fig. 6 follows, and they are sorted by the score of the NRMSE tested against the AGCD data-
set, shown in the bottom-left corner of each panel. Simulations that pass the benchmark are highlighted in purple.
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FIG. 8. The climatological (1976–2005) phase of rainfall (month of maximum rainfall) based on monthly rainfall totals. The
AGCD dataset, used as the benchmark, is in the top left panel. Each of the models from Fig. 6 follows, and they are sorted by
the score of the circular spatial correlation [Eq. (2)], shown in the bottom-left corner of each panel. Simulations that pass the
benchmark are highlighted in purple. Colors indicate the month in which rainfall climatologically peaks, and shades of similar
colors indicate the season.
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FIG. 9. The area weighted averaged 12-month SPI values across Australia (with the combined quality mask applied) for 1976–2005.
Vertical bars indicate the category of drought as defined by the WMO (2012). The top-left figure shows the SPI for AGCD, and the
20 members of the CORDEX-Australasia ensemble follow, sorted alphabetically by RCM-GCM name to match Table 2.

J OURNAL OF CL IMATE VOLUME 371104

Unauthenticated | Downloaded 01/25/24 08:35 AM UTC



can be used to quantify drought including when a deficit of
rainfall is categorized as drought. For this second hypothetical
application of the BMF, we seek to identify models that rea-
sonably simulate time spent in meteorological drought over
Australia as defined by a deficit of rainfall. We also do not
want to include models that underestimate the percentage of
time spent in any category of drought during our time period
to align with the goals of the hypothetical user. We use the
SPI (McKee et al. 1993; WMO 2012) to identify models that
reasonably simulate the extent and severity of drought over
time. The SPI is a measure of how much rainfall has deviated
from the average, based on historical records for a particu-
lar location and timespan. The SPI can be calculated across
different temporal averaging periods relevant to different
usable water resources including soil moisture, groundwa-
ter, streamflow, snowpack, and reservoir storage (McKee
et al. 1993). McKee et al. (1993) also define thresholds to
identify different categories of drought based on the SPI
value that can be used for all the temporal averaging peri-
ods. However, these thresholds have been updated by the
WMO to recategorize a “mild drought” as “near normal
conditions” (WMO 2012).

For our application, we calculate the SPI at each grid box
over Australia at a 12-month averaging period for the AGCD
product and the subset of members of the CORDEX-Austral-
asia ensemble (Fig. 6) using the Climpact software (Alexander
and Herold 2015). Figure 9 shows the area-averaged 12-month
SPI for AGCD in the top-left panel followed by the model
simulations sorted alphabetically based on the RCM/GCM
name. Colored vertical columns indicate periods of drought
where the color indicates the severity of drought as defined by
the WMO (2012). To benchmark this metric, we calculate the
percentage of the time series spent in each category of drought
and define the benchmarking threshold as 0–10 percentage
points of the AGCD value for each category of drought
(Fig. 10). Models must meet this benchmark for all categories
of drought to meet our performance requirements. We set the
benchmarking threshold as such because previous studies have
shown that models struggle to capture observed dry periods
over Australia (Ukkola et al. 2018; Kirono et al. 2020), and we
do not expect the simulated rainfall deficits to be synchronized
with observations. Using this definition, 14 models pass this
benchmark (Fig. 10).

This is only one example of how to benchmark RCMs
to identify models that reasonably simulate drought-level
rainfall deficits. Using the same metric, we could rank the
performance of models based on tiered benchmarking
thresholds. For instance, models that fall within 65% of the
observational percentage could be ranked excellent, 610%
as good, 615% as adequate, etc. One could also benchmark
the SPI using other drought indices, or vice versa. For in-
stance, Joetzjer et al. (2013) use the standardized runoff
index, a measure of river discharge, to benchmark several
meteorological drought indices. Again, the benchmarking
thresholds should be defined based on the application of the
benchmarking framework and incorporate sound scientific
reasoning.

4. Summary and conclusions

To date, there is no standardized framework available for
the scientific community to quantify RCM skill in simulating
various characteristics of rainfall. We have developed this
framework primarily to establish a uniform approach for ho-
listically assessing RCM performance in simulating rainfall
and for stakeholder user communities to identify fit-for-
purpose model simulations. This framework can underpin
future model assessments of existing and new simulations,
including studies to compare dynamical or statistical down-
scaling techniques, added value studies, quantifying model
skill across CORDEX generations and/or regions, or testing
machine learning techniques. We introduce a tiered set of
performance metrics that establishes a consistent yet versa-
tile framework with wide-ranging applications across re-
search and stakeholder user groups, and we walk users
through two example applications of the BMF, summarized
in Fig. 11.

It is critical that users are thoughtful and transparent in
their definition of benchmarking thresholds and their selec-
tion of additional versatility metrics. While the MSMs provide
consistency in quantifying model performance, the definition
of benchmarking thresholds for the MSMs and additional
metrics can be subjective. If users are not clear about their
justification for defining benchmarks, this can lead to errone-
ous conclusions about model performance. For instance, our
definition of benchmarking thresholds and small selection of
versatility metrics yield 9 and 14 simulations in the subsets for
the first and second hypothetical user examples, respectively

FIG. 10. The percentage of the 12-month SPI time series (see
Fig. 9) that falls within each drought category as defined by WMO
(2012). For moderate droughts the benchmarking range is from
2.22% (AGCD) to 12.22% (110 percentage points), and for severe
and extreme droughts 0%–10%. Fourteen models pass the bench-
marking threshold from 0 to 110% of the AGCD product (top
row) for all categories of drought. Instances where models fail the
benchmark are highlighted in red.
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(Fig. 11). This is not conclusive or prescriptive for which
CORDEX-Australasia simulations are best at representing
these rainfall characteristics over Australia. Ideally, users
should incorporate multiple metrics when assessing how well
models simulate rainfall characteristics that fall within the ver-
satility tier as model performance can vary across metrics
used to quantify skill for the same aspect of precipitation
(Martinez-Villalobos et al. 2022). Further, if possible, it is

recommended to benchmark models across regions with a
similar climate regime, such as the IPCC regions (see supple-
mental Fig. S6). This will prevent key regional features from
being overshadowed by large-scale features, such as the sea-
sonal cycle in southern Australia compared to the rest of the
continent (Fig. 8).

We apply the BMF to 24 simulations of the CORDEX-
Australasia ensemble. Of the 24 simulations, 20 meet our

FIG. 11. Schematic flowchart summarizing our example applications of the benchmarking framework.
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performance requirements for the MSMs (Figs. 6 and 11),
showing that across Australia, most members of the ensemble
perform reasonably well at simulating fundamental character-
istics of rainfall. While there are no obvious groupings of
RCMs or GCMs that routinely perform better at simulating
these characteristics of rainfall across all of Australia, there
are regional patterns of RCM performance. For instance, the
CCAM-1704 and CCAM-2008 models tend to run drier (out
of the full ensemble) over west-southwest Western Australia
and the southeast coastline. Similarly, the WRF360K simula-
tions underestimate mean rainfall in northern Australia and
in southwest Western Australia. The CCLM-0-15 simulations
are routinely drier across much of Australia, with a consistent
dry bias across the eastern half and northern Australia. This is
largely true for the REMO2015 simulations as well, although
there is much more spatial variability based on the forcing
GCM (Fig. 2). These patterns seem to indicate that, regionally
and subregionally, the choice of RCM has more influence in
how rainfall is simulated over Australia than the forcing
GCM. For the models in the subsets from our two case studies
(Fig. 11), there are few obvious groupings of RCMs or GCMs
that perform especially well at simulating the seasonality and
rainfall deficits across Australia. However, all HadGEM2-ES/
CC forced simulations underestimate the observed time spent
in drought and fail this benchmark (section 3d). It is expected
that this would change if we investigated over a smaller region
(Fig. 2). Combined, our subsets include 8/10 GCMs and 7/7
RCMs. No HadGEM-ES/CC forced simulations meet perfor-
mance standards for either the seasonality or rainfall deficit
investigations, but all WRF360J/K simulations within the
MSM subset meet performance expectations for both investi-
gations. (Fig. 11). It is also important to acknowledge the de-
pendence of the subset of models that are identified through
the application of the BMF. It is well known that GCMs and
RCMs cannot be considered independent due to shared code
and parameterizations among model developers and institu-
tions (Knutti et al. 2013).

The BMF presented here is a significant first step in estab-
lishing consistency in how the scientific community quantifies
RCM skill in simulating various characteristics of rainfall and
the broader water cycle. The flexibility incorporated in the de-
velopment of the framework makes it suitable for application
across regions and numerous user communities. While the
BMF facilitates consistency in the methodical assessment of
RCM skill, there is still a pressing need for high-quality, high-
resolution global observational precipitation datasets to fully
establish regional consistency and equity in assessing RCM
skill. We acknowledge and encourage a broader application
of this framework beyond what has been discussed here, and
we hope users will build on this framework by customizing
benchmarks, developing and incorporating additional metrics,
and identifying best-practice standards for benchmarking.
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