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ABSTRACT 13 

Presently, there is no standardized framework or metrics identified to assess regional 14 

climate model precipitation output. Because of this, it can be difficult to make a one-to-one 15 

comparison of their performance between regions, studies, or against coarser resolution 16 

global climate models. To address this, we introduce the first steps towards establishing a 17 

dynamic, yet standardized, benchmarking framework that can be used to assess model skill in 18 

simulating various characteristics of rainfall. Benchmarking differs from typical model 19 

evaluation in that it requires that performance expectations are set a priori. This framework 20 

has innumerable applications to underpin scientific studies that assess model performance, 21 

inform model development priorities, and aid stakeholder decision-making by providing a 22 

structured methodology to identify fit-for-purpose model simulations for climate risk 23 

assessments and adaptation strategies. While this framework can be applied to regional 24 

climate model simulations at any spatial domain, we demonstrate its effectiveness over 25 

Australia using high-resolution, 0.5° x 0.5° simulations from the CORDEX-Australasia 26 

ensemble. We provide recommendations for selecting metrics and pragmatic benchmarking 27 

thresholds depending on the application of the framework. This includes a top tier of 28 

Minimum Standard Metrics to establish a minimum benchmarking standard for ongoing 29 

climate model assessment. We present multiple applications of the framework using feedback 30 

received from potential user communities and encourage the scientific and user community to 31 

build on this framework by tailoring benchmarks and incorporating additional metrics 32 

specific to their application. 33 

 34 

SIGNIFICANCE STATEMENT 35 

We introduce a standardized benchmarking framework for assessing the skill of regional 36 

climate models in simulating precipitation. This framework addresses the lack of a uniform 37 

approach in the scientific community and has diverse applications in scientific research, 38 

model development, and societal decision-making. We define a set of minimum standard 39 

metrics to underpin ongoing climate model assessments that quantify model skill in 40 

simulating fundamental characteristics of rainfall. We provide guidance for selecting metrics 41 

and defining benchmarking thresholds, demonstrated using multiple case studies over 42 
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Australia. This framework has broad applications for numerous user communities and 43 

provides a structured methodology for the assessment of model performance. 44 

1. Introduction 45 

The Sixth Assessment Report (AR6) by the Intergovernmental Panel on Climate Change 46 

(IPCC) highlights the exacerbation of water-related crises in a changing climate. According 47 

to this report, nearly half of the global population is facing annual, severe water shortages, 48 

and over 50% of disaster events since 1970 are due to rainfall extremes, including floods and 49 

droughts (Caretta et al., 2022). Despite the widespread impact of these water crises and 50 

rainfall-related disasters driving international efforts to adapt to changing rainfall patterns, 51 

global climate models (GCMs) still struggle to simulate many aspects of rainfall. Most 52 

notably attributed to GCM rainfall biases are model parameterizations and coarse model 53 

resolution that cannot resolve key thermodynamic and dynamic processes relevant to rainfall 54 

simulation (Flato et al. 2013). There has been improvement across generations of the Coupled 55 

Model Intercomparison Project (CMIP) (Flato et al. 2013; IPCC, 2021). However, these 56 

improvements are heterogeneous across regions, timespans, and rainfall characteristics. Many 57 

studies detail sustained problems in how GCMs simulate tropical rainfall (Oueslati and 58 

Bellon 2015; Fiedler et al. 2020), rainfall extremes (Sillmann et al. 2013), seasonal rainfall 59 

patterns (Dunning et al. 2017), long-term annual precipitation trends (Vicente-Serrano et al. 60 

2022), the diurnal cycle (Covey et al. 2016), and the ‘drizzle bias’ where models tend to rain 61 

too little, too often (Dai 2006; Chen et al. 2021). A lack of consistency in the methods or 62 

metrics used to quantify models’ skill in simulating different aspects of rainfall makes it 63 

difficult to make a one-to-one comparison between studies, or efficiently track progress 64 

across CMIP generations. However, recent efforts have prompted standardization in assessing 65 

how GCMs simulate rainfall (Eyring et al. 2016; Baker and Taylor 2016; Eyring et al. 2019; 66 

Lauer et al. 2020; U.S. DOE 2020; Ahn et al. 2023).  67 

A standardized benchmarking framework to assess simulated precipitation in GCMs 68 

across different generations of models was outlined in U.S. DOE (2020). They identify a set 69 

of performance metrics that can serve as a baseline to gauge model performance in simulating 70 

the spatial distribution, seasonal cycle, temporal variability, observed distributions of 71 

intensity and frequency, wet extremes, and drought. This ‘benchmarking’ framework was 72 

primarily established to better gauge progress across CMIP generations. Benchmarking 73 
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differs from standard model evaluation in that benchmarking requires performance 74 

expectations to be defined a priori (Abramowitz 2005, 2012). Since its publication, many 75 

additional studies have investigated the diurnal cycle (Tang et al. 2021), temporal variability 76 

(Ahn et al. 2022), and daily distributions of rainfall (Martinez-Villalobos et al. 2022) in 77 

GCMs, underpinned by the work presented in U.S. DOE (2020). 78 

International efforts to coordinate the production and evaluation of dynamically 79 

downscaled models and reanalyses (Giorgi and Gutowski 2015) have allowed for far greater 80 

accessibility of high-resolution, regional climate model (RCM) simulations to the scientific 81 

community and regional decision-makers. While there has been progress to standardize how 82 

GCM simulations of rainfall are assessed, efforts to standardize the assessment of RCMs 83 

have been regionally heterogeneous. Presently, there is no standardized framework or metrics 84 

identified to assess RCM precipitation output. Previous studies have shown that RCMs tend 85 

to differ in magnitude and spatial variability when compared to GCMs. However, these 86 

studies are frequently limited in the scope of performance metrics evaluated, and commonly 87 

only assess a handful of indices using the ensemble mean instead of individual model 88 

performance. There are also regional inconsistencies where RCMs tend to run wetter than 89 

their forcing GCM [e.g. over Europe (Boé et al. 2020) and south-east Asia (Nguyen et al. 90 

2022)], and RCMs tend to run drier over Africa (Dosio et al. 2021). However, there is little 91 

consistency between the metrics used in these evaluation studies which makes it difficult to 92 

make a one-to-one comparison or properly assess RCM performance in simulating 93 

precipitation.    94 

To address this inconsistency, we present a standardized benchmarking framework 95 

underpinned by the work presented in U.S. DOE (2020), to holistically assess the skill of 96 

downscaled precipitation simulations. This framework could be used to guide scientific 97 

studies to assess model performance and inform model development priorities, and for 98 

stakeholders to identify fit-for-purpose model simulations to underpin climate risk 99 

assessments and inform climate adaptation strategies. 100 

This paper is organized as follows:  Section 2 presents the benchmarking framework, with 101 

Sections 2b and 2c describing tiers of performance metrics and Section 2d describing 102 

recommendations for defining a priori benchmarking thresholds. Section 3 showcases 103 

multiple applications of the benchmarking framework to the CORDEX-Australasia ensemble 104 
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prefaced by a description of the data used and pre-processing steps completed. We 105 

summarize and discuss key points in Section 4.   106 

2. The Benchmarking Framework 107 

Model evaluation and benchmarking differ in significant ways. Model evaluation gauges 108 

how well a model simulates a given variable compared to observations (Flato et al., 2013). 109 

Benchmarking seeks to understand how well a model should perform by defining 110 

performance expectations a priori (Abramowitz 2005, 2012). Benchmarking reframes 111 

traditional model evaluation by incorporating predefined performance thresholds. This step is 112 

equally beneficial and challenging, as we discuss in Section 2.d. An established 113 

benchmarking framework already exists for land surface models (Best et al. 2015), and early 114 

work has been completed to benchmark precipitation in GCMs (see Section 1). While 115 

precipitation encompasses liquid precipitation (rainfall) and solid precipitation (snow, hail, 116 

etc.), we use rainfall synonymously with precipitation in this paper as solid precipitation is 117 

negligible for our case study region of Australia.  118 

We have developed this framework to establish a consistent, systematic, foundational 119 

methodology to quantify RCM skill in simulating precipitation for various user communities. 120 

The Benchmarking Framework (BMF) consists of two tiers of metrics: the first tier defines a 121 

set of minimum standard performance metrics, and the second tier encourages user-defined 122 

metrics relevant to the study. The BMF can be applied to RCM simulations across any region 123 

at any spatial resolution. This framework can be used by stakeholder user communities to 124 

distill a subset of fit-for-purpose model simulations or subset model simulations to develop 125 

storylines for informed decision-making. Scientific and research user communities can use 126 

this framework for innumerable applications to highlight gaps in model performance and 127 

guide model development priorities. Model developers can use the BMF as a first step to 128 

efficiently assess model performance, broadly quantify biases and uncertainties, and identify 129 

the sources of these uncertainties. Model developers and evaluators can also use the BMF to 130 

test the impact of higher spatial resolutions (Bador et al. 2020a; Nishant et al. 2022) or bias 131 

correction techniques (Casanueva et al. 2016), quantify model progress across generations 132 

(Alexander and Arblaster 2009; Flato et al., 2013; Sillmann et al. 2013; Alexander and 133 

Arblaster 2017; Fiedler et al. 2020), test different model set-ups and parameterizations (Ji et 134 

al. 2014), or assess model performance when different downscaling techniques are used, such 135 
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as spectral nudging, statistical downscaling, or machine learning (Hobeichi et al. 2023). 136 

Additionally, scientific researchers can use this framework to underpin studies assessing 137 

regime- and process-oriented properties of rainfall, such as frontal precipitation (Berry et al. 138 

2011) and teleconnections (Fita et al. 2017), respectively. These more complex assessments 139 

of simulated rainfall are essential for better understanding model biases and limitations, 140 

improving future simulations of rainfall, and improving the scientific community’s physical 141 

interpretation of performance metrics.  142 

a. Observational Uncertainty 143 

A common, yet unavoidable, problem in traditional model evaluation to quantify model 144 

skill in simulating precipitation is observational uncertainty (Evans et al. 2016; Gibson et al. 145 

2019); this is true for benchmarking as well. It is well-known that there are vast differences in 146 

global observations of precipitation (Sun et al. 2018), particularly for extreme precipitation 147 

(Herold et al. 2017; Bador et al. 2020b). This tends to be true regionally as well (see 148 

Supplemental Figures 1-3; Contractor et al. 2015; Yin et al. 2015), especially as there are 149 

significant regional heterogeneities in data quality and spatial and temporal availability 150 

(Alexander et al. 2019). Because of these regional differences in observational data quality 151 

and coverage, there is not one best way to quantify observational uncertainty. We 152 

acknowledge that further research is required in this area, and it is likely better to quantify 153 

observational uncertainty differently depending on the spatial/temporal scale and region of 154 

study. In the following sections, we discuss using a single observational product to quantify 155 

model skill for simplicity, acknowledging that real-world applications of the benchmarking 156 

framework should incorporate multiple observational products (see the Supplemental 157 

Material) or other methods to quantify observational uncertainty.   158 

b. Minimum Standard Metrics 159 

We first define a set of foundational, minimum-standard metrics (MSMs) that address 160 

very fundamental characteristics of rainfall to provide consistency, simplicity, and 161 

pragmatism in how RCM skill is measured (Table 1). We define four, equally weighted 162 

MSMs that quantify mean-state biases in model performance with respect to the amount of 163 

rainfall, the spatial distribution of rainfall, the timing of rainfall, and the temporal variability 164 

of rainfall. The MSMs are calculated using area-weighted, average total rainfall, providing a 165 

well-rounded synopsis of RCM performance and mean-state biases in simulating rainfall that 166 
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accounts for the different sizes of grid cells across latitudes. Before more complex processes 167 

or rainfall characteristics are assessed, a model should meet performance expectations (i.e. 168 

benchmarks, see Section 2.d.) for all the MSMs.  169 

 170 

Fundamental Rainfall Characteristic Quantifying Metric 

How much does it rain? Mean Absolute Percentage Error (MAPE) 

Where does it rain? Spatial Correlation  

When does it rain? Seasonal Cycle  

How does rainfall change over time? Direction of a Significant Trend  

Table 1. The minimum standard metrics (MSMs) quantify very fundamental characteristics of rainfall. 171 
These metrics should be calculated based on area-weighted, average total rainfall for the region of interest.  172 
 173 

To quantify the mean-state model skill in simulating the amount of rainfall, we 174 

recommend the mean absolute percentage error (MAPE) where n is the number of grid cells 175 

in the spatial domain. (Eq. 1).  176 

𝑀𝐴𝑃𝐸 = 	
1
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|	𝑚𝑜𝑑𝑒𝑙! −	𝑜𝑏𝑠! 	|
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 177 

This provides a metric that is robust against large biases in a small region of the study domain 178 

and expresses the relative error of the model simulation compared to observations. Because 179 

the MAPE can quickly be converted to a percentage error, it is also easy to interpret by non-180 

research communities. To quantify the mean-state spatial distribution of simulated rainfall, 181 

we recommend using the spatial correlation tested against the observational product. The 182 

spatial correlation is a standard metric for quantifying the agreement of spatial patterns 183 

between two datasets and ranges from 0 to 1. Because both metrics can be thought of as a 184 

percentage error of different rainfall characteristics, they are easy to compare. Further, the 185 

definition of benchmarking thresholds is very intuitive. For example, if a user wants to 186 

identify models that capture the spatial variability across at least 65% of their study domain 187 
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with a wet/dry bias of no more than 70% compared to observations, then the user would 188 

define a benchmarking threshold for the spatial correlation as >= 0.65 and the threshold for 189 

the MAPE as <=0.7 (see Section 2.d for more on defining benchmarking thresholds).  190 

To quantify model skill in simulating the timing of rainfall, we prescribe a simple 191 

quantification of the seasonal cycle that emphasizes quantifying model skill in simulating the 192 

phase of rainfall. We recommend calculating the climatological total monthly precipitation 193 

across the study domain and ranking the months from driest to wettest for the observational 194 

product and the RCM simulations. Then, for a unimodal (bimodal) seasonal cycle, we use the 195 

three (six) wettest and driest months of the observational product to quantify the phase of the 196 

seasonal cycle. 100% of the three (six) wettest observed months must be among the six 197 

wettest modelled months, and 100% of the three (six) driest observed months must be among 198 

the six driest modelled months. Models where rainfall peaks or troughs slightly out of phase 199 

with observations will likely still pass this metric. Again, the MSMs are intended to highlight 200 

any fundamental flaws in the simulation of basic characteristics of rainfall. This metric will 201 

flag simulations where the seasonal cycle is inverted or largely out of phase with 202 

observations. This metric establishes a consistent and simple assessment among studies with 203 

flexibility appropriate for the large differences in rainfall seasonality between regions. While 204 

this metric does neglect the amplitude of the seasonal cycle, the purpose here is to broadly 205 

quantify model skill in simulating the timing of precipitation (Table 1). More detailed 206 

assessments of the seasonal cycle, including the amplitude, can be incorporated in further 207 

steps as outlined in the Seasonality section of the Versatility Metrics (see Section 2.c.1 and 208 

Section 4.b). 209 

For a low-level quantification of the temporal trend, we recommend using the direction of 210 

a significant trend, tested using at least at a 10% significance level, in the time series of the 211 

reference observational dataset using at least 30 years of data. Ideally, a longer time series 212 

will be used if data are available. We recommend using standard, non-parametric statistical 213 

methods that do not assume a Gaussian distribution including the Thiel-Sen Trend tested for 214 

significance using the Mann-Kendall significance test (Hamed 2008). This metric tests the 215 

direction of the simulated trend in precipitation, neglecting the magnitude of the trend. If the 216 

model does not have a significant trend in the same direction as the observational dataset, 217 

then the model would not meet minimum performance standards. The models that meet 218 
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performance expectations for all the MSMs can then be assessed against the more complex 219 

metrics in the second tier (Figure 1) based on the need and/or scientific interest of the user.  220 

 221 
Fig. 1. Schematic for the tiers of metrics for the benchmarking framework, underpinned by U.S. DOE 222 

(2020). The Minimum Standard Metrics quantify very basic characteristics of rainfall. The second-tier 223 
metrics offer a non-exhaustive list of metrics to further assess additional characteristics of rainfall. These 224 
were largely consolidated by a group of international experts specializing in various aspects of modeled 225 
and observed rainfall (U.S. DOE, 2020) and have been updated for downscaled rainfall. We encourage 226 
users to incorporate additional metrics relevant to their application of the framework.   227 

 228 

c. Versatility Metrics 229 

Quantifying model skill in simulating regional rainfall is very complex, regardless of the 230 

region of interest, aspect of rainfall, or the spatial or temporal scale. The second tier, also 231 

referred to as the Versatility Tier, provides a non-exhaustive list of recommended metrics and 232 

indices to quantify model skill across rainfall characteristics (Figure 1). These metrics were 233 

largely consolidated from the scientific literature by a group of international experts in U.S. 234 

DOE (2020) but were amended here to apply to downscaled data. Primarily, we have added 235 



 

   

 

 10 

the User-Defined column to explicitly address the diverse applications of RCMs across 236 

stakeholder and research communities. RCMs are commonly used to inform climate adaption 237 

planning and risk assessments or research atmospheric phenomena that are not resolved at the 238 

coarser spatial resolutions of GCMs. We also explicitly incorporate user-defined 239 

benchmarking thresholds (see Section 2.d.) to identify fit-for-purpose simulations wherein 240 

DOE (2020) established a framework intended to gauge model performance across CMIP 241 

generations. We encourage users to apply other metrics and develop additional techniques to 242 

better quantify model skill for any standard characteristic of rainfall (e.g., seasonality, 243 

temporal variability, intensity/frequency distributions, wet extremes, or rainfall deficits). 244 

Additionally, the User-defined column prompts users to incorporate additional metrics for 245 

more complex aspects of rainfall and broader characteristics of the water cycle. For example, 246 

users can define and develop metrics based on the region and/or sector of interest, to quantify 247 

a specific rainfall regime or process, or incorporate any other metric or technique that is 248 

relevant to the research question. It is expected that this collection of recommended metrics 249 

will be updated as further research is completed.  250 

 251 

1) SEASONALITY 252 

The low-level quantification of the seasonal cycle used in the MSMs will not be sufficient 253 

for many applications of the BMF especially in regions largely impacted by inter-annual 254 

and/or decadal variability. Many users will require a deeper analysis that better captures the 255 

amplitude, phase, onset/cessation, or other characteristics of rainfall seasonality. For instance, 256 

sector users in agriculture (Basso et al. 2012), hydroelectric power supply (de Jong et al. 257 

2018), or water resource management (Barua et al. 2013) could be very interested in 258 

assessing long-term variability in the seasonal cycle and would benefit from applying more 259 

advanced techniques to calculate the onset and cessation of the rainy season(s). This could 260 

include calculating the cumulative rainfall anomaly (Dunning et al. 2017, 2016) or setting a 261 

fixed threshold for continued rainfall as is frequently used in the agriculture sector (Liebmann 262 

et al. 2012). 263 

Additionally, a better scientific understanding of the physical drivers of regional rainfall 264 

seasonality–and a quantification of how well models capture the influence of these drivers–265 

would require a more complete breakdown of the seasonal cycle. Therefore, it could be 266 
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beneficial to employ Harmonic Analysis (Wang and LinHo 2002) to quantify the amplitude 267 

and phase of the seasonal cycle for efficient comparison against observations. Further, due to 268 

the vast regional variability in rainfall seasonality, many studies have shown the benefits of 269 

tailoring metrics and analysis techniques to the region of interest to quantify rainfall 270 

seasonality (Seregina et al. 2019; Dey et al. 2021). 271 

 272 

2) TEMPORAL VARIABILITY 273 

Quantifying model skill in simulating the temporal variability of rainfall is challenging as 274 

rainfall varies at timescales ranging from sub-daily to multi-decadal. The simplest way to 275 

quantify temporal variability is to calculate the standard deviation at different timescales, 276 

although this provides limited insight into model performance. Advanced methods can yield a 277 

more comprehensive assessment of model performance at different timescales. As an 278 

example, Covey et al. (2016) propose the “harmonic dial” diagram, created by vector spatial 279 

averaging Fourier amplitude and phases across land and ocean separately, to assess the 280 

diurnal cycle of rainfall simulations. Using this method, they find that members of the CMIP5 281 

ensemble tend to rain too early in the day. Other methods such as Harmonic Analysis and 282 

Principal Component Analysis (EOFs) are frequently used to distill modes of temporal 283 

variability such as those from the El Niño-Southern Oscillation (ENSO), the Atlantic Multi-284 

decadal Oscillation (AMO) the Indian Ocean Dipole (IOD), or long-term trends (Cai et al. 285 

2011; Roundy 2015; Xiao et al. 2015; Yang et al. 2015; Chen and Tung 2018; Tippett and 286 

L’Heureux 2020). Ahn et al. (2022) also introduce techniques to quantify temporal variability 287 

at sub-daily to interannual scales using power spectra analysis and time-averaging, 288 

highlighting that these robust methods are not sensitive to differences in observations. These 289 

techniques can be incredibly effective ways to investigate different drivers of temporal 290 

rainfall variability.  291 

 292 

3) INTENSITY AND FREQUENCY DISTRIBUTIONS 293 

While the MSMs provide a high-level quantification of how well models simulate 294 

fundamental characteristics of rainfall, they do not capture the full distribution of rainfall. 295 

Quantifying the intensity and frequency distribution of rainfall provides a deeper insight into 296 

the strengths and weaknesses of simulated rainfall. This can also provide insight into the 297 
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causes of biases and limitations (i.e. model set-ups and parameterizations). RCM 298 

performance in simulating the distribution of rainfall can be quantified using many 299 

established techniques. For instance, established skill scores can be used to quantify how well 300 

models simulate the distribution of rainfall compared to observations (Perkins et al. 2007; 301 

Nguyen et al. 2022). Martinez-Villalobos et al. (2022) outline the strengths and limitations of 302 

several metrics that quantify GCM performance in simulating the distribution of daily rainfall 303 

that could be applied to RCMs. This study also highlights the necessity of incorporating 304 

multiple metrics in studies of modeled rainfall as model performance varies across metrics. 305 

 306 

4) WET EXTREMES 307 

Rainfall extremes are of high importance for stakeholder decision-making and climate 308 

adaptation planning but are not explicitly captured in the MSMs. There are numerous climate 309 

indices defined by the World Meteorological Organisation (WMO) and the World Climate 310 

Research Program (WCRP) such as those by the former Expert Team on Climate Change 311 

Detection and Indices (ETCCDI) to quantify the intensity, severity, and frequency of 312 

moderately extreme rainfall (Zhang et al. 2011; Alexander et al. 2019). However, users 313 

should be thoughtful in the selection and interpretation of these climate indices. Percentile 314 

indices, such as very wet days as defined by rainfall in the 95th percentile of a given time 315 

period (R95p) and extremely wet days as defined by rainfall in the 99th percentile (R99p), are 316 

particularly subjective to the reference period (Alexander et al. 2019; Bador et al. 2020b). 317 

Further, it is pertinent to acknowledge the large variability between rainfall extremes in 318 

global observational datasets (Bador et al., 2020b) and the impact of different pre-processing 319 

steps used in the creation of gridded observational datasets (Alexander et al., 2019). When 320 

using the BMF to benchmark model performance in simulating wet extremes, it is highly 321 

recommended to incorporate multiple observational datasets to quantify model performance 322 

(see Supplemental Figures 2-3).  323 

 324 

5) RAINFALL DEFICIT 325 

While impacts are felt during periods of severe dryness, a deficit of rainfall is not always 326 

extreme. It is very dependent on the spatio-temporal scale in which a deficit occurs. There are 327 

many established metrics and methods to quantify how well models simulate a lack of 328 
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rainfall, extreme or otherwise. In this section, we focus primarily on an extreme deficit of 329 

rainfall or conditions that lead to meteorological drought. Metrics, indices, and thresholds 330 

used to quantify meteorological drought vary based on the study region. However, one 331 

universal index that works well globally (WMO and GWP 2016) is the Standardized 332 

Precipitation Index (SPI) (Mckee et al. 1993). The SPI is a measure of how much rainfall 333 

deviates from the long-term average and can be calculated at different time spans. Then, users 334 

can calculate how often rainfall falls below a given threshold; thresholds are standardized to 335 

indicate the severity of drought (see Section 3.d. for an example). Another commonly used 336 

index to study meteorological dryness is the Maximum Annual Number of Consecutive Dry 337 

Days (CDD) which quantifies the duration of dry spells (Chu et al. 2010; Haylock and 338 

Goodess 2004). However, this index is not appropriate for regions with a distinct dry season 339 

or general arid climate (see Alexander et al., 2019).  340 

 341 

6) USER-DEFINED 342 

All performance metrics discussed previously are limited in scope in that they only 343 

require precipitation data for their calculation. The User-Defined column explicitly 344 

encourages users to incorporate and develop additional metrics and techniques to evaluate 345 

rainfall and broader aspects of the water cycle. This could include established rainfall indices 346 

that incorporate other meteorological variables, such as the Standardized Precipitation and 347 

Evapotranspiration Index (SPEI) which is calculated using temperature and rainfall data and 348 

is commonly used to study drought (Spinoni et al. 2021). This could also include sector- or 349 

research-specific metrics or indices. For instance, stakeholder user communities can 350 

incorporate user-defined metrics or indices to benchmark aspects of rainfall that are specific 351 

to their decision-making process. This can facilitate broader opportunities for co-designed 352 

research and help stakeholders optimize the utility of downscaled data and climate 353 

information. Additionally, users can incorporate metrics specific to their application of the 354 

BMF. For instance, if the BMF were used to underpin added value studies (Choudhary et al. 355 

2019; Torma et al. 2015; De Haan et al. 2015; Di Virgilio et al. 2020; Solman and Blázquez 356 

2019; Rummukainen 2016), then users would ideally incorporate established added value 357 

metrics (Kanamitsu and Dehaan 2011; Di Luca et al. 2012; Di Virgilio et al. 2020; Ciarlo` et 358 

al. 2020) to quantify RCM performance compared to GCMs. Further, certain methods have 359 

been shown to better capture intricate rainfall characteristics in different regions. For 360 
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example, Seregina et al. (2019) found that replacing Fourier harmonics (Wang and LinHo, 361 

2002) with a low-pass Lanczos Filter better captured the complex seasonality of rainfall in 362 

the Greater Horn of Africa. There are many established methods and metrics that can be 363 

incorporated when using the BMF to quantify model performance in simulating rainfall 364 

beyond what is explicitly listed in Figure 1. 365 

Additionally, there are many aspects of rainfall that require additional research to 366 

determine appropriate benchmarking metrics. For instance, as computing capabilities 367 

improve, we can simulate rainfall at higher resolutions. This facilitates the development and 368 

application of methods and metrics that are effective in quantifying model performance in 369 

simulating complex rainfall regimes, such as frontal systems or mesoscale convective 370 

systems, and rainfall processes, such as teleconnections and orographic rainfall. For example, 371 

methods that are frequently used in forecast verification can be leveraged for RCM 372 

assessment at higher resolutions such as the fraction skill score to assess the distribution of 373 

precipitation in convective-permitting models (Prein et al. 2015) or storm tracking methods to 374 

identify the source of simulated precipitation (Feng et al. 2021).  There are many benefits to 375 

further developing metrics to quantify these complexities of rainfall. Outside of improving 376 

our scientific understanding of these processes, scientists can identify parameterizations and 377 

other model structures that cause biases and other erroneous representations of different 378 

rainfall characteristics. We strongly encourage users to incorporate, develop, and test other 379 

performance metrics to improve ongoing benchmarking capabilities.  380 

d. Defining a Benchmark 381 

Benchmarking requires that model performance expectations are defined prior to the 382 

analysis. Therefore, we must define performance benchmarks–the criteria that will be used to 383 

assess model performance–and benchmarking thresholds–how well a model should score 384 

against a given metric. There is no one-size-fits-all definition for performance benchmarks. 385 

The benchmarking definition, and associated benchmarking thresholds, that define acceptable 386 

model performance should be informed by strong scientific reasoning, the scientific research 387 

question, the region or sector of interest, and the general purpose for benchmarking model 388 

performance.  389 

Benchmarks can be defined more objectively for some metrics and applications than for 390 

others. For instance, as is done in standard model evaluation, we can use observational 391 
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products (see Section 3) or a range of observational uncertainty from multiple observational 392 

products (Martinez-Villalobos et al., 2022; see Supplemental Figures 1-3) as the benchmark 393 

and benchmarking thresholds as appropriate in certain cases. However, other performance 394 

metrics must be informed more subjectively using strong scientific reasoning based on the 395 

application of the framework. This is particularly important when working with stakeholder 396 

user communities to identify fit for purpose simulations. Scientific expertise should be used 397 

to define reasonable model performance expectations that fall within current capabilities of 398 

the modelling community. For the MSMs, benchmarking thresholds that are generous in the 399 

definition of ‘reasonable performance’ are encouraged because these metrics are intended to 400 

identify models with fundamental shortcomings in simulating precipitation.  401 

Due to the diverse applications of the BMF, the range of effective benchmarking 402 

definitions and thresholds is also vast. For instance, model evaluators can use the BMF to 403 

gauge model improvement across generations. A reasonable benchmarking definition here 404 

could be that models must perform at least as well as the previous generation of models. 405 

Since GCM-RCM pairings typically change across generations, the users could define the 406 

benchmarking thresholds as the range of performance from the ensemble of the previous 407 

generation(s) against a selection of metrics. Likewise, model developers could use the BMF 408 

in a similar way to adjust model set-ups and parameterizations in response to performance 409 

against the MSMs (Table 1). Further, the BMF can underpin ‘added value’ studies 410 

(Choudhary et al. 2019; Torma et al. 2015; De Haan et al. 2015; Di Virgilio et al. 2020; 411 

Solman and Blázquez 2019; Rummukainen 2016) that seek to quantify the benefits of 412 

downscaling GCMs. For these studies, the benchmarking definition and thresholds could be 413 

that RCMs must perform at least as well as their forcing GCM against a given set of metrics. 414 

We do not seek to prescribe the best definition of a benchmark or the associated 415 

benchmarking thresholds. Instead, we provide guidance, emphasizing again that benchmarks 416 

should be informed by the purpose of applying the benchmarking framework and should be 417 

fit for purpose. As different user communities apply the BMF, this process may become more 418 

prescriptive over time. In the next section, we use scientific expertise to translate stakeholder 419 

performance needs into reasonable definitions of performance benchmarks using the 420 

CORDEX-Australasia ensemble as a case study.  421 

3. Benchmarking the CORDEX-Australasia Ensemble 422 
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In this section, we showcase an application of the Benchmarking Framework over 423 

terrestrial Australia where we have confidence in our observational record (defined in Section 424 

3a) using 24 simulations from the CORDEX-Australasia ensemble (Table 3).  425 

Using feedback from discussions with potential users in humanitarian aid, water resource 426 

management, and the scientific research community, we present two simplified hypothetical 427 

applications of the framework. While these stakeholders specifically had very different 428 

concerns depending on their location in Australia, in-house scientific resources, and the 429 

aspect of their decision-making in question, we distilled their feedback to create a simplified 430 

case study to test the BMF. Broadly speaking, these stakeholders wanted models that best 431 

captured Australia’s highly variable rainfall seasonality (with equal emphasis on the spatial 432 

variability, timing, and quantity of rainfall) and the frequency of rainfall deficits. We present 433 

these as two different case studies for simplicity. For the MSMs, these stakeholders 434 

emphasized the need for models that are skilled in capturing the spatial distribution of 435 

rainfall. Specifically, it was important for these stakeholders to know if rain would fall in a 436 

particular watershed or catchment area to use in allocating water resources or where areas 437 

would not receive rainfall and may need more aid or water conservation actions. It was less 438 

important to identify models that have a large wet or dry bias as these stakeholders are 439 

accustomed to Australia’s characteristically extreme wet and dry periods.  440 

In the following sections, we translate these qualitative stakeholder needs into 441 

quantitative model performance expectations. The performance expectations for the MSMs 442 

will be the same for both hypotheticals. Then, one application will seek to identify models 443 

better at simulating the amplitude and phase of the seasonal cycle, and the other application 444 

will seek to identify models better at simulating the frequency of rainfall deficits over 445 

Australia. Again, the benchmarks used to test the MSMs are not meant to be too restrictive. 446 

At this stage, we only want to remove models that have low-level, systematic biases in 447 

simulating fundamental characteristics of rainfall. The benchmarks should reflect the 448 

stakeholder needs while also incorporating scientific expertise to inform reasonable model 449 

performance expectations. We will use a regionally developed observational product for 450 

Australia to quantify model skill, noting again the need to account for observational 451 

uncertainty in real applications of the BMF (see Section 2.a.; Supplemental Material). 452 

a. Data and Preprocessing 453 
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We use daily precipitation from 24 simulations of the CORDEX-Australasia ensemble 454 

that includes 7 RCMs forced by 10 GCMs (Evans et al. 2021) and daily precipitation 455 

observations from the Australian Gridded Climate Dataset (Jones et al. 2009) for 1976-2005 456 

(Table 2). By only using the AGCD product instead of global, gridded observational products 457 

(i.e. Roca et al. 2019; see Supplemental Material) we can assess RCM performance at a 458 

higher resolution. We improve confidence in our observational dataset by creating a quality 459 

mask that removes grid points not containing at least one observing station based on the 460 

Global Historical Climatology Network daily (GHCN-daily) database (see Figure 2). This 461 

removes grid points where rainfall observations are artificially created through the 462 

interpolation algorithms used to create the gridded dataset. We also remove grid points that 463 

contain more than 50% ocean.  464 

First, all datasets were interpolated to a Cartesian coordinate system with a spatial 465 

resolution of 0.5° x 0.5° using first-order conservative interpolation to better capture the 466 

spatial discontinuity of precipitation (Jones 1998). This meant interpolating the AGCD data 467 

and some of the CORDEX simulations to a coarser resolution so all datasets were on a 468 

common grid. Then, we used Climpact, an open-source software package developed under 469 

the auspices of the World Meteorological Organization (WMO) (Alexander and Herold, 470 

2015; see https://climpact-sci.org), to calculate a set of 51 climate indices for the AGCD data 471 

(Isphording and Liu, 2023) and the CORDEX-Australasia ensemble (Isphording et al. 2023). 472 

This order of operations is recommended as it has been shown to be less sensitive to the 473 

interpolation methods used in regridding (Avila et al. 2015). It is also recommended that a 474 

gridded observational product is used to assess model performance against the MSMs 475 

because RCMs provide area averaged values at each grid point; it is therefore pertinent that a 476 

fair assessment of model performance is based on a comparison to observed area-averaged 477 

values. See the Supplemental Figure S1 for additional guidance in selecting observational 478 

products to use for benchmarking. 479 

Institute RCM Driving CMIP5 
GCM 

Available 
Experiments 

Available Time 
Period 

CSIRO CCAM-1704 

 ACCESS1-0 
historical, RCP 
4.5, RCP 8.5 1960-2099  CNRM-CM5 

 GFDL-ESM2M 

https://climpact-sci.org/


 

   

 

 18 

 HadGEM2-CC 

 MIROC5 

 NorESM1-M 

CCAM-2008 

 ACCESS1-0 

historical, RCP 
4.5, RCP 8.5 

1960-2099  CanESM2 

 GFDL-ESM2M 

 MIROC5 1961-2099 

 NorESM1-M 1960-2099 

CLMcom-HZG CCLM5-0-15 

 HadGEM2-ES 
historical, RCP 

8.5 

1950-2099 

 MPI-ESM-LR 
1950-2100 

 NorESM1-M 

ICTP RegCM4-7 

 HadGEM2-ES 
historical, RCP 

8.5 1970-2099  MPI-ESM-MR 

 NorESM1-M 

GERICS REMO2015 

 HadGEM2-ES 
historical, RCP 

8.5 1970-2100  MPI-ESM-LR 

 NorESM1-M 

UNSW 

WRF360J 
 ACCESS1-0 

historical, RCP 
4.5, RCP 8.5 

1951-2100 

 CanESM2 1951-2099 

WRF360K 
 ACCESS1-0 1951-2100 

 CanESM2 1951-2099 

Table 2. Summary of CORDEX-Australasia simulations to be used in this study (Evans et al. 2021). 480 
 481 

b. Minimum Standard Metrics 482 

1) MAPE AND SPATIAL CORRELATION 483 
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The first two MSMs we use to benchmark the CORDEX-Australasia ensemble are the 484 

MAPE and spatial correlation. As these metrics are tested against the AGCD dataset and 485 

require users to specifically define a benchmarking threshold, we define the benchmarking 486 

thresholds based on scientific reasoning, feedback received from the potential user 487 

communities, and the objectives of the two hypothetical applications. Feedback from 488 

stakeholder user communities across Australia (i.e. humanitarian aid and water resource 489 

management) emphasized the need for RCMs that reasonably capture the spatial distribution 490 

of rainfall, while their decision-making allows for a generous amount of wet or dry bias due 491 

to Australia’s characteristically extreme rainfall variability. Further, during data 492 

preprocessing and data exploration, we evaluated several precipitation indices (Zhang et al. 493 

2011) of the CORDEX-Australasia ensemble at a coarser resolution to incorporate additional 494 

global gridded observational datasets, with and without the quality mask (see Supplemental 495 

Material). We also evaluated gridded observational products against the AGCD product to 496 

determine a range of observational uncertainty across different characteristics of rainfall. This 497 

preliminary assessment underpinned our understanding of reasonable model performance 498 

based on the current scientific capabilities in both regional climate modeling and gridded 499 

observations over Australia that was used to define the benchmarking thresholds for the 500 

MAPE and the spatial correlation. Further, since both hypothetical user case studies will later 501 

distill a subset of models without a strong wet or dry bias, we set the benchmarking threshold 502 

for the MAPE as <= 0.75. However, in setting the benchmarking threshold for the spatial 503 

correlation we are stricter because we do want models that reasonably capture Australia’s 504 

highly variable spatial rainfall patterns. We set the benchmarking threshold for the spatial 505 

correlation as >= 0.7.  506 

In Figure 2, we show the climatological (1976-2005) rainfall bias for each model against 507 

AGCD, ranked from wettest to driest based on the weighted spatial average of the bias. Areas 508 

in grey show where the quality mask has been applied. At the bottom of each plot the MAPE 509 

and the spatial correlation, calculated against the AGCD data, are shown where values 510 

highlighted in purple indicate those that meet the performance benchmarking thresholds. Two 511 

models fail these benchmarks. The HadGEM2-ES RegCM4-7 fails due to the rainfall bias 512 

being too large, and the CanESM2 WRF360K fails as it does not reasonably capture the mean 513 

spatial distribution of rainfall. It’s important to note how the definition of the benchmarking 514 

thresholds for these two metrics impacts how we assess the performance of the simulations. 515 



 

   

 

 20 

For instance, if the MAPE benchmarking threshold had been lower (higher) or the spatial 516 

correlation higher (lower), more simulations would fail (pass) this test. We would need to 517 

increase the MAPE threshold by over 50% for all models to meet performance expectations, 518 

but the CanESM-2 CCAM-2008 wouldn’t meet our performance expectations if the MAPE 519 

threshold was any lower. If we decreased the spatial correlation by approximately 5% than all 520 

models would meet the benchmark for this metric. In this case, our thresholds largely identify 521 

outliers within the ensemble. The bias maps in Figure 2 also show the substantial variability 522 

among simulations of climatological rainfall across Australia, highlighting the need to have 523 

metrics that quantify both spatial variability and biases in routine studies assessing model 524 

performance.  525 
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  526 

Fig. 2. The climatological (1976-2005) bias for each model against the AGCD observational product, 527 
ranked wettest to driest based on the area-weighted spatial average of the bias. Areas in dark grey indicate 528 
grid boxes where we don’t have at least one observation station within that grid box. In the bottom left 529 
corner, we plot the MAPE and the spatial correlation (SCor) calculated against the AGCD data. Values 530 
highlighted in purple indicate values that meet our defined benchmarking thresholds. The AGCD 531 
climatology for this period is provided as Supplemental Figure S2. 532 
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 533 

2) SEASONAL CYCLE 534 

The quantification of the Seasonal Cycle for the MSMs differs from the Seasonality 535 

column within the Versatility Tier metrics. For our example, there is a unimodal seasonal 536 

cycle when averaging rainfall across all of Australia (Figure 3). We assess model 537 

performance in simulating the seasonal cycle by ranking the months from wettest to driest 538 

and define our benchmarking threshold as the three wettest and driest observed months must 539 

be among the six wettest and driest modelled months (Figure 4). This method captures the 540 

unimodal structure and the phase of the observed seasonal cycle at a high level. This method 541 

also does not restrict how the models simulate the onset and offset of the climatological wet 542 

season. Using this definition, two models fail this benchmark as both models have one of the 543 

wettest six months falling within AGCD’s driest three months (Figure 4). The NorESM1-M 544 

CCLM-0-15 and NorESM1-M CCAM-2008 simulations fail as the sixth wettest months 545 

(ranked as the seventh driest month in Figure 4) falls within the climatological driest three 546 

months of AGCD (Figure 4).  547 

While this is an easy way to capture the phase and structure of the seasonal cycle, it 548 

provides limited information as to the amplitude of the seasonal cycle. For instance, the 549 

CanESM2 WRF360K simulation has a somewhat muted seasonal cycle: the range between 550 

the driest month and the wettest month is substantially smaller than that in AGCD (Figure 3). 551 

Based on the monthly rankings, this model would pass the benchmark. This is acceptable as 552 

the MSMs are meant to be very low-level. If a more precise quantification of model skill in 553 

simulating the seasonal cycle is required, then more complex analyses can be completed as 554 

recommended in the Versatility Tier section (see Section 3c).  555 
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 556 

Fig. 3. The climatological (1976-2005), latitudinally weighted, average total monthly rainfall (prcptot) 557 
across Australia with the combined quality mask applied. Colors indicate the RCM, and the line styles 558 
indicate the forcing GCM. The AGCD data, used as the benchmark, is shown in black. 559 
 560 

 561 

Fig. 4. The climatological (1976-2005) area-weighted, average total monthly rainfall across Australia 562 
with the combined quality mask applied (see Figure 3) are ranked from driest (1) to wettest (12) for each 563 
CORDEX simulation, grouped by RCM. Brown shades (1-6) indicate the driest six months and teal colors 564 
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(7-12) indicate the wettest six months. The monthly rankings for the AGCD data, used as the benchmark, 565 
are on the top row, and the instances where the two simulations fail the benchmark are outlined in red.  566 

 567 
3) DIRECTION OF A SIGNIFICANT TREND 568 

The final MSM is the direction of a significant observed trend using the annual time 569 

series of annual average total precipitation. We use the direction of the significant Thiel-Sen 570 

trend of the AGCD product spatially averaged over all of Australia after the quality mask has 571 

been applied (Figure 5) as the benchmark. We test the significance of the trend using the 572 

Mann-Kendall significance test at a 5% significance level (Hussain et al., 2019). There is no 573 

significant positive or negative trend for the AGCD product, so our benchmarking threshold 574 

is ‘no trend’ (Figure 5). We replicate this analysis for each simulation (Figure 5). All models 575 

pass this benchmark as no trends are significantly positive or negative, meeting our 576 

performance benchmark. Because the RCMs, and their forcing GCMs, are not forced by 577 

observational datasets, we do not expect the time series of the simulations to be aligned with 578 

that of observations. We are only concerned with the direction of a significant trend—579 

neglecting magnitude and a comprehensive quantification of interannual temporal 580 

variability—once again emphasizing the MSMs are low-level performance metrics. If 581 

simulations are driven by reanalysis data, then it is expected that users would quantify 582 

temporal consistency as appropriate in the Versatility Metrics.  583 
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 584 

Fig. 5. The observed (top row) and modeled area weighted annual average total precipitation across 585 
Australia, with the combined quality mask applied, for 1976-2005. The direction of the observed Thiel-Sen 586 
trend is the benchmark (top row). The Thiel-Sen trend line for each of the simulations is plotted in purple. 587 
The magnitude of the trend is noted in the bottom left corner and the results of the Mann-Kendall 588 
significance test (Hussain et al., 2019) is noted in the bottom right corner. Models are sorted based on the 589 
magnitude of the latitudinally weighted spatial average to match the order of Figure 2. All models pass the 590 
benchmark. 591 

 592 

4) SUBSET OF MODELS 593 

After testing the CORDEX-Australasia ensemble against the four MSMs, 20 simulations 594 

out of 24 meet the minimum performance requirements for the hypothetical case studies 595 
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(Figure 6). At this point in applying the benchmarking framework, we eliminate the four 596 

simulations that failed the minimum performance standards from further analysis. However, 597 

nearly all the simulations within the CORDEX-Australasia ensemble assessed here simulate 598 

the fundamental characteristics of precipitation quite well over Australia, noting regional 599 

biases (Figure 2). Further, we cannot identify any RCM or forcing GCM that is routinely less 600 

skillful in simulating these characteristics across all of Australia. 601 

 It is important to note that the model subset depends on the performance requirements, 602 

i.e., benchmarks and benchmarking thresholds, defined in the earlier section. Because the 603 

benchmarking thresholds so strongly influence the quantification of model performance, it’s 604 

critical to define them in a way that is fit for purpose and incorporates strong scientific 605 

reasoning.  606 

  607 

 608 
Fig. 6. Summary of model performance against the MSMs. 20/24 models pass all the MSMs, 609 

highlighted in green in the far-right column.  610 

 611 
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c. Hypothetical User 1 - Seasonality 612 

Australia's climate is characterized by highly diverse rainfall patterns, which vary 613 

significantly across different regions and seasons. For the first hypothetical case study, we 614 

seek to identify models that best capture the amplitude and phase of the seasonal cycle across 615 

Australia as compared to observations. We will emphasize benchmarking the models against 616 

the amplitude as our assessment of the seasonal cycle in the MSMs neglected amplitude. This 617 

means that we will be stricter in our definition of the benchmarking threshold for the 618 

amplitude than for the phase. To calculate the amplitude and phase of the seasonal cycle, we 619 

first calculate the climatological seasonal cycle (Figure 3) at each grid point. We define the 620 

amplitude as the difference between the maximum and mean monthly rainfall (Figure 7) and 621 

the phase as the month of maximum rainfall (Figure 8). To benchmark the subset of 622 

simulations from the CORDEX-Australasia ensemble (Figure 6), we calculate the circular 623 

spatial correlation against the AGCD observational product for the phase and the NRMSE 624 

(Eq. 1) for the amplitude. For the phase, we assign an integer to each month (1-12) and 625 

calculate the circular spatial correlation against the maps of these values using Eq. 2  626 

(Jammalamadaka and SenGupta 2001) where 𝛼 and 𝛽 indicate the month value of the 627 

observational product and model simulation, respectively, expressed as angles around a 628 

circle, and 𝛼5 and �̅� are the circular mean of this angle taken over all grid cells across 629 

Australia. We use this metric to account for the circularity of the seasonal cycle. 630 

 631 

𝜌%(𝛼, 𝛽) = 	
∑ sin(𝛼! −	𝛼5)	 sin(𝛽! − �̅�)"
!#$

?∑ sin&(𝛼! −	𝛼5) 	sin&(𝛽! − �̅�)"
!#$

 632 

 633 

Similar to how we defined benchmarking thresholds for the MAPE and spatial correlation 634 

of the MSMs, benchmarking thresholds for these seasonality metrics must be defined using 635 

scientific reasoning and the purpose for applying the BMF. We set the benchmarking 636 

threshold for the amplitude as >= 0.6 to identify models that best simulate the amplitude of 637 

the seasonal cycle across Australia with a maximum relative error of 0.6. To set this 638 

benchmarking threshold, we explored the skill of each of the simulations in simulating the 639 

seasonal cycle at smaller scales (see Supplemental Figure S6) and in simulating the amplitude 640 
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across our domain. Then, we intuitively set a threshold that is rather strict given our 641 

understanding of model performance across Australia (see Supplemental Material) but is also 642 

a reasonable performance expectation. As another example, a less subjective threshold could 643 

have been to identify the 50% best performing models and not identify a specific 644 

benchmarking threshold. While benchmarking does require a priori performance 645 

expectations, it is very unlikely that benchmarking thresholds can ever truly be informed 646 

without any relevant assessment of model performance to establish scientific expertise. Using 647 

the benchmarking threshold of 0.6, nine models meet our performance expectations (Figure 648 

7). Recognizing that rainfall may peak in the same season but in a different month, we 649 

benchmark the phase as a statistically significant, positive circular correlation tested at the 650 

5% significance level. We compute the 95% confidence interval (see Supplemental Table S2) 651 

by applying bootstrapping methods that randomly resample the rainfall phase data across 652 

60% of our domain for the observations and the model simulations. We use identical subsets 653 

of the observations and simulations in each of our 5000 iterations to retain the spatial 654 

relationship between our datasets. We calculate the circular correlation coefficient on our 655 

resampled datasets to create our confidence interval. This definition does not overextend our 656 

expectations of reasonable model performance but is strict enough to eliminate models that 657 

too often peak early or late in the rainy season across Australia. The AGCD product also 658 

captures much finer scale features of the rainfall phase than the models do, leading to 659 

consistently low correlation values (Figure 8). If we smoothed the rainfall phase using a low-660 

pass filter or similar techniques, we would expect the simulations to have a higher 661 

correlation. Based on this benchmarking definition, all models except the NorESM-1 662 

REMO2015 simulation pass our performance expectations (Figure 8). There are eight models 663 

that meet performance expectations for both seasonality benchmarks (amplitude and phase) 664 

and would therefore be the subset of models that meet all our performance expectations for 665 

the MSMs and our first hypothetical case study. 666 

These methods to quantify the seasonality of rainfall will likely be too restrictive for most 667 

applications of the BMF, especially over a large spatial domain with high seasonal 668 

variability. Observations will likely capture finer features of seasonality that are smoothed by 669 

models. There are many other ways to quantify rainfall seasonality (see Section 2.c.1), and 670 

we emphasize that users should select metrics and benchmarks that are appropriate for their 671 

study.  672 
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 673 
Fig. 7. The climatological (1976-2005) amplitude of rainfall. The AGCD dataset, used as the 674 

benchmark, is in the top left panel. Each of the models from Fig 6 follows, and they are sorted by the score 675 
of the spatial correlation tested against the AGCD dataset, shown in the bottom left corner of each panel. 676 
Simulations that pass the benchmark are highlighted in purple. 677 
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 678 
Fig. 8. The climatological (1976-2005) phase of rainfall (month of maximum rainfall) based on 679 

monthly rainfall totals. The AGCD dataset, used as the benchmark, is in the top left panel. Each of the 680 
models from Figure 6 follows, and they are sorted by the score of the circular spatial correlation (Eq. 2), 681 
shown in the bottom left corner of each panel. Simulations that pass the benchmark are highlighted in 682 
purple. Colors indicate the month in which rainfall climatologically peaks, and shades of similar colors 683 
indicate the season.  684 

 685 

d. Hypothetical User 2 - Rainfall Deficit 686 



 

   

 

 31 

Australia can be thought of as “always being in drought” broken up by periods of 687 

drought-breaking rains. Drought is a very complex hazard, and there are many ways to define 688 

drought. Further, there are many metrics and methods that can be used to quantify drought 689 

including when a deficit of rainfall is categorized as drought. For this second hypothetical 690 

application of the BMF, we seek to identify models that reasonably simulate time spent in 691 

meteorological drought over Australia as defined by a deficit of rainfall. We also do not want 692 

to include models that underestimate the percentage of time spent in any category of drought 693 

during our time period to align with the goals of the hypothetical user. We use the 694 

Standardized Precipitation Index (SPI) (McKee et al., 1993 and WMO, 2012) to identify 695 

models that reasonably simulate the extent and severity of drought over time. The SPI is a 696 

measure of how much rainfall has deviated from the average, based on historical records for a 697 

particular location and timespan. The SPI can be calculated across different temporal 698 

averaging periods relevant to different usable water resources including soil moisture, 699 

groundwater, streamflow, snowpack, and reservoir storage (Mckee et al. 1993). McKee et al. 700 

(1993) also define thresholds to identify different categories of drought based on the SPI 701 

value that can be used for all the temporal averaging periods. However, these thresholds have 702 

been updated by the WMO to re-categorize a ‘mild drought’ as ‘near normal conditions’ 703 

(WMO, 2012). 704 

For our application, we calculate the SPI at each grid box over Australia at a 12-month 705 

averaging period for the AGCD product and the subset of members of the CORDEX-706 

Australasia ensemble (Figure 6) using the Climpact software (Alexander and Herold, 2015). 707 

Figure 9 shows the area-averaged 12-month SPI for AGCD in the top-left panel followed by 708 

the model simulations sorted alphabetically based on the RCM – GCM name. Colored 709 

vertical columns indicate periods of drought where the color indicates the severity of drought 710 

as defined by the WMO (2012). To benchmark this metric, we calculate the percentage of the 711 

time series spent in each category of drought and define the benchmarking threshold as 0 to 712 

10 percentage points of the AGCD value for each category of drought (Figure 10). Models 713 

must meet this benchmark for all categories of drought to meet our performance 714 

requirements. We set the benchmarking threshold as such because previous studies have 715 

shown that models struggle to capture observed dry periods over Australia (Ukkola et al. 716 

2018; Kirono et al. 2020), and we do not expect the simulated rainfall deficits to be 717 
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synchronized with observations. Using this definition, 14 models pass this benchmark (Figure 718 

10).  719 

This is only one example of how to benchmark RCMs to identify models that reasonably 720 

simulate drought-level rainfall deficits. Using the same metric, we could rank the 721 

performance of models based on tiered benchmarking thresholds. For instance, models that 722 

fall within +/- 5% of the observational percentage could be ranked excellent, +/- 10% as 723 

good, +/- 15% as adequate, etc. One could also benchmark the SPI using other drought 724 

indices, or vice versa. For instance, Joetzjer et al. (2013) use the standardized runoff index, a 725 

measure of river discharge, to benchmark several meteorological drought indices. Again, the 726 

benchmarking thresholds should be defined based on the application of the benchmarking 727 

framework and incorporate sound scientific reasoning.  728 

 729 
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 730 

Fig. 9. The area weighted averaged 12-month SPI values across Australia (with the combined quality 731 
mask applied) for 1976-2005. Vertical bars indicate the category of drought as defined by the WMO 732 
(2012). The top-left figure shows the SPI for AGCD, and the 20 members of the CORDEX-Australasia 733 
ensemble follow, sorted alphabetically by RCM-GCM name to match Table 3.  734 



 

   

 

 34 

 735 

Percentage of Time Series in Each Drought Category 

Dataset name Moderate 
-1.00 to -1.49 

Severe 
-1.50 to -1.99 

Extreme 
≤ -2.00 

AGCD 2.22 0.00 0.00 

CCAM-1704 

ACCESS1-0 5.56 0.00 0.00 
CNRM-CM5 4.17 0.00 0.00 

GFDL-ESM2M 7.78 0.00 0.00 
HadGEM2-CC 0.56 0.00 0.00 

MIROC5 3.61 0.00 0.00 
NorESM1-M 6.67 2.50 0.28 

CCAM-2008 

ACCESS1-0 1.11 0.56 0.00 
CanESM2 5.56 2.78 0.00 

GFDL-ESM2M 3.33 0.00 0.00 
MIROC5 0.57 0.00 0.00 

CCLM5-0-15 
HadGEM2-ES 0.00 0.00 0.00 
MPI-ESM-LR 2.78 0.00 0.00 

RegCM4-7 
MPI-ESM-MR 0.00 0.00 0.00 
NorESM1-M 6.11 0.00 0.00 

REMO2015 
HadGEM2-ES 0.83 0.00 0.00 
MPI-ESM-LR 4.44 0.00 0.00 
NorESM1-M 2.50 0.00 0.00 

WRF360J 
ACCESS1-0 4.17 0.28 0.00 
CanESM2 8.06 1.11 0.00 

WRF360K ACCESS1-0 5.83 1.67 0.00 

Fig. 10. The percentage of the 12-month SPI time series (see Figure 9) that falls within each drought 736 
category as defined by WMO (2012). For moderate droughts the benchmarking range is 2.22 % 737 
(AGCD) - 12.22% (+10 percentage points), for severe and extreme droughts 0-10%.14 models pass the 738 
benchmarking threshold of 0 to +10% of the AGCD product (top row) for all categories of drought. 739 
Instances where models fail the benchmark are highlighted in red.  740 

 741 

4. Summary and Conclusions 742 

To date, there is no standardized framework available for the scientific community to 743 

quantify RCM skill in simulating various characteristics of rainfall. We have developed this 744 

framework primarily to establish a uniform approach for holistically assessing RCM 745 

performance in simulating rainfall and, for stakeholder user communities to identify fit-for-746 

purpose model simulations. This framework can underpin future model assessments of 747 

existing and new simulations, including studies to compare dynamical or statistical 748 

downscaling techniques, added value studies, quantifying model skill across CORDEX 749 
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generations and/or regions, or testing machine learning techniques. We introduce a tiered set 750 

of performance metrics that establishes a consistent yet versatile framework with wide-751 

ranging applications across research and stakeholder user groups, and we walk users through 752 

two example applications of the BMF, summarized in Figure 11.  753 

It is critical that users are thoughtful and transparent in their definition of benchmarking 754 

thresholds and their selection of additional Versatility metrics. While the MSMs provide 755 

consistency in quantifying model performance, the definition of benchmarking thresholds for 756 

the MSMs and additional metrics can be subjective. If users are not clear about their 757 

justification for defining benchmarks, this can lead to erroneous conclusions about model 758 

performance. For instance, our definition of benchmarking thresholds and small selection of 759 

Versatility Metrics yield nine and fourteen simulations in the subsets for the first and second 760 

hypothetical user examples, respectively (Figure 11). This is not conclusive or prescriptive 761 

for which CORDEX-Australasia simulations are best at representing these rainfall 762 

characteristics over Australia. Ideally, users should incorporate multiple metrics when 763 

assessing how well models simulate rainfall characteristics that fall within the Versatility Tier 764 

as model performance can vary across metrics used to quantify skill for the same aspect of 765 

precipitation (Martinez-Villalobos et al., 2022). Further, if possible, it is recommended to 766 

benchmark models across regions with a similar climate regime, such as the IPCC regions 767 

(see Supplemental Figure S6). This will prevent key regional features from being 768 

overshadowed by large-scale features, such as the seasonal cycle in southern Australia 769 

compared to the rest of the continent (Figure 8).  770 

We apply the BMF to 24 simulations of the CORDEX-Australasia ensemble. Of the 24 771 

simulations, 20 meet our performance requirements for the MSMs (Figures 6 and 11), 772 

showing that across Australia, most members of the ensemble perform reasonably well at 773 

simulating fundamental characteristics of rainfall. While there are no obvious groupings of 774 

RCMs or GCMs that routinely perform better at simulating these characteristics of rainfall 775 

across all of Australia, there are regional patterns of RCM performance. For instance, the 776 

CCAM-1704 and CCAM-2008 models tend to run drier (out of the full ensemble) over west-777 

southwest Western Australia and the southeast coastline. Similarly, the WRF360K 778 

simulations underestimate mean rainfall in northern Australia and in southwest Western 779 

Australia. The CCLM-0-15 simulations are routinely drier across much of Australia, with a 780 

consistent dry bias across the eastern half and northern Australia. This is largely true for the 781 



 

   

 

 36 

REMO2015 simulations as well, although there is much more spatial variability based on the 782 

forcing GCM (Figure 2). These patterns seem to indicate that regionally and sub-regionally, 783 

the choice of RCM has more influence in how rainfall is simulated over Australia than the 784 

forcing GCM. For the models in the subsets from our two case studies (Figure 11), there are 785 

few obvious groupings of RCMs or GCMs that perform especially well at simulating the 786 

seasonality and rainfall deficits across Australia. However, all HadGEM2-ES/CC forced 787 

simulations underestimate the observed time spent in drought and fail this benchmark 788 

(Section 3d). It’s expected that this would change if we investigated over a smaller region 789 

though (Figure 2). Combined, our subsets include 8/10 GCMs and 7/7 RCMs. No HadGEM-790 

ES/CC forced simulations meet performance standards for either the Seasonality or Rainfall 791 

Deficit investigations, but all WRF360J/K simulations within the MSM subset meet 792 

performance expectations for both investigations. (Figure 11). It is also important to 793 

acknowledge the dependence of the subset of models that are identified through the 794 

application of the BMF. It is well known that GCMs and RCMs cannot be considered 795 

independent due to shared code and parameterizations among model developers and 796 

institutions (Knutti et al. 2013).  797 

The BMF presented here is a significant, first step in establishing consistency in how the 798 

scientific community quantifies RCM skill in simulating various characteristics of rainfall 799 

and the broader water cycle. The flexibility incorporated in the development of the 800 

framework makes it suitable for application across regions and numerous user communities. 801 

While the BMF facilitates consistency in the methodical assessment of RCM skill, there is 802 

still a pressing need for high quality, high resolution global observational precipitation 803 

datasets to fully establish regional consistency and equity in assessing RCM skill. We 804 

acknowledge and encourage a broader application of this framework beyond what has been 805 

discussed here, and we hope users will build on this framework by customizing benchmarks, 806 

developing and incorporating additional metrics, and identifying best-practice standards for 807 

benchmarking.  808 
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 809 

Fig. 11. Schematic flowchart summarizing our example applications of the benchmarking framework.  810 
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