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Doppler Gyroscopes: Frequency vs Phase Estimation

We consider the fundamental roles of frequency versus phase in parameter estimation, specifically in the Sagnac effect. We describe a novel, ultra-sensitive gyroscope based on the extremely steep frequency-dependent gain of a liquid crystal light valve. We provide compelling experimental evidence that the Doppler shift is fundamental in the Sagnac effect giving clarity to a long-debated question. We experimentally show orders of magnitude improvement in sensitivity relative to the standard quantum limit of a gyroscope based on phase estimation.

The burgeoning field of quantum metrology seeks to find "quantum advantages" over existing classical measurement schemes [START_REF] Carlton | Quantum-mechanical noise in an interferometer[END_REF][START_REF] Holland | Interferometric detection of optical phase shifts at the heisenberg limit[END_REF][START_REF] Agedi | Quantum interferometric optical lithography: Exploiting entanglement to beat the diffraction limit[END_REF][START_REF] Treps | A quantum laser pointer[END_REF][START_REF] Higgins | Entanglement-free heisenberg-limited phase estimation[END_REF][START_REF] Cable | Parameter estimation with entangled photons produced by parametric down-conversion[END_REF][START_REF] Giovannetti | Advances in quantum metrology[END_REF][START_REF] Xu | Phase estimation with weak measurement using a white light source[END_REF][START_REF] Aasi | Enhanced sensitivity of the ligo gravitational wave detector by using squeezed states of light[END_REF][START_REF] Gj Pryde | Unconditional shot-noise-limit violation in photonic quantum metrology[END_REF][START_REF] Benjamin J Lawrie | Quantum sensing with squeezed light[END_REF][START_REF] Polino | Photonic quantum metrology[END_REF]. Owing to its importance in gyroscopes [START_REF] Holland | Interferometric detection of optical phase shifts at the heisenberg limit[END_REF] and gravitational wave detection [START_REF] Carlton | Quantum-mechanical noise in an interferometer[END_REF][START_REF] Benjamin P Abbott | Gw151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence[END_REF] as well as its fundamental nature in all branches of interferometry, phase estimation beyond the standard quantum limit has been the prototypical example [1-3, 5, 7, 12]. Pragmatically, due to loss, quantum phase estimation techniques have, so far, only offered a few percent improvement over the standard quantum limit in the fewphoton regime [START_REF] Gj Pryde | Unconditional shot-noise-limit violation in photonic quantum metrology[END_REF] or a few dB improvement in the high power regime [START_REF] Aasi | Enhanced sensitivity of the ligo gravitational wave detector by using squeezed states of light[END_REF][START_REF] Benjamin J Lawrie | Quantum sensing with squeezed light[END_REF]. However, what if phase estimation for a class of experiments is suboptimal? Depending on the measurement apparatus, phase estimation may have different fundamental limits than frequency estimation [START_REF] Bortolozzo | Precision doppler measurements with steep dispersion[END_REF]. Here we demonstrate that by using an ultra-steep, frequency-dependent gain measurement rather than performing phase estimation in a passive gyroscope, we can achieve orders of magnitude improvement below the phase-estimation standard quantum limit of a single-loop Sagnac interferometer of the same size. Further, we provide important insights into a long-debated question about the role of Doppler shifts in the Sagnac effect.

Gyroscopes are powerful tools in tests of fundamental physics, guidance systems, inertial navigation, accelerometry, geodesy, seismology and geophysics to name a few. Significant advances in micromechanical [START_REF] Bernstein | A micromachined comb-drive tuning fork rate gyroscope[END_REF], atomic [START_REF] Tl Gustavson | Rotation sensing with a dual atom-interferometer sagnac gyroscope[END_REF][START_REF] Ds Durfee | Long-term stability of an area-reversible atom-interferometer sagnac gyroscope[END_REF][START_REF] Fang | Advances in atomic gyroscopes: A view from inertial navigation applications[END_REF], chip-based systems [START_REF] Lai | Earth rotation measured by a chip-scale ring laser gyroscope[END_REF] and ring laser gyros [START_REF] Chow | The ring laser gyro[END_REF][START_REF] Ge Stedman | Canterbury ring laser and tests for nonreciprocal phenomena[END_REF][START_REF] Hurst | Experiments with an 834 m 2 ring laser interferometer[END_REF][START_REF] Schreiber | How to detect the chandler and the annual wobble of the earth with a large ring laser gyroscope[END_REF][START_REF] Schreiber | Invited review article: Large ring lasers for rotation sensing[END_REF][START_REF] Schreiber | Progress in sagnac interferometry[END_REF][START_REF] Virgilio | Underground sagnac gyroscope with sub-prad/s rotation rate sensitivity: Toward general relativity tests on earth[END_REF] have been achieved. It may come as a surprise, then, that there are still open questions about the fundamental underpinnings of gyroscopes. For the sake of clarity, we consider an optical gyroscope to be a system in which a light source and a detector, in the same reference frame, rotating at a constant angular speed, can measure the rotation rate of the system. However, instead of measuring differential phase shifts, as is typically done, we measure differential frequency shifts.

The estimation of the rotation speed is closely related to a long-debated question of the role of Doppler shifts in the Sagnac effect [START_REF] Grigorii B Malykin | The sagnac effect: correct and incorrect explanations[END_REF]. In a standard Sagnac interferometer, the light is split using a beamsplitter into two counter-propagating beams that return to the same beamsplitter. Special relativity predicts an in-plane, closed-path relative phase acquired by the two beams in an optical Sagnac, given by

∆ϕ = 8πΩA λc ( 1 
)
where Ω is the angular frequency, A is the gyroscope area, λ is the wavelength of light and c is the speed of light. Hence, once the phase is known, the angular rotation frequency can be determined. The shot noise limited rotation sensitivity can then be found by substituting the standard quantum limit for phase, namely

∆ϕ = 1 2 √ N , (2) 
where N is the number of photons. An alternative theory is that the Doppler effect is the fundamental mechanism of the Sagnac effect (see references in [START_REF] Grigorii B Malykin | The sagnac effect: correct and incorrect explanations[END_REF]). However, Malykin elucidates two reasons against the use of the Doppler effect [START_REF] Grigorii B Malykin | The sagnac effect: correct and incorrect explanations[END_REF]. First, in a closed-loop system, the beamsplitter plays both the role of the emitter and the detector. He states, "...the radiation source and detector must be in motion relative to each other if the Doppler effect is to be manifest". The implies that the net Doppler shift outside the closed interferometer is zero. However, we feel this is not a good argument against a Doppler shift model, since proponents argue that it is the Doppler shifts between the source and the emitter (leading to a differential phase) that matter and not what happens external to the interferometer. We go beyond this assertion by exploring symmetry-breaking designs where the detector is not the same element as the emitter allowing us to measure differential frequency shifts even at the detector.

Malykin's second argument is that if there is a material medium, a Doppler-shift theory differs from the standard prediction by a factor of 2n 2 where n is the index of refraction of the material. Even in vacuum, the result still differs by a factor of 2. The vacuum result is rectified by proponents of the Doppler effect by using the length of the interferometer in the interferometer's frame. However, Malykin points out that it is inconsistent to assume a Doppler shift in the lab frame and the loop length in the rotating frame.

Instead of resolving the theoretical inconsistencies, we endeavor to show that Doppler shifts do exist within the system. We ask the question: if a moving mirror imparts a Doppler shift, why would such a shift vanish if the mirror is inside an interferometer? It is our opinion that measuring the phase alone leads to ambiguous interpretations. To parse out the role of the Doppler effect, we need a system that measures only differential frequency shifts and not differential phase. For our spectral estimation technique, we incorporate an ultra-sensitive, wave-mixing spectrometer based on an extremely steep frequency-dependent gain to measure frequency offsets. We use a liquid crystal light valve (LCLV), to measure the relative Doppler shift of two counter-propagating paths, but not the relative phase. Two-beam interference in the crystal creates a self-induced index grating from which the beams scatter. The various scattering orders from the two beaminterference inside an LCLV can lead to phase-insensitive steep spectral gain dependence [START_REF] Bortolozzo | Precision doppler measurements with steep dispersion[END_REF] or extremely slow or fast group velocities [START_REF] Residori | Slow and fast light in liquid crystal light valves[END_REF]. It was shown [START_REF] Bortolozzo | Precision doppler measurements with steep dispersion[END_REF] that the shot noise limited spectral sensitivity is given by ∆f

= 1 |χ| √ N ( 3 
)
where |χ| is the slope of the spectral gain and N is the number of measured photons. Because the slope of the gain curve can be large, we can achieve very high precision. This is the type of "slow light" advantage that was sought for almost two decades [START_REF] Hau | Light speed reduction to 17 metres per second in an ultracold atomic gas[END_REF][START_REF] Leonhardt | Ultrahigh sensitivity of slow-light gyroscope[END_REF][START_REF] Zimmer | Sagnac interferometry based on ultraslow polaritons in cold atomic vapors[END_REF][START_REF] Ms Shahriar | Ultrahigh enhancement in absolute and relative rotation sensing using fast and slow light[END_REF]. Now, we consider the Doppler shift from each reflecting surface of a rotating interferometer, like the one shown in Fig. 1. We recently showed [START_REF] Roi-Cohen | Reconciling and vali-dating the ashworth-davies doppler shifts of a translating mirror[END_REF] that the Ashworth-Davies [START_REF] Ashworth | The doppler effect in a reflecting system[END_REF] non-relativistic Doppler shift ∆f m of a laser of wavelength λ from a mirror moving with angular velocity Ω and radius R is given by

∆f m = 2ΩR λ cos(ϕ) cos(α), (4) 
where, with respect to the mirror's surface normal, α is the direction of propagation of the mirror and ϕ is the angle of incidence.

Consider a simple Doppler model in which the axis of rotation is at the center of a square Mach-Zehnder interferometer like the one shown in Fig. 1. The distance from the axis of rotation to each reflective element is then

R = L/ √
2, where L is the length of a side of the square. In this scenario α = 0 for the first 50/50 beamsplitter and α = 90 ○ for the two corner mirrors (we use polarizing beamsplitters (PBS) effectively as mirrors). The final beamsplitter has an angle α = ϵ/2, where ϵ ≪ ϕ. The incidence angle is the same for all surfaces, namely ϕ = 45 ○ for all surfaces, except the last beamsplitter which is ϕ = 45 ○ + ϵ/2. In this scenario α = 0 ○ for the first beamsplitter α = ϵ/2 for the final beamsplitter. Keeping only terms first order in ϵ, the relative Doppler shifts between the two paths is given by ∆f

≈ √ 2L(cos(ϕ) -cos(ϕ + ϵ/2)) λ (5) 
yielding the differential frequency approximation

∆f ≈ LΩϵ 2λ . (6) 
The final beamsplitter, with its small relative angle, breaks the symmetry in the system. It should also be noted that the frequency differential is zero when the angle between the output beams ϵ = 0 as observed for closed systems. This model predicts, using parameters from our system (see section IV in the supplementary material for further information), an estimated shot noise limited rotation sensitivity down to Ω ≈ 100 pRad/s/Hz -1/2 (approximately 5 orders of magnitude below the SQL for phase estimation of an interferometer of the same size and same number of measured photons).

For our experiment, light from a 532 nm fiber-coupled laser was launched on a rotation mount. A half-wave plate (HWP) and polarizer (P) were used to adjust the beam intensity and make the light vertically polarized (necessary for the LCLV). The 50/50 beam splitter and a polarizing beamsplitter (PBS) were placed on a small movable platform on top of a track. The other 50/50 beamsplitter and the other polarizing beamsplitter (PBS) were placed on another movable platform on the same track. The two independently movable platforms allowed us to measure the sensitivity of the system versus the position of the axis of rotation and the inter-FIG. 2. LCLV response vs input signals. In a, an experiment was performed similar to the one in [START_REF] Bortolozzo | Precision doppler measurements with steep dispersion[END_REF] in which the laser and detector are in the laboratory frame and a mirror undergoes linear translations according to a piezo electric input signal. However, the LCLV response always re-equilibrates to zero meaning the LCLV, after relaxing, has no response to constant phase. The experimental setup b utilizes the turntable shown in Fig. 1 unlike a. A triangle wave is applied to the piezoactuator which rotates the turntable yielding the expected square wave signal.

ferometer's size. The two polarizing beamsplitters were used in place of mirrors allowing for amplitude control of the two paths. The beams were then directed from the polarizing beamsplitters and the final 50/50 beamsplitter such that they overlapped on the LCLV, but had a relative angle of approximately 10 mRad. The beam waists at the crystal were approximately 2.5 mm with combined intensity of between 1.5 mW and 2.5 mW impinging on the crystal. The beams then pass through a lens and are sent to a balanced detector (BD) in the focal plane of the lens where the beams have separated. The half wave plate (HWP) inside the Mach-Zehnder was adjusted until the beams were intensity-balanced in the detector. The differential balanced detector signal was passed through a low-noise preamp. From the fiber launch to the photodetectors, all equipment is on a single rotating platform atop a turntable driven by a piezoactuator (PZT).

To test the properties of this system, we used a linear piezo-electric actuator to exert a transverse force on the sliding track that also acts as a lever arm. The horizontal distance from the PZT to the axis of rotation was 28 cm. The actuator has a linear response of approximately 60 nm/V. We used a range of amplitudes and frequencies for driving sinusoidal, triangular and square wave oscillations. To demonstrate that we are measuring a frequency offset and not a phase offset, we show that constant phase offsets (not phase gradients) do not contribute to the LCLV response. It is important to note that for demonstrating that the system is not sensitive to a constant phase offset we are not using a setup in Fig. 1. Rather, the experimental setup for this experiment is based on [START_REF] Bortolozzo | Precision doppler measurements with steep dispersion[END_REF] in which a mirror is linearly translated with respect to the lab frame in which the detector and laser are stationary. Fig. 2a shows the response of the LCLV to sudden changes in phase (square wave driven piezo). The Square wave peak-to-peak oscillation corresponds approximately to 17 degrees of phase shift. It can be seen that the after an initial sudden change in phase (Doppler shift) the system relaxes once again to the equilibrium position (zero) even though the phase offset remains constant until the next fluctuation. This shows that the LCLV does not respond to constant phase offsets as would be the case in standard Sagnac interferometers undergoing uniform rotation. Hence, the signal must be from frequency shifts and not from phase.

We now turn to the results for the rotating platform shown in Fig. 1 undergoing small oscillatory motions. As can be seen in Fig. 2b, a 100 mHz triangle wave with peak to peak angular displacement of approximately 1 µRad is applied to the piezo actuator. At the turning points, there is a sudden acceleration at which there is a rapid change in response. After a finite crystal relaxation time, the system settles to the new equilibrium. For a system of constant rotational speed, the system approaches a constant voltage offset proportional to the speed as expected.

Fig. 3 shows the driving signal and the system response of a 0.003 m 2 interferometer, from a 200 mHz sine wave (a 20 second interval is shown in the inset). The driving signal resulted in a 1.3 µRad/s amplitude for the angular velocity. The length of the total measurement was 1000 seconds. The associated amplitude spectral density of the signal is shown. It can be seen that over a large range of the spectrum, the noise floor is more than 2 orders of magnitude below the shot noise limited (the standard quantum limit) response of a standard passive gyroscope of the same area and approaches 3 orders of magnitude close to 1 Hz. Fig. 4 shows the Allan deviation. The bias drift of the system is calculated to be approximately 17 nRad/s. For emphasis, we note that we are still several orders of magnitude above the shot noise limit of the frequency differential measurement of the LCLV implying that many orders of magnitude improvement are still possible.

We tested the dependence of the system on several parameters: the position of the axis of rotation, the size of the interferometer, and the amplitude and frequency of the piezo actuated movement. For the experiments shown in Fig. 5, triangle waves of various amplitudes and frequencies were used. In Fig. 5a, the two movable platforms were translated together, while preserving the interferometer area, by a distance ∆L to find the system sensitivity to position of the interferometer relative to the axis of rotation. It can seen that there is a linear dependence on distance from the axis of rotation, thus differing from other passive optical gyroscopes. shows the dependence of the interferometer's sensitivity on the size of the interferometer. We kept one platform fixed and moved the other platform a linear distance ∆L. We plot two theoretical behavior lines to show the system sensitivity is linear in the length and not the area, which also differs from other passive optical gyroscopes. Figs. 5c and5d show that the response of the system is linearly dependent in the amplitude and frequency of the driving oscillation, as expected. It can be seen in Fig. 5c that if the amplitude is too large, when the crystal gain curve is nonlinear, the linear behavior stops. Nonlinear behavior also occurred for oscillation frequencies above 1 Hz (not shown), which is approximately the bandwidth of the gain curve.

A brief discussion of some practical aspects is in order. First, the LCLV, in its current form, is very sensitive to vibrations. Second, the sensitivity and bias of the LCLV is a strong nonlinear function of the laser power. However, with intensities of even just a few 10s of mW/cm 2 , the transparent electrodes on the LCLV can overheat causing a liquid phase transition. This is a technical not a fundamental limitation, which can be improved. Third, air current fluctuations create temporal phase fluctuations, which appear as frequency shifts in the system. Fourth, it is likely that bias drift can be greatly improved. We believe the primary forms of bias drift were from intensity fluctuations and crystal temperature variations, both of which can be actively stabilized. Fifth, we expect the sensitivity of our device can be greatly improved if it is used in a high finesse resonator or loop design. Sixth, there are passive fiber optic gyros with similar sensitivities to ours, but with enclosed areas 10's to 100's of thousands of times larger (see [START_REF] Li | Thermal phase noise in giant interferometric fiber optic gyroscopes[END_REF] and references therein). Last, we have not yet measured any signal related to the Earth's rotation. This should be manifest by a large frequency offset bias (expected to be several hundred thousand Hertz assuming a linear increase in sensitivity with distance) and a sensitivity to interferometer tilt, neither of which we have observed. We are deeply puzzled by this and are looking for answers to large distance rotations. We note that such a large bias would be so far outside the spectral gain window that the system could not work. We speculate that when the distance to the axis of rotation greatly exceeds the size, the system effectively behaves as if it is undergoing pure translation rather than rotation. We hope this spurs additional theoretical activity in the community.

FIG. 5. a) shows the system response as a function of a 0.003m 2 interferometer being moved relative to the axis of rotation. b) demonstrates the dependence of the interferometer sensitivity vs a linear change in length. It can be seen that the behavior shows that the system sensitivity is a function of the length and not the area of the interferometer. c) and d) show that the system is linear in the piezo driving amplitude and frequency, respectively.

We believe we have provided compelling evidence of the possibility for enhancing sensitivity relative to some phase estimation problems by considering frequency estimation instead. We have also provided strong evidence of the role of Doppler shifts as being fundamental within the Sagnac effect. An obvious question is in what other systems such techniques could be applied. For example, it may be possible that ring laser gyros could be improved if the differential spectral estimation of the LCLV can be shown to be better than the typical heterodyne beatnote analysis [START_REF] Schreiber | Progress in sagnac interferometry[END_REF].
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 1 FIG. 1. Experimental setup.A laser beam is coupled into a square Mach-Zehnder interferometer on top of a rotating platform. The size and distance of the interferometer relative to the axis of rotation can be controlled by moving small tables with the beamsplitters. A liquid crystal light valve acts as the relativistic "detector" by providing spectrally-dependent gain, which is then measured by balanced detectors. All elements are on the rotating platform.
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 3 FIG. 3. Amplitude spectral density of the signal response (shown in blue in the inset) of a 0.003 m 2 interferometer undergoing 200 mHz sinusoidal oscillations from the driven piezoelectric.