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Romain Rouvoy

Received: date / Accepted: date

Abstract Background
Software Energy Consumption (SEC) is gaining more and more attention. In
this paper, we tackle the problem of warning developers about the increase of
SEC of their programs during Continuous Integration (CI).
Objective
In this study, we investigate if the CI can leverage developers’ tests to perform
energy regression testing. Energy regression is similar to performance regres-
sion but focuses on the energy consumption of the program instead of standard
performance indicators, like execution time or memory consumption.
Method
We perform an exploratory study of the usage of developers’ tests for energy
regression testing. We first investigate if developers’ tests can be used to obtain
stable SEC indicators. Then, we evaluate if comparing the SEC of developers’
tests between two versions can pinpoint energy regressions introduced by auto-
mated program mutations. Finally, we manually evaluate several real commits
pinpointed by our approach.
Impact
Our study will pave the way for automated SEC regression tools that can be
readily deployed inside an existing CI infrastructure to raise awareness of SEC
issues among practitioners.
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1 Introduction

Software Energy Consumption (SEC) is gaining more and more attention from
both researchers and practitioners [1–4].1 However, the awareness of SEC
among developers is not yet widely spread and is just starting to be considered
a key indicator of a project quality [5, 6].

In this article, we tackle the problem of warning developers about the
increase of SEC of their programs. More specifically, this study takes place in
the context of Continuous Integration (CI), widely adopted by the software
industry. In particular, our overarching objective is to flag—or to classify as
breaking—all CI commits that negatively impact the SEC of an application
under development or maintenance.

Whenever a developer pushes changes as a commit, the CI is responsible for
building and checking if the submitted changes are “correct”. Traditionally, CI
performs regression testing—i.e., it verifies the absence of regression bug [7].
A regression bug is an unintended loss of features introduced by code changes
not intended to alter this part of the program behavior. As code changes
may have side effects that introduce an undesired behavior change (or bug),
these regression bugs can be spotted by the tests triggered by the CI. The
most straightforward regression detection technique is executing all the tests,
no matter the submitted changes. If any test fails, this means that there is
a regression, and the associated code changes are then labeled as breaking.
Then, the developer who authored the code changes must fix the regression
bug(s) and make all tests pass again.

In this study, which executes a pre-registered protocol [8], we investigate if
the developers’ tests [9] can be leveraged to perform an additional verification
as part of the CI: Energy Regression Testing (ERT). Our idea is inspired by
the work of Ding et al. [10], who showed that such tests could spot performance
regressions in a program. Energy regression is similar to performance regression
but focuses on the energy consumption of the program instead of its execution
time or memory consumption. In other words, we aim to integrate into the CI
an energy regression oracle that ensures that the applied code changes do not
severely degrade the SEC. In particular, the CI would label a code change as
breaking if it severely increases the energy consumption of the program.

Similarly to performance, energy consumption is a dynamic property: one
must execute the program to collect SEC indicators. As we aim to detect
the negative impact on energy consumption, we need to compare the energy
consumption of two versions of a program: the version before and the one
after applying a given commit. To do so, developers’ tests can be considered a
candidate workload—as they are already executed for each version—that can

1 https://greensoftware.foundation

https://greensoftware.foundation
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be used to monitor dynamic properties’ variations, as long as the commit does
not modify these tests.

In this article, we take a first step towards this vision by performing an
exploratory study of the applicability of such an approach (which is detailed
in Section 2). We first investigate if stable SEC indicators can be computed
from developers’ tests (see Section 4). Second, we investigate if comparing
SEC indicators of two versions can pinpoint energy regressions introduced by
controlled program mutations. Finally, we study the difference of SEC indica-
tors along the commit history of several major Open Source Software (OSS)
repositories and perform a manual evaluation of several real-world commits
pinpointed by our approach (see Section 5).

We find out that it is possible to measure the energy consumption in a
stable way using the number of cycles and that we can use the developers’
tests to assess the variation of energy consumption on a ratio of commits
ranging from 5% to 40% in the projects of our corpus. We also show that our
approach can be tuned to adjust its sensibility. Furthermore, some manually
analyzed breaking commits had signs of modifications that could induce an
increase in SEC, while others seemed to be false positives, emphasizing the
need for tunability. An important limitation of our approach is that we do not
have any ground truth workload to put our results in perspective.

2 Overview & Research Questions

This section first provides an overview of our approach to performing energy
regression testing (see Section 2.1). Then, it presents the two research questions
investigated in our exploratory study (see Section 2.2).

2.1 Energy Regression Testing (ERT)

ERT refers to the capability of detecting energy consumption drifts in soft-
ware systems that are induced by changes observed at the source code level.
ERT differs from state-of-the-art regression testing by considering energy con-
sumption as a non-functional concern that can cause a software test to break.
Test breakage in the context of ERT, therefore, refers to a software test that is
passing from a functional perspective, but reports on an increase of the energy
consumption. This increase is observed by comparing the execution of tests on
two consecutive versions of a System Undert Test (SUT). Figure 1 depicts an
overview of the key phases involved in ERT.

ERT Selection. The first step of our approach aims at selecting the tests that
should be executed to detect energy regressions. This step takes as input a
project commit with its associated current snapshot (denoted by HEAD in Fig-
ure 1 and v2 in the remainder) and parent snapshot (denoted by HEAD~1 in
Figure 1 and v1 in the remainder). It computes a textual diff between the two
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Fig. 1 Overview of key steps involved in ERT.

snapshots, resulting in a set of deleted lines in v1 and a set of added lines in
v2. Then, it computes the code coverage of all tests (which test executes which
line of the program) for both versions. We select the tests from v1 that cover
the lines deleted by the commit, and we select the tests from v2 that cover the
lines added by the commit. From this selection, we discard all the modified
tests as the energy measurement of the underlying test might be affected by
the modification, introducing noise in our measurements. We also discard the
deleted (resp. added tests), as we cannot be sure that we can execute them on
the current (resp. parent) version. We also discard the tests that fail on any
of both versions. Then, we take the union of both test subsets (v1 and v2) as
our candidate workload for energy measurement.

ERT Execution. The second step of our approach is to instrument the tests
selected in the previous step to capture our measurements of interest. This is
done by injecting probes into the selected tests. We inject two probes: one to
start the monitoring at the beginning of the test and one to stop the monitoring
at the end of the test. These start and stop probes will be automatically trig-
gered when running the tests and will collect energy and performance metrics
(these metrics will be detailed in 4). As explained in [11] energy measurement
is inherently subject to variations. We execute the selected tests multiple times
to compute a representative value of the actual energy consumption. We arbi-
trarily decided to execute 100×, as it limits the overall cost of the experiment
while ensuring a confidence interval of 95% and a margin of error of 10%, ac-
cording to Cochran’s formula [12]. Therefore, for each test, we collect a sample
of 100 measurements for v1 and another sample of 100 measurements for v2.

ERT Oracle. Finally, using the paired samples of 100 measurement computed
in the previous step, we label the commit as passing (no energy regression
detected, denoted using a green check) or breaking (an energy regression has
been detected, denoted by a red cross). To make this decision, we adopt a
two-step oracle. First, we use a test filtering process to filter out the tests ex-
hibiting similar energy measurements between the two versions, which could
introduce noise in our decision process. And finally, we apply a decision ora-
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cle to classify the commit. The test filtering process and decision oracle are
detailed in Section 5.

2.2 Research Questions

When it comes to reasoning on energy, the literature has shown that the
measurement of energy consumption can be subject to large variations [11],
which is mainly due to complex interactions of hardware and software features.
In this context, the study of the energy impact of code changes should ensure
that the measurements reported by the CI are stable and reproducible enough
to avoid false positives. This is particularly challenging as short executions of
developers’ tests may affect the stability of measurements.

This observation, therefore, leads us to formulate the following two research
questions:

– RQ1: Can the energy consumption of developers’ tests be measured stably?
– H1: Measuring the energy consumption of developers’ tests delivers sta-

ble and reproducible measurements.
– H2: Measuring dynamic performance indicators, such as duration or

executed instructions of developers’ tests, can approximate the energy
consumption and deliver stable and reproducible measurements.

This research question assesses whether developers’ tests can be leveraged
to measure the energy consumption of a small snippet of code stably. It
will deliver recommendations on which measurements can be considered by
studying their stability across several measurements. H1 focuses on consid-
ering energy consumption, usually reported in Joules, as a direct indicator
to monitor a software system. Additionally, we establish H2 as an alterna-
tive hypothesis to investigate if other—indirect—indicators can be used, if
H1 does not hold.

– RQ2: Can developers’ tests be used to detect potential energy regression
introduced by code changes?
– H3: A potential energy regression introduced by code changes can be

detected from the developers’ tests by computing the energy delta of
unmodified tests executed before and after the code changes.

3 Implementation & Dataset

3.1 Approach Implementation

We focus on Java projects managed using Maven. We restrict our study to this
technological stack because we can leverage tools developed in previous works.
While this choice reduces the time spent preparing our experiments, we believe
it is possible to replicate our approach in other technological stacks, as long as
the tools we need in our experiment (a code coverage framework and a source
code manipulation framework, see below) are available. Our implementation



6 Benjamin Danglot et al.

is available as an OSS repository on GitHub2. The data produced by our
experiments are available on Zenodo3. In the remainder of this section, we
describe the main components we use in our implementation.

Test Selection. To perform test selection, we enhanced the prototype diff-test-
selection4 that has been developed by Danglot et al. [13] to select the tests that
execute the code changes and amplify them. We make the artifact more ac-
curate by implementing our test selection algorithm, described in Section 2.1,
within diff-test-selection. In our experimentation, we decided to select the tests
that execute the code that has been changed to save computation time.

Energy Measurement. We use TLPC-sensor5 to collect metrics about energy
consumption and Hardware Performance Counters (HwPC) metrics. It uses
Running Average Power Limit (RAPL) [14] to collect measurements on the en-
ergy consumption metrics of supported components, such as CPU and DRAM.
It leverages the standard Linux library perf to collect HwPC metrics, such as
the number of executed instructions, number of cycles, etc.

Test Instrumentation & Execution. Regarding test instrumentation—i.e., above-
mentioned probes to measure the energy consumption and performance metrics—
we rely on the library of Java code analysis and transformation Spoon [15].
For test execution, we adopt the test-runner,6 which delivers an API to run
the tests in an isolated Java Virtual Machine (JVM), avoiding dependencies
clashes.

3.2 Dataset

As explained in 3.1, our implementation requires Java projects managed us-
ing Maven with their commits. We rely on an existing dataset built by Dan-
glot et al. [13], as they meet these criteria.

Our approach cannot be applied on commits with no Java code changes or
on commits with an empty set of selected tests (because tests were modified
along with the code or because no test covers the added or deleted lines).
To that extent, for each project, we browse the commits’ history backward,
starting from the head of the main branch until we find 50 commits where we
can successfully apply our approach.

Table 1 shows the list of OSS projects in our dataset. Most of our projects
are Java libraries, except for xwiki. Their sizes range from small (10, 000 LOC)
to large (1, 000, 000 LOC). Interestingly, we note that the ratios of commits

2 https://github.com/davidson-consulting/diff-jjoules
3 https://zenodo.org/record/6528917
4 https://github.com/STAMP-project/dspot/tree/master/

dspot-diff-test-selection
5 https://github.com/davidson-consulting/tlpc-sensor
6 https://github.com/STAMP-project/test-runner

https://github.com/davidson-consulting/diff-jjoules
https://zenodo.org/record/6528917
https://github.com/STAMP-project/dspot/tree/master/dspot-diff-test-selection
https://github.com/STAMP-project/dspot/tree/master/dspot-diff-test-selection
https://github.com/davidson-consulting/tlpc-sensor
https://github.com/STAMP-project/test-runner
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compatible with our approach range from 40% in the case of jsoup to 4% for
xwiki. It indicates that many commits cannot be analyzed using our approach.

Table 1 Considered projects and period for selected commits.

project type LOC start
date

end
date

latest
commit

#total
commits

#selected
commits

%selected
commits

jsoup Library 24, 586 17/01/10 20/10/21 3bd4d79 123 50 40.65%
mustache Library 8, 586 03/05/10 07/12/21 2d814a7 147 50 34.01%
commons
-io Library 42, 343 25/01/02 28/10/21 8827b4e 194 50 25.77%
gson Library 22, 724 01/09/08 18/09/21 aa5554e 293 50 17.06%
commons
-lang Library 88, 000 19/07/02 27/03/22 4b9dfa2 421 50 11.88%
xwiki Application 100, 114 13/10/06 05/04/22 0b10941 1, 144 50 4.37%

Table 1 shows the main descriptive statistics of the benchmark dataset.
The first column is the project’s name, and the second is its type. The third
column is the number of lines of java code computed with cloc. The fourth
(resp. fifth) column is the date of the project’s oldest (resp. latest) considered
commit. The sixth column is the SHA of the latest considered commit. The
seventh column is the number of commits we analyzed until we obtained 50
commits on which we could apply our approach. The eighth column is the
number of commits we selected. The ninth column is the ratio of selected
commits over the considered commits.

4 Can the energy consumption of developers’ tests be measured
stably?

In this section, we investigate our first research question.We first explain our
experimental protocol, and we then describe our results.

4.1 Experimental Protocol

To answer RQ1, we are interested in investigating the stability of measurements
of interest for several executions of a given test. More precisely, we consider
the energy consumption and HwPC of the commits selected in Section 3.2 as
our measurements of interest. This results in the following variables:

– The energy consumed by the CPU during the execution of a test on a given
version of the program under study reported in Joules (J);

– Several HwPC monitored along the execution of individual tests on a given
version of the targeted program, most notably number of instructions, num-
ber of cycles. Both are positive integers.

The energy consumed by the execution of a test is the key metric of our study.
Nevertheless, we believe that these two other performance metrics can offer
relevant candidate metrics to approximate the energy consumption of a test.
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We argue that these indicators might be used as an alternative whenever the
energy consumption is too unstable. These variables will be used to study the
energy variations of a SUT.

A limitation of our approach, leveraging developers’ tests, is that the most
common developer’s tests available are unit tests, which are usually small and
fast to execute. This strengthens the challenge of stable measurement of energy
consumption.

To assess the stability of our measurements of interest, we compute their
Standard Deviation (σ) and Coefficient of Variation (CV ). These indicators
deliver insights about the stability of the collected measurements and thus val-
idate or invalidate the hypotheses H1 and H2. Having several measurements of
energy consumption and performance metrics will provide us a way to compute
statistical indicators to assess if the selected metrics are stable enough:

1. σ measures the variation among a set of values. A low σ indicates that the
values xi tend to be close to the mean µ of the set, while a high σ indicates
that the values are spread out over a broader range. The σ of a population
of size N is computed by the following formula:

σ =

√∑
i∈N (xi − µ)2

N
(1)

2. CV measures the dispersion of a probability distribution. The CV is com-
puted by the following formula:

CV =
σ

µ
(2)

For each measurement of interest, the lower these values (σ and CV ), the
more stable.

4.2 Experimental Results

The experimental results are reported in Table 2. The first column gives the
name of the project, the second, third, and fourth columns report on the me-
dians of the CV for the software energy consumption ( ˜CVE ), the instructions
( ˜CVI ) and the cycles ( ˜CVC ) over all the tests executions; For the fifth and
sixth columns, we computed the CV of the number of instructions (CVI ), of
the number of cycles (CVC ) and the software energy consumption (CVE ) for
each test. Then, we count the number of times that CVE is greater than CVI

(column 3) and greater than CVC (column 4); The eight and ninth columns
are the Pearson correlation ratio (ρ) computed using medians for each test for
the number of instructions (ρI) and the number of cycles (ρC), respectively.

For all the projects, the C̃V of the software energy consumption ( ˜CVE ) is
higher than both C̃V of instructions ( ˜CVI ) and cycles ( ˜CVC ). The minimum
is 0.02 for the ˜CVI of xwiki and the maximum is 0.28 for the ˜CVE of jsoup.

In a very large proportion, 87.51% is the minimum for jsoup, CVE is greater
than CVI and CVC .
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Project ˜CVE ˜CVI ˜CVC
%CVE
> CVI

%CVE
> CVC

ρI ρC

jsoup 0.28 0.12 0.10 87.51% 95.52% 0.95 0.97
mustache.java 0.16 0.05 0.05 89.43% 95.05% 0.65 0.66
commons-io 0.25 0.03 0.05 95.93% 95.42% 0.70 0.89
gson 0.15 0.04 0.06 94.45% 95.35% 0.84 0.89
commons-lang 0.25 0.03 0.04 99.07% 99.15% 0.89 0.87
xwiki 0.09 0.02 0.02 91.75% 95.00% 0.87 0.87

Table 2 Summary of the ratio of commits on which the approach could be applied, the sta-
bility of the measured performance indicators per project and the correlation factor between
energy consumption and performance indicators.

From the two last observations, we conclude that performance metrics—
i.e., number of instructions and number of cycles—are more stable than energy
measurements both in terms of dispersion, estimated by the median of the CV
and quantitative aspects, showed by the number of CV computed with energy
measurements that is greater than the CV computed for both the number of
instructions and the number cycles.

Furthermore, for all projects, the Pearson correlation ratios (ρ) are very
high: the minimum is 0.65 (instr) for mustache.java, and the maximum is 0.97
(cycles) for jsoup. These high values of the Pearson correlation ratios show
that the number of instructions and the number of cycles is highly correlated
to the energy consumption of the tests. More precisely, the Pearson correlation
ratio for the cycles (ρC) is slightly higher for the number of cycles than for
the number of instructions (ρI). To illustrate these observations, we plot the
distributions of the CV for the 3 measurements for each project in Figure 2.

Answer to RQ1: we show that we can measure the energy consump-
tion of tests among projects selected from GitHub. We also show that the
measure of the number of instructions and the number of cycles is slightly
more stable than the measure of energy consumption. In addition to this,
the cycles and the instructions are highly correlated to energy consump-
tion. Therefore, one can adopt these performance metrics to approximate
energy consumption in a more stable and reproducible way. We particu-
larly recommend using the number of cycles as a stable approximation of
the energy consumption, hence validating H2 over H1.

In the remainder of this article, we adopt the number of cycles to detect
regressions in the energy consumed by software tests.

5 Can developers’ tests be used to detect potential energy
regression introduced by code changes?

In this section, we investigate our second research question.We first explain
our experimental protocol, and we then describe our results.
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Fig. 2 Distributions of CVE , CVI , and CVC for the 6 Java/Maven projects under study.

5.1 Experimental Protocol

To investigate H3, we start by running a controlled experiment to assess the
capability to detect regressions in the energy consumed by the test suite of a
CI. To do so, we inject source code mutations for each selected repository to
generate artificially new versions of the projects under study. The new versions
are generated so that we control the level of regression in energy consumption.
In practice, we inject energy-consuming statements at the beginning of some
methods of the project’s source code. These energy-consuming statements are
side-effect-free instructions that are executed as long as a target energy con-
sumption is not reached. Note that this way of mutating the code differs from
the traditional mutation operators used in mutation-based test analysis. Then,
to select the mutated methods, we rely on their code coverage and hit count—
i.e., the number of times the methods are executed during a run of the whole
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test suite of the version to mutate. For each project, we select 5 methods with a
low number of hits and 5 methods with a median number of hits. To determine
what low and median mean, we compute the number of hits per method, sort
the methods according to the number of hits and take the 5th percentile (±2)
for the low number of hits and the median (±2) for the median number of hits.
We did not consider methods with a larger number of hits, as it would lead
to a very long experimentation time, given that the mutations—that increase
the method execution time—would have to be executed many times.

Then, we consider two intensities of mutation: First, a zero mutation in-
tensity that does not increase the energy consumption—i.e., it is neutral re-
garding the energy consumption. Second, a max mutation intensity that dras-
tically increases the energy consumption project-wise. To compute this max
mutation intensity, we rely on the results of RQ1, where we take the 95th
percentile of energy consumption delta over all tests considered. Finally, we
create 2 × (5 + 5) = 20 mutants representing each combination using these
methods and intensities, leading to a total of 120 mutants for all the projects
under study. Then, for each mutant, we measure the energy consumption of
the tests selected on the version before (v1) and after (v2) the mutation.

As mentioned above, every source code mutation injects an energy payload
as an invocation of method consumeEnergy, described in Algorithm 1, within
each selected method.

Algorithm 1 Method consumeEnergy injecting a synthetic energy payload in
mutated programs.
Require: Energy consumption probe: P
Require: Energy payload to inject (µJ): payload
Require: Seeded random generator: R()
Require: Current time: t()
1: threshold← P.startMonitoring() + payload
2: random← R(t())
3: while P.getCurrentEnergyConsumed() < threshold do
4: random← random+R(t())
5: end while
6: P.stopMonitoring(random)

The method consumeEnergy first starts the monitoring of the energy con-
sumption (line 1) and estimates the threshold consumption threshold by
summing the energy payload payload (in our protocol, it corresponds to ei-
ther a zero or a max increase). Then, it initializes a variable, called random,
with a random value—using the seeded random generator with the current
time as seed (line 2). It keeps looping as long as the current energy consumed
is below the energy threshold (line 3). At each iteration of the loop, it accumu-
lates the variable random with a new random value, using the seeded random
generator with the current value of the random variable as seed (line 4). When
the loop’s condition is met, the method consumeEnergy stops the monitoring
and returns. The random value is given as a parameter of method consumeEn-
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ergy to escape Just-in-Time (JIT) optimisations of the JVM. This method
allows us to 1) artificially increase the energy consumption of a program with-
out altering its functional behavior, 2) configure the exact amount of energy to
be consumed by the injected mutation, and 3) bypass runtime optimizations,
as the value of the random number cannot be predicted.

As described in Section 2.1, we apply a two-steps process to decide if the
energy regression test suite of a commit is breaking or passing:

1. we discard the results of tests when the energy consumption measurement
is too similar between the two versions using a test filter,

2. we aggregate the results of the remaining tests to take a decision (breaking
or passing) by applying a decision oracle.

We apply different configurations for each step of this process when investi-
gating RQ2, as follows.

Test Filters. We consider three alternative test filters:

– all: this baseline filter does not remove any test.
– empty intersection: this aggressive filter removes all tests for which the in-

tervals of values, defined by the real interval between the minimum and
maximum values among the 100 computed values, have a non-empty in-
tersection between the two versions.

– student’s t-test: this filter uses the p-value of a t-test between the two sets
of 100 measures for each version, as well as Cohen’s d [16] effect size to
determinate if a test has a significant variation of energy consumption. Any
test yielding a p-value greater than 0.05 (no significance) or an effect size
lesser than given thresholds (values too similar) are filtered out. We use
four classical effect size thresholds [16]: 0.2, 0.5, 0.8, and 1.2.

Decision Oracle. Note that when the test filter discards all the tests, it indi-
cates that the energy measurements of all the selected tests between the two
versions are very similar. Therefore, we classify the commit as passing. When
this is not the case, we consider 4 oracles to decide if the selected tests T of a
given commit should be classified as breaking, as follows:

– strict: this very sensitive oracle labels a commit as breaking if there is at
least one test-wise delta that is greater than zero: ∃t ∈ T |∆(t) > 0,

– aggregate: this oracle labels a commit as breaking if the sum of the deltas
of the tests t is greater than zero,

∑
t∈T ∆(t) > 0,

– code coverage: this oracle labels a commit as breaking if the sum of the
deltas, weighted by the code coverage of the test t, is greater than zero,∑

t∈T ωcocov(t) ·∆(t) > 0,
– diff coverage: this oracle labels a commit as breaking if the sum of the

deltas, weighted by the diff coverage of the test t, is greater than zero,∑
t∈T ωdicov(t) ·∆(t) > 0.
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The delta of energy consumption, ∆(t), is defined as the difference of me-
dian energy consumptions measured for t between v2 and v1. Any positive
∆(t) detects a regression in energy consumption.

In the above formulas, ωcocov(t) is defined as the ratio of lines covered by
the test t over the total number of lines of the program. ωdicov(t) is the ratio
of added or deleted lines covered by the test t over the number of added and
deleted lines, respectively. In these formulas, we pessimistically set ε = 0 as
the threshold value ε to detect an energy regression between two versions.
However, it might turn out to be a too restrictive value. In these cases, it is
possible to relax the threshold ε > 0 to reduce the number of false positive
commits considered as breaking. For instance, with such a threshold ε, the
strict oracle would use the formula ∃t ∈ T |∆(t) > ε

To validate our hypothesis H3, we observe the ratio of mutants classified
as breaking and passing. This protocol allows us to confront our approach
against a change that does not increase the energy consumption, in which
case we expect the change to be labeled as passing, and against a change that
does increase the energy consumption, expecting the change to be labeled as
breaking.

To further investigate H3 on realistic code changes, we also apply this
approach on the commits previously selected, as described in Section 4, and
we report on the ratio of passing and breaking commits. Finally, we manually
examine one arbitrary breaking and passing commit per project (picked from
all the tested configurations and by trying to favor small commits that are
easier to analyze) to gain more insights into the type of changes that lead to
such decisions.

5.2 Experimental Results

The results are summarized in Table 3. For the sake of readability, the re-
sults are aggregated for all the projects under study. Note that we consider
the number of cycles to compute the deltas in this research question, as our
experimental results showed it to be a stable measurement highly correlated
to energy consumption.

The lines represent the different combinations of decision oracles aggre-
gated by test filters. Columns two to five represent the various mutants we
generated. The second and third column report on the result for the zero
mutation on methods that have few executions and on methods that have a
median number of executions, respectively. The fourth and fifth column report
on the result for the max mutation on methods that have few executions and
on methods that have a median number of executions, respectively. Finally, the
last column represents the commits selected in our dataset (see Section 3.2).
The resulting columns respect the following layout: on the first row, the sym-
bol 3 is followed by the number of changes (for the mutations) or commits
(for the real changes) labeled as passing, followed by the number of changes/-
commits between parenthesis that were considered as passing directly after
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Changes Zero Low Zero Med Max Low Max Med Real

all

strict 3 11 (0)
7 19 / 30

3 0 (0)
7 30 / 30

3 0 (0)
7 30 / 30

3 0 (0)
7 30 / 30

3 27 (0)
7 273 / 300

agg 3 16 (0)
7 14 / 30

3 8 (0)
7 22 / 30

3 1 (0)
7 29 / 30

3 1 (0)
7 29 / 30

3 137 (0)
7 163 / 300

cocov
3 16 (0)
7 14 / 30

3 9 (0)
7 21 / 30

3 1 (0)
7 29 / 30

3 1 (0)
7 29 / 30

3 154 (0)
7 146 / 300

dicov 3 22 (0)
7 8 / 30

3 15 (0)
7 15 / 30

3 14 (0)
7 16 / 30

3 10 (0)
7 20 / 30

3 217 (0)
7 83 / 300

∅ intersection

strict 3 30 (30)
7 0 / 30

3 30 (29)
7 0 / 30

3 14 (13)
7 16 / 30

3 3 (3)
7 27 / 30

3 261 (239)
7 39 / 300

agg 3 30 (30)
7 0 / 30

3 30 (29)
7 0 / 30

3 14 (13)
7 16 / 30

3 3 (3)
7 27 / 30

3 269 (239)
7 31 / 300

cocov 3 30 (30)
7 0 / 30

3 30 (29)
7 0 / 30

3 14 (13)
7 16 / 30

3 3 (3)
7 27 / 30

3 272 (239)
7 28 / 300

dicov 3 30 (30)
7 0 / 30

3 30 (29)
7 0 / 30

3 19 (13)
7 11 / 30

3 10 (3)
7 20 / 30

3 290 (239)
7 10 / 300

t-test 0.20

strict 3 24 (24)
7 6 / 30

3 13 (13)
7 17 / 30

3 2 (2)
7 28 / 30

3 1 (1)
7 29 / 30

3 75 (74)
7 225 / 300

agg 3 24 (24)
7 6 / 30

3 13 (13)
7 17 / 30

3 2 (2)
7 28 / 30

3 1 (1)
7 29 / 30

3 75 (74)
7 225 / 300

cocov 3 24 (24)
7 6 / 30

3 14 (13)
7 16 / 30

3 2 (2)
7 28 / 30

3 1 (1)
7 29 / 30

3 92 (74)
7 208 / 300

dicov 3 29 (24)
7 1 / 30

3 18 (13)
7 12 / 30

3 15 (2)
7 15 / 30

3 10 (1)
7 20 / 30

3 203 (74)
7 97 / 300

t-test 0.50

strict 3 29 (29)
7 1 / 30

3 29 (29)
7 1 / 30

3 4 (4)
7 26 / 30

3 2 (2)
7 28 / 30

3 162 (162)
7 138 / 300

agg 3 29 (29)
7 1 / 30

3 29 (29)
7 1 / 30

3 4 (4)
7 26 / 30

3 2 (2)
7 28 / 30

3 162 (162)
7 138 / 300

cocov 3 29 (29)
7 1 / 30

3 29 (29)
7 1 / 30

3 4 (4)
7 26 / 30

3 2 (2)
7 28 / 30

3 169 (162)
7 131 / 300

dicov 3 30 (29)
7 0 / 30

3 29 (29)
7 1 / 30

3 17 (4)
7 13 / 30

3 10 (2)
7 20 / 30

3 237 (162)
7 63 / 300

t-test 0.80

strict 3 30 (30)
7 0 / 30

3 30 (30)
7 0 / 30

3 4 (4)
7 26 / 30

3 2 (2)
7 28 / 30

3 183 (183)
7 117 / 300

agg 3 30 (30)
7 0 / 30

3 30 (30)
7 0 / 30

3 4 (4)
7 26 / 30

3 2 (2)
7 28 / 30

3 183 (183)
7 117 / 300

cocov 3 30 (30)
7 0 / 30

3 30 (30)
7 0 / 30

3 4 (4)
7 26 / 30

3 2 (2)
7 28 / 30

3 188 (183)
7 112 / 300

dicov 3 30 (30)
7 0 / 30

3 30 (30)
7 0 / 30

3 17 (4)
7 13 / 30

3 10 (2)
7 20 / 30

3 250 (183)
7 50 / 300

t-test 1.20

strict 3 30 (30)
7 0 / 30

3 30 (30)
7 0 / 30

3 4 (4)
7 26 / 30

3 2 (2)
7 28 / 30

3 204 (204)
7 96 / 300

agg 3 30 (30)
7 0 / 30

3 30 (30)
7 0 / 30

3 4 (4)
7 26 / 30

3 2 (2)
7 28 / 30

3 204 (204)
7 96 / 300

cocov 3 30 (30)
7 0 / 30

3 30 (30)
7 0 / 30

3 4 (4)
7 26 / 30

3 2 (2)
7 28 / 30

3 207 (204)
7 93 / 300

dicov 3 30 (30)
7 0 / 30

3 30 (30)
7 0 / 30

3 17 (4)
7 13 / 30

3 10 (2)
7 20 / 30

3 262 (204)
7 38 / 300

Table 3 Summary of the number of injected mutations or commits considered (–), labeled
as breaking (7) or passing (3). The total number is reported after the symbol ”/”.

the test filtering step (meaning that for this change/commit, the test filter
discarded all the tests because the energy measurement was too similar). On
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the second row, the symbol 7 is followed by the number of changes labeled as
breaking. Then, the symbol / is followed by the total number of changes for
the given combination of test filter and decision oracle.

We start by focusing on the results for the zero mutants (second and third
columns), as it will enable us to identify configurations that are too sensitive.
Indeed, any zero mutant that is identified as breaking is a false positive. Any
configuration labeling a zero mutant as breaking is likely too sensitive in prac-
tice. It turns out that it is the case for the following test filters: all, t-test 0.20,
and, to a lesser extent, t-test 0.50 (that only yields one false positive). Interest-
ingly, even by changing the decision oracles, these configurations consistently
label at least one zero mutant as breaking.

Then, we focus on the max mutants for the remaining configurations (fourth
and fifth columns), as we expect all these mutants to be labeled as breaking.
Any max mutant labeled as passing can be considered a false negative. How-
ever, as we do not have a ground truth workload, we cannot ensure that it
impacts energy consumption meaningfully. Interestingly, when considering the
strict, agg or cocov decision oracles, the results are identical for t-test 0.80 and
t-test 1.20 filters. In this controlled experiment, these combinations seem to be
the best-performing ones, reporting no false positives and only 6 false nega-
tives. The dicov decision oracle appears as less sensitive than the others since
it augments the number of false positives for t-test 0.80 and t-test 1.20. Finally,
the empty-intersection test filter is clearly the least sensitive since it yields
many more false negatives, especially for the low mutants. In combination
with the least sensitive decision oracle (dicov), empty-intersection yields more
about 63% false negatives.

The results for our selected commits (last column) confirm the trend we
observed on the mutants. Our very sensitive decision oracles (all, t-test 0.20
and t-test 0.50) label the majority of commits as breaking (unless used with
the dicov decision oracle). In practice, these configurations would probably
raise too many alerts making them very tedious to use. The t-test 0.80 and
t-test 1.20 that yielded identical results for the mutants exhibit differences on
the selected commits. As expected, the t-test 1.20 filter is less sensitive than
the t-test 0.80 filter. Finally, the empty-intersection remains the least sensitive
one. Even using the very sensitive all decision oracle, it labels only 39 commits
out of 300 as breaking. Using the least sensitive dicov decision oracle, it labels
only 10 commits out of 300 as breaking.
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Answer to RQ2: According to our experimental results, we observe that
our test filters and commit decision strategies allow us to define configu-
rations that range from very sensitive (very prone to classify commit as
breaking) to conservative (rarely classifying commits as breaking). The
all, t-test 0.20, and t-test 0.50 seem too sensitive as, whatever the deci-
sion oracles, they yield at least one false positive on the zero mutants.
As expected, the t-test 0.80 and t-test 1.20 are less sensitive and yield the
fewest false negatives on the max mutants when used with the strict, agg
or cocov decision oracles. However, they label as breaking from half to
one-third of the selected commits (unless used with the dicov decision
oracle). In practice, they would therefore yield a high number of alerts.
The most conservative configuration is achieved using empty-intersection
filter and dicov oracle, which labels as breaking only 10 out of the 300
selected commits.

5.3 Manual Assessment

In this section, we manually analyze an arbitrary sample of commits classi-
fied as “breaking‘ or passing by the different configurations explored in our
experiments.

5.3.1 JSoup

Breaking Commit. Listing 1 shows the diff introduced by commit cc2363e.7

In this commit, a loop that looks up to parents in a hierarchy of elements
is refactored. To look up the parents, the implementation now uses a while

loop that calls to parent() at each iteration instead of relying on an object
of type Elements, which is a subtype of ArrayList) that is precomputed by
a parents() method (inserted code starting on Line 22). It is not obvious to
explain why there would be an increase in energy consumption in this case, as
using the while loop should avoid the creation of an ArrayList. This could
be the occurence of a false positive yielded by our approach.

Passing Commit. Listing 2 shows the diff introduced by commit 011e83f.8

In this commit, a boolean expression is updated, and the new version uses a
comparison to a variable instead of a constant (cf. Line 6). This commit is
probably a bug fix, as the previous version seemed to assume that the last
iteration covers a pos equals 0. This is only a tiny modification that does not
involve any memory allocation. Therefore, there is no evidence to support a
potential energy regression, explaining why the commit is classified as passing.

7 https://github.com/jhy/jsoup/commit/cc2363e
8 https://github.com/jhy/jsoup/commit/011e83f

https://github.com/jhy/jsoup/commit/cc2363e
https://github.com/jhy/jsoup/commit/011e83f
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1 −−− s r c /main/ java / org / jsoup /nodes /Element . java
2 +++ sr c /main/ java / org / jsoup /nodes /Element . java
3 @@ −258,7 +258,7 @@
4 re turn a t t r i b u t e s ( ) . datase t ( ) ;
5 }
6

7 − @Override
8 + @Override @Nullable
9 pub l i c f i n a l Element parent ( ) {

10 re turn ( Element ) parentNode ;
11 }
12 −−− s r c /main/ java / org / jsoup / par s e r /HtmlTreeBuilder . java
13 +++ sr c /main/ java / org / jsoup / par s e r /HtmlTreeBuilder . java
14 @@ −138,13 +138,13 @@
15

16 // setup form element to nea r e s t form on context (up
ance s to r chain ) . ensure s form con t r o l s are a s s o c i a t ed

17 // with form c o r r e c t l y
18 − Elements contextChain = context . parents ( ) ;
19 − contextChain . add (0 , context ) ;
20 − f o r ( Element parent : contextChain ) {
21 − i f ( parent i n s t an c e o f FormElement ) {
22 − formElement = (FormElement ) parent ;
23 + Element formSearch = context ;
24 + whi le ( formSearch != nu l l ) {
25 + i f ( formSearch i n s t an c e o f FormElement ) {
26 + formElement = (FormElement ) formSearch ;
27 break ;
28 }
29 + formSearch = formSearch . parent ( ) ;
30 }
31 }

Listing 1 Diff of the selected breaking commit for jsoup.

1 −−− s r c /main/ java / org / jsoup / par s e r /HtmlTreeBuilder . java
2 +++ sr c /main/ java / org / jsoup / par s e r /HtmlTreeBuilder . java
3 LOOP: f o r ( i n t pos = bottom ; pos >= upper ; pos−−) {
4 Element node = stack . get ( pos ) ;
5 − i f ( pos == 0) {
6 + i f ( pos == upper ) {
7 l a s t = true ;
8 i f ( f ragmentPars ing )
9 node = contextElement ;

Listing 2 Diff of the selected passing commit for jsoup.

5.3.2 mustache.java

Breaking Commit. Listing 3 shows the diff introduced by commit 909fc58.9

This commit modifies a method that appends a string, stored in the appended

attribute) to a writer supplied as a parameter. After the commit, the appended
attribute is cached into an array of chars inside the introduced appendedChars

attribute, which is supplied to the Writer, avoiding the mandatory conversion
from String to char[] that is made by the writer inside the standard library
code. According to the commit message (no reason to keep converting this

9 https://github.com/spullara/mustache.java/commit/909fc58

https://github.com/spullara/mustache.java/commit/909fc58
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1 −−− s r c /main/ java /com/github /mustachejava/ codes /DefaultCode . java
2 +++ sr c /main/ java /com/github /mustachejava/ codes /DefaultCode . java
3 @@ −192,10 +192,16 @@
4 wr i t e r . wr i t e ( tc . endChars ( ) ) ;
5 }
6

7 + pr iva t e char [ ] appendedChars ;
8 +
9 protec ted Writer appendText (Writer wr i t e r ) {

10 i f ( appended != nu l l ) {
11 t ry {
12 − wr i t e r . wr i t e ( appended ) ;
13 + // Avoid a l l o c a t i o n s at runtime
14 + i f ( appendedChars == nu l l ) {
15 + appendedChars = appended . toCharArray ( ) ;
16 + }
17 + wr i t e r . wr i t e ( appendedChars ) ;
18 } catch ( IOException e ) {
19 throw new MustacheException ( e ) ;
20 }

Listing 3 Diff of the selected breaking commit for mustache.java.

string), we conjecture this is a commit aiming to improve performance. With
the test’s workload, this expected performance improvement increases energy
consumption, as the overhead of the new attribute might not outweigh the gain
of using the cache. However, with a realistic production workload, the result
could be different. This case demonstrates the usefulness of performing regular
energy regression testing, as some expected optimizations can be detrimental
in practice.

Passing Commit. Listing 4 shows the diff introduced by commit f7a0c86.10

This commit adds a check before executing the body of a method. According to
the comment, this check prevents executing code for a particular combination
of input parameters. Typically, under a production workload, one would expect
to detect a slight energy regression due to the additional check. However, with
a test workload, the edge case path may also be exercised, resulting in a stable
or energy regression, thanks to the early return in this case.

5.3.3 commons-io

Breaking Commit. Listing 5 shows the diff introduced by commit f281d13.11

In this commit, an ad-hoc implementation to read a file as an array of bytes
is replaced by a call to a standard library’s method introduced in JDK 11.
Additionally, a null-check on the method’s input parameter is introduced via
a call to requireNonNull. The observed regression in energy consumption
seems legit for two reasons: first, the requireNonNull call increases the energy
consumption as the developer added this null-check. Second, we conjecture

10 https://github.com/spullara/mustache.java/commit/f7a0c86
11 https://github.com/apache/commons-io/commit/f281d13

https://github.com/spullara/mustache.java/commit/f7a0c86
https://github.com/apache/commons-io/commit/f281d13
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1 −−− s r c /m/ j /c/g/mustachejava/ r e f l e c t /BaseObjectHandler . java
2 +++ sr c /m/ j /c/g/mustachejava/ r e f l e c t /BaseObjectHandler . java
3 @@ −144,6 +144,9 @@
4 }
5

6 protec ted Acce s s ib l eObjec t findMember ( Class sClass , S t r ing name) {
7 + // under java11 i t would return a wrapper we don ’ t want
8 + i f ( S t r ing . c l a s s == sClas s && \” value \” . equa l s (name) ) {
9 + return nu l l ;

10 + }
11 Acces s ib l eObjec t ao ;
12 t ry {
13 ao = getMethod ( sClass , name) ;

Listing 4 Diff of the selected passing commit for mustache.java.

1 −−− s r c /main/ java / org /apache/commons/ i o / F i l eU t i l s . java
2 +++ sr c /main/ java / org /apache/commons/ i o / F i l eU t i l s . java
3 @@ −2608,11 +2608,8 @@
4 pub l i c s t a t i c byte [ ] readFileToByteArray ( f i n a l F i l e f i l e ) throws

IOException {
5 − t ry ( InputStream inputStream = openInputStream ( f i l e ) ) {
6 − f i n a l long f i l eL eng th = f i l e . l ength ( ) ;
7 −

// f i l e . l ength ( ) may return 0 f o r system−dependent e n t i t i e s ,
8 − t r e a t 0 as unknown length − s ee IO−453
9 − re turn f i l eL eng th > 0 ?

10 − IOUt i l s . toByteArray ( inputStream , f i l eL eng th ) :
11 − IOUt i l s . toByteArray ( inputStream ) ;
12 − }
13 + Objects . requireNonNul l ( f i l e , \” f i l e \”) ;
14 + return F i l e s . readAl lBytes ( f i l e . toPath ( ) ) ;
15 }

Listing 5 Diff of the selected breaking commit for commons-io.

that using a standard library’s method instead of an ad-hoc implementation
might increase energy consumption, as such methods usually cover all possible
edge cases.

Passing Commit. For commons-io, only one commit has been labelled as pass-
ing, which is the same as the analyzed breaking one, but obtained with a
different configuration. This highlights that configuring the sensitivity of the
approach is very important.

5.3.4 GSON

Breaking Commit. Listing 6 shows the diff introduced by commit d9cc7bc. 12

In this commit, a copy of a list is introduced to avoid working directly on the
original list (cf. Line 10). In that case, we can effectively guess that copying
an array consumes more energy than not doing it, hence explaining the energy
regression.

12 https://github.com/google/gson/commit/d9cc7bc

https://github.com/google/gson/commit/d9cc7bc
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1 −−− s r c /main/ java /com/ goog le /gson/GsonBuilder . java
2 +++ sr c /main/ java /com/ goog le /gson/GsonBuilder . java
3 @@ −562,8 +562,11 @@
4 List<TypeAdapterFactory> f a c t o r i e s = new ArrayList<

TypeAdapterFactory>( t h i s . f a c t o r i e s . s i z e ( ) + th i s .
h i e r a r chyFac t o r i e s . s i z e ( ) + 3) ;

5 f a c t o r i e s . addAll ( t h i s . f a c t o r i e s ) ;
6 Co l l e c t i o n s . r e v e r s e ( f a c t o r i e s ) ;
7 − Co l l e c t i o n s . r e v e r s e ( t h i s . h i e r a r chyFac t o r i e s ) ;
8 − f a c t o r i e s . addAll ( t h i s . h i e r a r chyFac t o r i e s ) ;
9 +

10 + List<TypeAdapterFactory> h i e r a r chyFac t o r i e s =
11 + new ArrayList<TypeAdapterFactory>( t h i s . h i e r a r chyFac t o r i e s ) ;
12 + Co l l e c t i o n s . r e v e r s e ( h i e r a r chyFac t o r i e s ) ;
13 + f a c t o r i e s . addAll ( h i e r a r chyFac t o r i e s ) ;
14 +
15 addTypeAdaptersForDate ( datePattern , dateSty le , t imeStyle ,

f a c t o r i e s ) ;

Listing 6 Diff of the selected breaking commit for GSON.

1 −−− s r c /main/ java /com/ goog le /gson/ stream/JsonReader . java
2 +++ sr c /main/ java /com/ goog le /gson/ stream/JsonReader . java
3 @@ −1006,13 +1006,12 @@
4 } e l s e i f ( c == ’\\\\ ’ ) {
5 pos = p ;
6 i n t l en = p − s t a r t − 1 ;
7 − char escapeChar = readEscapeCharacter ( ) ;
8 i f ( bu i l d e r == nu l l ) {
9 − i n t est imatedLength = ( l en + pos − p) ∗ 2 ;

10 + in t est imatedLength = ( l en + 1) ∗ 2 ;
11 bu i l d e r = new St r ingBu i ld e r (Math .max( estimatedLength , 16)

) ;
12 }
13 bu i l d e r . append ( bu f f e r , s t a r t , l en ) ;
14 − bu i l d e r . append ( escapeChar ) ;
15 + bu i l d e r . append ( readEscapeCharacter ( ) ) ;
16 p = pos ;
17 l = l im i t ;
18 s t a r t = p ;

Listing 7 Diff of the selected passing commit for GSON.

Passing Commit. Listing 7 shows the diff introduced by commit 4644837.13

In this commit, there are two modifications. First, a temporary variable is
deleted, and its access is replaced by a direct call (cf. Lines 7 and 15). Second,
the computation of a value is modified and notably uses fewer variables than
the previous version (cf. Line 10). Therefore, the fact that there is no noticeable
increase in energy consumption is expected, as the new version of the code
allocates and reads fewer variables.

13 https://github.com/google/gson/commit/4644837

https://github.com/google/gson/commit/4644837
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1 −−− s r c /main/ java / org /apache/commons/ lang3 /RegExUtils . java
2 +++ sr c /main/ java / org /apache/commons/ lang3 /RegExUtils . java
3 @@ −256,7 +256,7 @@
4 ∗ @see java . u t i l . regex . Pattern
5 ∗/
6 pub l i c s t a t i c S t r ing r ep l a c eA l l ( f i n a l S t r ing text , f i n a l Pattern

regex , f i n a l S t r ing replacement ) {
7 − i f ( t ex t == nu l l | | regex == nu l l | | replacement == nu l l ) {
8 + i f ( Objec tUt i l s . anyNull ( text , regex , replacement ) ) {
9 re turn text ;

10 }
11 re turn regex . matcher ( t ext ) . r e p l a c eA l l ( replacement ) ;
12 @@ −310,7 +310,7 @@
13 ∗ @see java . u t i l . regex . Pattern#DOTALL
14 ∗/
15 pub l i c s t a t i c S t r ing r ep l a c eA l l ( f i n a l S t r ing text , f i n a l S t r ing

regex , f i n a l S t r ing replacement ) {
16 − i f ( t ex t == nu l l | | regex == nu l l | | replacement == nu l l ) {
17 + i f ( Objec tUt i l s . anyNull ( text , regex , replacement ) ) {
18 re turn text ;
19 }
20 re turn text . r e p l a c eA l l ( regex , replacement ) ;
21 @@ −449,7 +449,7 @@
22 ∗ @see Pattern#DOTALL
23 ∗/
24 pub l i c s t a t i c S t r ing rep lacePat t e rn ( f i n a l S t r ing text , f i n a l

S t r ing regex , f i n a l S t r ing replacement ) {
25 − i f ( t ex t == nu l l | | regex == nu l l | | replacement == nu l l ) {
26 + i f ( Objec tUt i l s . anyNull ( text , regex , replacement ) ) {
27 re turn text ;
28 }
29 re turn Pattern . compile ( regex , Pattern .DOTALL) . matcher ( t ext ) .

r e p l a c eA l l ( replacement ) ;

Listing 8 Diff of the selected breaking commit for commons-lang.

5.3.5 commons-lang

Breaking Commit. Listing 8 shows the diff introduced by commit 615c1da.14

In this commit, the content of three boolean expressions is refactored similarly.
In these expressions, it is ensured that the three parameters supplied to their
containing methods are not null, using the || logical operator. These ad-hoc
expressions are replaced by a call to an equivalent helper method ObjectU-

tils.anyNull(). The implementation of anyNull(Object... values) uses
a variadic parameter. While arguably more readable, it has the overhead of
creating an array to group the parameters supplied to the method, which is
not the case in the replaced ad-hoc expression. This could explain the energy
regression.

Passing Commit. Listing 9 reports on the diff introduced by commit bfbf729.15

In this commit, an ad-hoc expression that computes the size of an array, using
0 in case of a null value, is replaced by a call to an equivalent helper method

14 https://github.com/apache/commons-lang/commit/615c1da
15 https://github.com/apache/commons-lang/commit/bfbf729

https://github.com/apache/commons-lang/commit/615c1da
https://github.com/apache/commons-lang/commit/bfbf729
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1 −−− s r c /main/ java / org /apache/commons/ lang3 / S t r i n gU t i l s . java
2 +++ sr c /main/ java / org /apache/commons/ lang3 / S t r i n gU t i l s . java
3 @@ −6865,10 +6865,7 @@
4 ∗ @since 2 .4
5 ∗/
6 pub l i c s t a t i c S t r ing replaceEachRepeatedly ( f i n a l S t r ing text , f i n a l

S t r ing [ ] s ea r chL i s t , f i n a l S t r ing [ ] r ep lacementL i s t ) {
7 − // timeToLive should be 0 i f not used or nothing to rep lace ,
8 − // e l s e i t ’ s the l ength o f the r ep l a c e array
9 − f i n a l i n t timeToLive = s ea r chL i s t == nu l l ? 0 : s e a r chL i s t . l ength ;

10 re turn replaceEach (
11 − text , s ea r chL i s t , rep lacementList , true , timeToLive
12 + text , s ea r chL i s t , rep lacementList , true ,
13 + ArrayUt i l s . getLength ( s e a r chL i s t )
14 ) ;
15 }

Listing 9 Diff of the selected passing commit for commons-lang.

ArrayUtils.getLenght(Object). This helper method defers part of the com-
putation to the standard library method Array.getLenght(Object) from the
reflect package. The main difference with the original code is that there are
several subtype tests inside the standard library code to prevent supplying a
non-array type and also to consider the possibility of having an array from a
primitive type. These introduced subtype tests could explain the increase in
energy consumption.

5.3.6 xwiki

Breaking Commit. Listing 10 shows the diff introduced by commit 9464cc7.16

In this commit, the chain of calls to create an object of type Reflections

is updated to comply with the upgrade to the new version of the eponymous
library. Since the incriminated code is not inside the project, it is difficult to
explain the observed energy regression, but it highlights the fact that upgrad-
ing dependencies does not necessarily have a neutral effect.

Passing Commit. Listing 11 shows the diff introduced by commit 5f85426.17

The most notable change is the removal of a temporary parameters variable
(cf. Line 4). The expression that was evaluated to give the value of the variable
is now directly passed to the configure() method (cf. Line 15). In this case,
there is no evidence of any additional computation or allocation, therefore the
decision of classifying the commit as passing seems logical.

Manual Analysis: Our manual review of a sample of commits labeled as
breaking and passing indicated that, in most cases, we could understand
the reason behind the decision. However, it also shows that the approach
is likely to be prone to yield false positives or negatives.

16 https://github.com/xwiki/xwiki-commons/commit/9464cc7
17 https://github.com/xwiki/xwiki-commons/commit/5f85426

https://github.com/xwiki/xwiki-commons/commit/9464cc7
https://github.com/xwiki/xwiki-commons/commit/5f85426
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1 −−− s r c /m/ j /o/x/ extens ion / i n t e r n a l /DefaultExtens ionLicenseManager . java
2 +++ sr c /m/ j /o/x/ extens ion / i n t e r n a l /DefaultExtens ionLicenseManager . java
3 @@ −83,8 +83,8 @@
4 Col l e c t i on<URL> l icenseURLs = ClasspathHelper . forPackage (

LICENSE PACKAGE) ;
5

6 Re f l e c t i o n s r e f l e c t i o n s = new Re f l e c t i o n s (new Conf i gura t i onBu i lde r ( )
7 − . s e tScanner s (new ResourcesScanner ( ) ) . s e tUr l s ( l icenseURLs )
8 − . f i l t e r I npu t sBy (
9 − new F i l t e rBu i l d e r . Inc lude ( F i l t e rBu i l d e r . p r e f i x (LICENSE PACKAGE) ) )

10 − ) ;
11 + . se tScanner s ( Scanners . Resources ) . s e tUr l s ( l icenseURLs )
12 + . f i l t e r I npu t sBy (
13 + new F i l t e rBu i l d e r ( ) . inc ludePackage (LICENSE PACKAGE) )
14 + ) ;
15 f o r ( S t r ing l i c e n s e F i l e : r e f l e c t i o n s . getResources ( Pattern . compile

(\” .∗\\\\ . l i c e n s e \”) ) ) {
16 URL l i c e n s eU r l = getCla s s ( ) . getClassLoader ( ) . getResource (

l i c e n s e F i l e ) ;

Listing 10 Diff of the selected breaking commit for xwiki.

1 −−− s r c /main/ java / org / xwiki / job / i n t e r n a l /Defau l tJobStatusStore . java
2 +++ sr c /main/ java / org / xwiki / job / i n t e r n a l /Defau l tJobStatusStore . java
3 @@ −145,14 +144,9 @@
4 − Proper t i e sBu i lde rParameter s parameters = new Parameters ( )
5 − . p r op e r t i e s ( ) ;
6 − i f ( f i l e . e x i s t s ( ) ) {
7 − new Parameters ( ) . p r op e r t i e s ( ) . s e t F i l e ( f i l e ) ;
8 − }
9 −

10 Fi l eBasedConf igurat ionBui lder<Proper t i e sCon f i gura t i on> bu i l d e r =
11 − new Fi l eBasedConf igurat ionBui lder<>(Prope r t i e sCon f i gu ra t i on . c l a s s )
12 − . c on f i gu r e ( parameters ) ;
13 + new Fi l eBasedConf igurat ionBui lder<>(
14 + Prope r t i e sCon f i gu ra t i on . c l a s s , nu l l , t rue
15 + ) . c on f i gu r e (new Parameters ( ) . p r op e r t i e s ( ) . s e t F i l e ( f i l e ) ) ;
16 @@ −160,7 +154,7 @@
17 − bu i l d e r . ge tF i l eHand le r ( ) . save ( f i l e ) ;
18 + bu i l d e r . save ( ) ;
19 }
20 } catch ( Exception e ) {
21 t h i s . l o gg e r . e r r o r (\” Fa i l ed to load jobs \” , e ) ;

Listing 11 Diff of the selected passing commit for xwiki.

6 Deviations & Threats to Validity

In this section, we first report on the deviations from the pre-registered proto-
col [8]. Then, we discuss the main threats to the validity of our study, following
the structure recommended by Wohlin et al. [17].

6.1 Deviations from the Pre-registered Protocol

Quartile Coefficient of Dispersion. The first deviation is that we dropped the
use of the quartile coefficient of dispersion in RQ1, mainly because it was
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redundant with the coefficient of variation since both of them give the same
information, that is to say, the stability of the values.

Fault Localization. In the pre-registered report, we wanted to explore the pos-
sibility of applying fault localization techniques for breaking commits to give
the developers hints about which portion of the modified code would be re-
sponsible for the energy regression. However, we decided to remove this extra
step and associated RQ3 and focus on the measurements, stability, and detec-
tion of energy regressions, as it has proven to be very challenging.

Tool for Energy Consumption Measurements. We developed a new C library
to measure the energy consumption of any process using an API to start and
stop monitoring of code snippets. This library replaced J-Joules and JUnit-
JJoules, which we planned to use initially, which are Java-specific and less
accurate.

Targeted Dataset. We changed the dataset from the one proposed by Our-
nani et al. [2] to the one proposed by Danglot et al. [13]. The main reason
for this change is that performing test selection is difficult as it requires the
projects to be compatible with a specific test framework. Since these projects
had already been used with the test selection implementation in [13], it allowed
us to focus on the key steps of our study. Moreover, the projects from both
datasets are comparable, as they are all popular Java libraries with compre-
hensive test suites.

6.2 Threats to Validity

Construct Validity. An important threat is that developers’ tests might not be
a realistic representation of a classical production workload. It means that the
energy consumption we compute and the decision to label a commit as break-
ing or passing might change with a relevant workload. This problem is even
more apparent for the formulas where we aggregate the test-wise measure-
ments (see Section 5), where the increase of consumption of some tests could
be compensated by the decrease on other tests and go unnoticed (although we
did not find any evidence of such cases in our experiment). Unfortunately, the
projects of our corpus do not have any baseline workload that we could use as
ground truth to assess the importance of this threat. To reduce the importance
of this threat, we selected only software libraries in our corpus, where we con-
jecture that unit tests cover at least some realistic clients’ use cases. A second
mitigation measure is that we proceeded to a manual qualitative analysis of
several commits to put the automated approach’s decisions into perspective.
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Internal Validity. One major threat relates to the stability of the measure-
ments. It is well-known that energy measurements captured by power meters,
like RAPL, are unstable. Therefore, there is a threat that an energy measure-
ment is not representative of the true energy consumption. We followed the
guidelines proposed by Ourmani et al. [5] to reduce the noise introduced by
external events.

Another threat is that we developed a complex experimentation code, as
well as two software libraries, Diff-test-selection and TLPC-sensor, to perform
our experiments. We cannot guarantee that all these programs are bug-free
and, therefore, some measurements might turn out to be incorrect. We unit-
tested these programs to reduce this threat. As a complement, we also made
our source code freely available for scrutiny.

External Validity. Our study uses a small corpus of Java libraries with a high-
coverage test suite (at least 80% code coverage). Therefore, we cannot guar-
antee that the results would be the same on different kinds of projects using
a different programming stack and with test suites with lower coverage.

7 Related Work

Pereira et al. [1] defined a technique called SPectrum-based Energy Leak Lo-
calization (SPELL), which highlights energy hotspots in a program. SPELL
relies on fault localization techniques that collect software entities (methods,
classes, lines, etc.) executed by use cases. They implemented SPELL in Java
and experimented with it on 5 projects to demonstrate that SPELL can iden-
tify energy hotspots. The evaluation showed that SPELL helped the developers
to improve energy consumption.

Mancebo et al. [3] analyzed the relation between maintainability and en-
ergy consumption of different versions of Redmine. They computed the main-
tainability using SonarQube and measured the energy consumption using an
Energy Efficiency Tester (EET) appliance. They concluded that the number
of code lines and the energy consumed is correlated.

Maia et al. [6] proposed the concept of energy debt, which is the amount
of energy a system consumes over time due to energy code smells. In this
work, the authors defined a set of Android energy code smells and developed
E-Debitum, a SonarQube plugin that computes the energy debt between
versions of Android applications. They evaluated their approach on 3 Android
applications and proved that it could be applied to real-world applications by
demonstrating the evolution of their energy debt over time.

Luo et al. [18] proposed a technique called PerfImpact, which recom-
mends inputs and code changes related to performance regressions. To do
this, they combine search-based and change impact analysis. They evaluated
PerfImpact on 2 OSS projects. They showed that PerfImpact can identify
performance issues between 2 versions of a program. PerfImpact is focused
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on determining the specific inputs and the code changes that trigger a perfor-
mance regression in terms of time execution, while, in our study, we leverage
the input provided by developers’ tests to observe if there are energy regres-
sions. Both of our approaches take place in the context of CI and performance
regression, even if our approach is narrowed to energy consumption regression,
which can be seen as a special case of performance regression.

Chen et al. [19] performs an exploratory study on the code changes that
introduce performance regressions. They perform an evaluation on 1, 126 com-
mits from Hadoop, and 135 commits from RxJava. The evaluation reported
243 and 91 commits introducing performance regression in Hadoop and Rx-
Java, respectively. They also identified 6 root causes of performance regressions
introduced by code changes.

Ding et al. [10] study the use of tests in the release pipeline as performance
tests of Hadoop and Cassandra, 2 OSS projects. They show that, for 102 out
of 127 of the performance issues, at least one test can be used to spot a per-
formance improvement. This study reinforces our hypothesis that developers’
tests can be used to detect energy regression, as energy consumption is corre-
lated to the program’s performance.

Hindle et al. [20] devise GreenMiner. GreenMiner is a dedicated hard-
ware/software mining software repositories test harness. GreenMiner has
been created to study relationships between code changes and power consump-
tion. The main difference is that GreenMiner uses physical measurements
and works only for Android applications, while we use RAPL to measure en-
ergy consumption, an approach that could be applied to any software.

Hindle [21] presents Green mining. Green mining attempts to estimate
empirically the impact of software change on energy consumption to guide de-
velopers in reducing SEC. Green mining also comes with an abstract method-
ology that gives key steps to set up the approach on an application. The author
performs an evaluation on multiple branches of Firefox, on the release history
of Azureus/Vuze, and a study of the effect of multiple versions of the library
libTorrent on the energy consumption of its client application rTorrent. The
key difference between Green mining and our approach is that we try to iden-
tify the impact on energy consumption of code changes, while Green mining
operates at a more coarse-grained level.

Chowdhury et al. [22] propose GreenOracle, a model to predict energy
consumption. This model is trained using a large corpus of Android appli-
cations, taking as input their system calls, dynamic traces, CPU utilization,
and GreenMiner data. They collected 984 versions of 24 different Android
applications and estimated energy consumption with less than 10% error.

Romansky et al. [23] propose an approach called Deep Green, to construct
models that use software performance measurements to predict instantaneous
energy consumption based on time series. The authors use GreenMiner to
train models to estimate software energy consumption.

The main difference between our approach and the two last works, GreenO-
racle and Deep Green, is that we detect the energy regression from developer
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tests, while GreenOracle is based on predictions of the energy consumption
of program versions.

8 Conclusion & Future works

In this article, we introduced an approach that leverages developers’ tests to
automatically detect energy regression in CI. We implemented and evaluated
our approach on a dataset of OSS projects. We showed that our approach
could measure energy consumption stably on a ratio of commits ranging from
4% to 40%. We also showed that this approach could be tuned by changing
the test filters or decision oracles, making it possible to adapt its sensitivity to
the context. In addition to this, our approach could effectively detect artificial
energy regressions, and we analyzed manually some of the energy regressions
detected among the real-world commits. The manual analysis could, in most
cases, corroborate the decision made by our approach.

The main limitation of our study, as explained in Section 6.2, is that we miss
a ground-truth workload to assess if the regressions detected by our approach
are relevant or not for an application. However, we hypothesize that it should
be the case on projects where the test suite covers code that is close to the
intended usage.

An important caveat of our approach is that measuring representative en-
ergy consumption is expensive. Therefore, it might turn out that the energy
consumption savings obtained when running the program do not compensate
for the energy consumed by our approach, depending on the context. Another
caveat is that while our approach can detect a major regression between two
successive versions, it might not be robust to several minor successive regres-
sions.

Regarding future works, we first plan to extend our approach with the use
of fault localization techniques [24], as it was initially planned [8]. It would
assist developers in pinpointing the most suspicious lines of code causing an
energy regression, hence better guiding the analysis of breaking commits.

A notable pain point of our approach is that it requires executing the
whole test suite on both versions: before and after the commit and computing
the code coverage for each test in both versions. This introduces a significant
overhead. We plan to leverage regression test selection techniques [25] to avoid
launching all tests on the second version.
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Data Availability Statements

Our implementation is available as an Open-source Software repository on
GitHub: https://github.com/davidson-consulting/diff-jjoules. The data
produced by our experiments are available on Zenodo https://doi.org/

10.5281/zenodo.6528916. Scripts to perform the experiments and generate
graph are available on GitHub: https://github.com/davidson-consulting/
diff-jjoules-experiment.
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