Engineering 2D material exciton lineshape with graphene/h-BN encapsulation - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Engineering 2D material exciton lineshape with graphene/h-BN encapsulation

Steffi Y. Woo
  • Fonction : Auteur
Fuhui Shao
  • Fonction : Auteur
Ashish Arora
  • Fonction : Auteur
Robert Schneider
  • Fonction : Auteur
Nianjheng Wu
  • Fonction : Auteur
Andrew J. Mayne
Ching-Hwa Ho
  • Fonction : Auteur
Mauro Och
  • Fonction : Auteur
Cecilia Mattevi
  • Fonction : Auteur
Alvaro Moreno
  • Fonction : Auteur
Hanan Herzig Sheinfux
  • Fonction : Auteur
Kenji Watanabe
  • Fonction : Auteur
Takashi Taniguchi
  • Fonction : Auteur
Frank H. L. Koppens
  • Fonction : Auteur
Zhichuan Niu
  • Fonction : Auteur
Odile Stéphan
  • Fonction : Auteur
Mathieu Kociak
  • Fonction : Auteur
F. Javier García de Abajo
  • Fonction : Auteur
Rudolf Bratschitsch
  • Fonction : Auteur
Andrea Konečná
  • Fonction : Auteur
Luiz H. G. Tizei
  • Fonction : Auteur

Résumé

Control over the optical properties of atomically thin two-dimensional (2D) layers, including those of transition metal dichalcogenides (TMDs), is needed for future optoelectronic applications. Remarkable advances have been achieved through alloying, chemical and electrical doping, and applied strain. However, the integration of TMDs with other 2D materials in van der Waals heterostructures (vdWHs) to tailor novel functionalities remains largely unexplored. Here, the near-field coupling between TMDs and graphene/graphite is used to engineer the exciton lineshape and charge state. Fano-like asymmetric spectral features are produced in WS$_{2}$, MoSe$_{2}$ and WSe$_{2}$ vdWHs combined with graphene, graphite, or jointly with hexagonal boron nitride (h-BN) as supporting or encapsulating layers. Furthermore, trion emission is suppressed in h-BN encapsulated WSe$_{2}$/graphene with a neutral exciton redshift (44 meV) and binding energy reduction (30 meV). The response of these systems to electron-beam and light probes is well-described in terms of 2D optical conductivities of the involved materials. Beyond fundamental insights into the interaction of TMD excitons with structured environments, this study opens an unexplored avenue toward shaping the spectral profile of narrow optical modes for application in nanophotonic devices.

Dates et versions

hal-04286468 , version 1 (15-11-2023)

Identifiants

Citer

Steffi Y. Woo, Fuhui Shao, Ashish Arora, Robert Schneider, Nianjheng Wu, et al.. Engineering 2D material exciton lineshape with graphene/h-BN encapsulation. 2023. ⟨hal-04286468⟩
8 Consultations
0 Téléchargements

Altmetric

Partager

More