A complex-scaled boundary integral equation for time-harmonic water waves - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Applied Mathematics Année : 2023

A complex-scaled boundary integral equation for time-harmonic water waves

Résumé

This paper presents a novel boundary integral equation (BIE) formulation for the two-dimensional time-harmonic water-waves problem. It utilizes a complex-scaled Laplace's free-space Green's function, resulting in a BIE posed on the infinite boundaries of the domain. The perfectly matched layer (PML) coordinate stretching that is used to render propagating waves exponentially decaying, allows for the effective truncation and discretization of the BIE unbounded domain. We show through a variety of numerical examples that, despite the logarithmic growth of the complex-scaled Laplace's free-space Green's function, the truncation errors are exponentially small with respect to the truncation length. Our formulation uses only simple function evaluations (e.g. complex logarithms and square roots), hence avoiding the need to compute the involved water-wave Green's function. Finally, we show that the proposed approach can also be used to find complex resonances through a \emph{linear} eigenvalue problem since the Green's function is frequency-independent.
Fichier principal
Vignette du fichier
2310.04127.pdf (1.16 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence
Domaine public

Dates et versions

hal-04286461 , version 1 (15-11-2023)

Licence

Domaine public

Identifiants

Citer

Anne-Sophie Bonnet-Ben Dhia, Luiz Faria, Carlos Pérez‐Arancibia. A complex-scaled boundary integral equation for time-harmonic water waves. SIAM Journal on Applied Mathematics, 2023, 84 (4), pp.1532-1556. ⟨10.48550/arXiv.2310.04127⟩. ⟨hal-04286461⟩
66 Consultations
45 Téléchargements

Altmetric

Partager

More