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1 Introduction

The Ising and Q-state Potts models have a long history [1]. Let us denote by s⃗x the state
variable, allowed to take Q different values. The energy of the Potts-model on a graph
G = (V, E) with vertices V and edges E is defined by

HPotts
Q [s⃗; h⃗] = −

∑
(x,y)∈E

Jδs⃗x,s⃗y −
∑
x∈V

h⃗xs⃗x, (1.1)
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Figure 1. The various critical dimensions present in the Potts model, as explained in the main text.
The yellow shaded region marked as “first order” is the area without a real critical CFT. The upper
boundary is obtained via NPRG/Wilson. The left upper branch for Q < Qc and d > 4 is numerically
very robust. The upper right branch for Q > Qc and d > 4 is delicate, and may change (probably
further reduce) in higher orders. The lower bound has been studied in the literature; here we use the
polynomial fit from eq. (1.3), with two additional powers added, adjusted such that Qc(d = 6) = 10/3
and Qc(d = 4) = 4. Points on the boundary are critical. The point Q = 5 in d = 2 has complex
couplings. The domain denoted as “imaginary CFT” (in pink) represents a critical theory if all
couplings are real after rotation of ϕ→ iϕ, i.e. odd couplings purely imaginary, and even couplings
real. For Q → ∞, perturbatively it gives Q decoupled Lee-Yang theories (see section 5.3.2 for a
caveat). If one starts with real couplings, as in a simulation, this region is first order.

where the first term is −J if s⃗x and s⃗y are in the same state and zero otherwise. The last
term evaluates to hα if the spin is in state α. The Ising model is the special case with Q = 2.
While the Potts model is originally defined for integer Q, it can be extended to any Q ∈ C
via the Fortuin-Kasteleyn cluster expansion [2], see section 3. A natural question to ask
is whether these two expansions lead to the same field theory. While for the spin degrees
of freedom, the latter was derived in the classical work by Golner [3], Zia and Wallace [4],
Amit [5], and Priest and Lubensky [6, 7], a field theory for the cluster expansion is lacking.
This comes with the pressing question of whether the leading non-Gaussian term is cubic
as in [5–8], or quartic as in [4]. This is relevant as the upper critical dimension is six for
a cubic interaction, and four for a quartic one.

On figure 1 we show critical values of Qc(d) beyond which the critical point disappears,
or equivalently dc(Q) beyond which this happens: values found in the literature, are dc(Q =
1) = 6 for percolation [5–7, 9], dc(Q = 2) = 4 for the Ising model [10], dc(Q = 3) ≈ 2.5
from the numerical conformal bootstrap [11], and dc(Q = 4) = 2 [12, 13]. The situation
in d = 3 seems debated, with values for the critical value of Q ranging from 2.2 to 2.6:
Qc ≈ 2.2 via an Ornstein-Zernicke approximation [14], Qc = 2.35(5) via MC [13], Qc = 2.2
via real-space RG [15], Qc = 2.11(7) via NPRG [16], Qc = 2.1 as well as Qc = 2.45(1) [17]
and Qc = 2.620(5) [18], both via MC. The most precise value seems to be from ref. [13].
In d = 2 the critical value is Qc(d = 2) = 4 [19–21].

– 2 –
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The green dashed curve is our result derived in section 4.7,

dc = 6− 729
1480(Q−Qc)2 +O(Q−Qc)3. (1.2)

In blue dot-dashed is shown the result in the LPA′-approximation of the NPRG [22, 23], used
for Potts in [16, 24]. In this scheme, we find in agreement with [16]

Qc − 2 ≈ 0.10(4− d)2 +O(4− d)3. (1.3)

There is an older estimation [25], obtained via the numerical solution of eleven coupled RG
equations in the Wilson scheme, which reads

Qc − 2 ≈ 0.153(4− d)2 +O(4− d)3. (1.4)

We could not reproduce this result, see section 5. Finally, refs. [25, 26] state that Qc = 2 for
d > 4. This is incompatible with the expansion (1.2). On the other hand, both expansions
make sense if we use eq. (1.4) or (1.3) also in dimension d > 4: as a glance at figure 1 shows,
the expansions in eqs. (1.2) and (1.4) or (1.2) and (1.3) are compatible, and taken together
allow for a rather precise delimination of the critical region for d > 4 and Q ≤ 10/3. This
can be obtained within various non-perturbative renormalization schemes (see section 5). For
Q > 10/3 and d→ 6 a region (pink in figure 1) appears with a purely imaginary coupling.
As we discuss in section 4.7, this may be an artifact of the expansion. If we start with real
couplings, the yellow first-order region covers this region as well.

In the argumentation above we equated an RG flow to strong coupling with a first-order
transition, as is implicitly (i.e. without proof) commonly done in the literature. We cannot
exclude that the flow which apparently goes to strong coupling is towards a critical fixed point
not accessible in any of our schemes. In this scenario, the boundary of the critical regime
remains unchanged, but the interior of the “first-order” region may become second-order,
or split in a first-order and a second-order regime.

To complement our introduction, let us mention field-theory results for the cubic [8, 27–
29], quartic [27] and quintic theories [30], which each are consistent below their respective
upper critical dimensions, and which we expect to be (higher critical) conformal field theories
(CFT). Expansions as in eqs. (1.4) or (1.3) also appear in [31].

In this work, we first derive the exact field-theoretical action in the spin formulation
(section 2), followed by the exact action of the cluster expansion (section 3). By exact we
mean that on an arbitrary graph the field theory produces the partition function and all
correlation functions, without any approximation.

When evaluating these exact actions for regular lattices, e.g. the cubic lattice in d

dimensions, and taking a continuum limit, the action expanded in the fields contains an
infinity of interactions. In order to set up an efficient RG scheme, we follow the standard
procedure to retain solely the most relevant terms. The result of this procedure is different in
the spin and cluster expansions: in the cluster expansion, the leading interaction is cubic for
all Q, leading to dcluster

c (Q) = 6. In the spin formulation, the Ising model is special, since its
symmetry under a reversal of the field (the magnetization) excludes a cubic vertex, leading
to an upper critical dimension dspin

c (Q = 2) = 4. This suggests that for the Ising model

– 3 –
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spin-correlation functions are given by mean-field theory in dimensions between four and six.
However, the probability that three sites are in the same cluster is given by the non-trivial
cubic theory. The latter predicts to leading order in 6 − d that

C := P(x, y, z)√
P(x, y)P(y, z),P(z, x)

=
√
6− d+O(6− d)3/2, (1.5)

where P(x, y, z) is the probability that x, y, and z are in the same cluster, and likewise
for the terms in the denominator. While the functional form of P(x, y, z) is imposed by
global conformal invariance [32] as written, the amplitude is non-trivial, and measurable in a
numerical simulation. We report below in eq. (4.33) a similar result for other values of Q.

The article is organized as follows: in section 2, we derive the field theory for the spin
expansion, followed by the field theory for the cluster expansion in section 3. Section 4 treats
the ensuing field theories perturbatively, and calculates the structure constant. In section 5
we treat the Q-state Potts model via the non-perturbative renormalization group, which
allows us to draw the phase diagram in the whole (Q, d) plane. In section 6 we conclude.
Some technical details on the Potts algebra are relegated to appendix A.

2 Spin expansion

We start with a reminder or the spin expansion for the Potts model. Consider the Q-state
Potts model. Following [3, 4], we represent each state α = 1, . . . , Q as a vector1

s⃗x ∈ {e⃗1, . . . , e⃗Q},

of length
√
1− 1

Q , and a scalar-product of −1/Q between distinct vectors,

∑
α

e⃗α = 0 (2.1)

e⃗α · e⃗β :=
∑
i

eiαe
i
β = δαβ −

1
Q

(2.2)

ei ◦ ej :=
∑
α

eiαe
j
α = δij . (2.3)

The normalizations are chosen for convenience. As an example, for Q = 2 we have e⃗1 =
−e⃗2 = 1/

√
2, while for Q = 3 the three vectors lie in the plane with an angle of 2π/3 between

them. We refer to appendix A for details on this construction.
The energy of the Potts-model in this spin representation, in the presence of a magnetic

field h⃗x is

H[s⃗; h⃗] = −
∑

(x,y)∈E
Jδs⃗x,s⃗y −

∑
x∈V

h⃗xs⃗x. (2.4)

1While this representation is heuristically appealing, and allows one to coarse-grain spin degrees of freedom,
it may be but one of various distinct possibilities. We will see a systematic procedure for the cluster expansion
in section 3.

– 4 –
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According to eq. (2.2),

s⃗x · s⃗y +
1
Q

=

1 if s⃗x = s⃗y

0 else
. (2.5)

With the help of this identity, eq. (2.4) can be rewritten as

H[s⃗; h⃗] = −
∑

(x,y)∈E
J

[
s⃗x · s⃗y +

1
Q

]
−
∑
x∈V

h⃗xs⃗x

= J

2
∑

(x,y)∈E

{
[s⃗x − s⃗y]2 − 2

}
−
∑
x∈V

h⃗xs⃗x. (2.6)

To obtain the effective action, we follow the standard procedure [33]: introduce an auxiliary
field to decouple the interaction, sum over the spins, and finally perform a Legendre transform
w.r.t. the auxiliary field. We start with

Z [⃗h] ≡ e−W [⃗h] =
〈
e−

1
2
∑

x,y∈V s⃗xKxy s⃗y+
∑

x∈V h⃗xs⃗x

〉
s⃗
. (2.7)

As s⃗2
x = 1− 1

Q , the matrix element Kxx can be chosen to our liking, allowing us to ensure
that the inverse kerne K−1

xy exists. The double sum over x, y runs over all vertices, x ∈ V
and y ∈ V , but Kxy = 0 if (x, y) ̸∈ E . To reduce clutter, we drop the notation that x, y ∈ V
for the remainder of this section.

We now decouple the interaction,

e−W [⃗h] =
〈
e−

1
2
∑

x,y
s⃗xKxy s⃗y+

∑
x
h⃗xs⃗x

〉
s⃗

= N
∫ ∏

x

dϕx e
1
2
∑

x,y
ϕ⃗xK

−1
xy ϕ⃗y

〈
e
∑

x
(ϕ⃗x+h⃗x)s⃗x

〉⃗
s
. (2.8)

Note that in order for the path integral to converge, ϕ⃗ is chosen imaginary. Summing over
spins yields (for each site x, dropping the index)∑

s⃗∈{e⃗α}
e(ϕ⃗+h⃗)s⃗ = e−V (ϕ⃗+h⃗), (2.9)

V (ϕ⃗) = − ln

 ∞∑
n=0

1
n!

∑
s⃗∈{e⃗α}

(s⃗ · ϕ⃗)n
 = − ln

 ∞∑
n=0

1
n!

Q∑
α=1

(ϕα)n
 , (2.10)

where we defined

ϕα :=
∑
i

ϕieiα ≡ ϕ⃗ · e⃗α. (2.11)

By construction
∑
α ϕα = 0. This allows us to write

e−W [⃗h] = N
∫ ∏

x

dϕxe
1
2
∑

x,y
ϕ⃗xK

−1
xy ϕ⃗ye−V

(
ϕ⃗x+h⃗x

)
= N

∫ ∏
x

dϕxe
1
2
∑

x,y
[ϕ⃗x−h⃗x]K−1

xy [ϕ⃗y−h⃗x]e−V
(
ϕ⃗x

)
= N ′e

1
2
∑

x,y
h⃗xK

−1
xy h⃗y

∫ ∏
x

dψxe
1
2
∑

x,y
ψ⃗xKxyψ⃗y−ψ⃗xh⃗y−

∑
x
V
(∑

y
Kxyψ⃗y

)
. (2.12)

– 5 –
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From the first to the second line we shifted ϕ⃗x → ϕ⃗x − h⃗x, and finally replaced ϕ⃗x by
ψ⃗x :=

∑
yK

−1
xy ϕ⃗y. The change in measure is reflected by a new normalization constant

N ′. The last line is

e−W [⃗h] = N ′e
1
2
∑

x,y
h⃗xK

−1
xy h⃗y

〈
e
∑

x
h⃗xψ⃗x

〉
H

(2.13)

with the action (signs: e−S[ψ])

S[ψ⃗] = −1
2
∑
x,y

ψ⃗xKxyψ⃗y +
∑
x

1
2U(

∑
y

Kxyψ⃗y). (2.14)

We note that V (ϕ⃗ = 0⃗) = 0 and ∇ϕV (ϕ⃗)|
ϕ⃗=0 = 0. We can therefore write

U(ϕ⃗) = λ2ϕ⃗
2 + λ3

∑
α

(ϕα)3 + λ4
∑
α

(ϕα)4 + λ2,2

(∑
α

(ϕα)2
)2

+ . . . (2.15)

We now construct Γ[ϕ⃗], the Legendre transform of W [⃗h]. The result, keeping only the
most relevant terms, is

Γ[ϕ⃗] = 1
2
∑
x,y

∑
α

ϕαx [Kxy + λ2δxy]ϕαy

+ 1
2
∑
x

λ3
∑
α

(ϕαx)3 + λ4
∑
α

(ϕαx)4 + λ2,2

(∑
α

(ϕαx)2
)2

+ . . .


+ loop corrections. (2.16)

3 Fortuin-Kasteleyn cluster expansion

3.1 Basics of the cluster expansion

The Fortuin-Kasteleyn (FK) cluster expansion for the Hamiltonian (2.4) is [2]

Z [⃗h] =
∑
{s⃗x}

eJ
∑

(x,y)∈E δs⃗xs⃗y +
∑

x∈V h⃗xs⃗x

=
∑
{s⃗x}

∏
(x,y)∈E

[
1 + (eJ−1)δs⃗xs⃗y

]
e
∑

x∈V h⃗xs⃗x

=
∑
{s⃗x}

∑
C

∏
(x,y)∈C

(eJ−1)δs⃗xs⃗ye
∑

x∈V h⃗xs⃗x , (3.1)

where C runs over all possibilities to use the term δs⃗xs⃗y , i.e. over all subsets of edges (x, y) ∈ E .
Each cluster C is the disjoint union of connected components Ci,

C = ∪̇iCi. (3.2)

We now interchange the two sums [2],

Z [⃗h] =
∑
C

∑
{s⃗x}

∏
(x,y)∈C

(eJ−1)δs⃗xs⃗ye
∑

x∈V h⃗xs⃗x

=
∑
C
(eJ − 1)|C|

∏
Ci|∪̇iCi=C

∑
s⃗

e
∑

x∈Ci
h⃗xs⃗
. (3.3)

– 6 –
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The state s⃗x = s⃗ is constant on each connected component Ci, and is independent on two
different components. If h⃗x = 0⃗, then

∑
s⃗

e
∑

x∈Ci
h⃗xs⃗ = Q. (3.4)

If h⃗x = (h, 0, . . .) independent of x, then

∑
s⃗

e
∑

x∈Ci
h⃗xs⃗ = Q+ eh|Ci| − 1

≈ Q e
h
Q
|Ci|+ h2(Q−1)

2Q2 |Ci|2+O(h3)
. (3.5)

Thus for h⃗x = (h, 0, . . .) and h small

Z [⃗h] =
∑
C
(eJ − 1)|C|Q||C||e

h
Q
|V | exp

 ∑
Ci|∪̇iCi=C

h2(Q− 1)
2Q2 |Ci|2 +O(h3)

 . (3.6)

where

|C| = number of edges in C (3.7)
||C|| = number of connected components in C (3.8)
|V| = number of vertices in the graph. (3.9)

3.2 Sampling cluster configurations from spin configurations

According to the arguments given above, cluster configurations can be sampled from spin
configurations:

(i) sample a spin configuration with the weight e−HPotts
Q [s⃗;⃗h],

(ii) identify regions of equal spin as a spin domain. We consider a bond between two equal
spins to belong to this spin domain.

(ii) for each such bond inside a spin domain, remove it with probability e−J .

(iv) each spin domain is by this construction decomposed into one, or several, clusters (i.e.
connected components) of the FK expansion.

An important result of this construction is that the clusters of the FK expansion live inside
the spin domains.

3.3 An exact lattice action for the cluster expansion

Let us start from eq. (3.1),

Z [⃗h] =
∑
{s⃗x}

∑
C

∏
(x,y)∈C

(eJ−1)δs⃗x,s⃗ye
∑

x
h⃗xs⃗x , (3.10)

– 7 –
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which we rewrite as

Z [⃗h] =
∑
{s⃗x}

∑
C

∏
x

eh⃗xs⃗x
∏
y

βxyδs⃗x,s⃗y . (3.11)

Here

βxy = βyx =
{
(eJ−1) for (x, y) ∈ C

0 else . (3.12)

We claim that eq. (3.10) is produced by the path integral over all Y α
x and Ỹ α

x , with action
(weight)

e−S =
∏
x

{
e−
∑

α
Ỹ α

x Y
α

x

[∑
α

ehα
x +Y α

x

]}∏
x,y

√
1 +

∑
α

βxyỸ α
x Ỹ

α
y . (3.13)

Proof: the first term in the action is a term
∑
α Ỹ

α
x Y

α
x for each site x. This term is introduced

to have a Gaussian measure on each site, with expectation values

〈
Ỹ α
x Y

β
y

〉
0
= δαβδxy,

〈
Ỹ α
x

〉
0
= ⟨Y α

x ⟩0 =
〈
Ỹ α
x Ỹ

β
y

〉
0
=
〈
Y α
x Y

β
y

〉
0
= 0. (3.14)

The last term gives a factor of 1 +
∑
α βxyỸ

α
x Ỹ

α
y per edge. The square root in eq. (3.13)

corrects for the fact that the product contains both the terms (x, y) and (y, x). Expanding at
x in powers of βxy generates all possible terms in the cluster expansion, and each bond in the
cluster expansion appears with a factor of βxy. (Note that the coupling J on bond (x, y) may
differ from bond to bond, and our derivation remains valid for random-bond models).

The next thing to achieve is to contract the Ỹ α
x fields, for a given term in the cluster

expansion. Due to the rules (3.14), the only available contractions are with the term∑
α eh

α
x +Y α

x . Writing down Ỹ α
x for each factor of βxy, we need to evaluate

∑
α

〈
ehα

x +Y α
x Ỹ β

x Ỹ
γ
x . . . Ỹ

δ
x

〉
=
∑
α

ehα
x δαβδαγ . . . δαδ. (3.15)

Thus whenever the cluster-expansion contains the term βxy, our action forces the Y α and
Ỹ α fields to have the same index α. This gives a factor of

∑
α e
∑

x∈C h
α
x per cluster C. This

completes the proof. For the most interesting case of vanishing magnetic field, h = 0, this
reduces to

∑
α = Q.

3.4 Expansion of the cluster action in the fields

We can expand eq. (3.13) in powers of the field. This will be relevant to access the critical
theory in d = 6− ϵ dimensions. With this in mind, we expand the action up to third order,
putting hαx → 0. We start with the auxiliary formula

∑
α

eY α
x = Q+

∑
α

Y α
x + 1

2
∑
α

(Y α
x )2 + 1

3!
∑
α

(Y α
x )3 + . . . (3.16)
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This implies that the corresponding contribution to the action S from eq. (3.13) reads

− ln
(∑

α

eY α
x

)
= − lnQ− 1

Q

∑
α

Y α
x

+ 1
2

[
1
Q

∑
α

Y α
x

]2

− 1
2Q

∑
α

(Y α
x )2

− 1
3

[
1
Q

∑
α

Y α
x

]3

+ 1
2

[
1
Q

∑
α

(Y α
x )2

] [
1
Q

∑
α

Y α
x

]
− 1

6Q
∑
α

(Y α
x )3 +O(Y 4).

(3.17)

The next contribution to S from eq. (3.13) reads

− ln
∏
y

√
1 +

∑
α

βxyỸ α
x Ỹ

α
y = −1

2
∑
y

∑
α

βxyỸ
α
x Ỹ

α
y + . . .

= 1
4
∑
y

∑
α

βxy

[(
Ỹ α
x − Ỹ α

y

)2
− (Ỹ α

x )2 − (Ỹ α
y )2

]
+ . . .

= 1
4
∑
α

∑
y

βxy
(
Ỹ α
x − Ỹ α

y

)2
− 1

2
(∑

y

βxy
)∑

α

(Ỹ α
x )2 + . . . , (3.18)

where we used that βxy = βyx and this contribution is summed over x. Therefore, up
to a constant,

S[Ỹ , Y ] =
∑
x

{∑
α

Ỹ α
x Y

α
x − 1

Q

∑
α

Y α
x

+1
2

[
1
Q

∑
α

Y α
x

]2

− 1
2Q

∑
α

(Y α
x )2

−1
3

[
1
Q

∑
α

Y α
x

]3

+ 1
2

[
1
Q

∑
α

(Y α
x )2

] [
1
Q

∑
α

Y α
x

]
− 1

6Q
∑
α

(Y α
x )3 +O(Y 4)

+1
4
∑
α

∑
y

βxy
[
Ỹ α
x − Ỹ α

y

]2
− 1

2
[∑

y

βxy
]∑
α

(Ỹ α
x )2 +O(Ỹ )4

}
(3.19)

3.5 Integrating out Ỹ α

Since Ỹ α
x only appears quadratically in the action (3.19), we can integrate it out. (Higher-

order terms have to be dealt with when including terms of order Ỹ 4.) To do so, we take
the saddle point

0 = dS[Ỹ , Y ]
dỸ α

x

= Y α
x −

∑
y

βxy
[
Ỹ α
y − Ỹ α

x

]
−
[∑

y

βxy
]
Ỹ α
x , (3.20)

where again we used βxy = βyx. This can be rewritten as

Y α
x = ∇2

βỸ
α
x +MỸ α

x (3.21)

where
∇2
βỸ

α
x :=

∑
y

βxy
[
Ỹ α
y − Ỹ α

x

]
(3.22)
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is the lattice Laplacian. There is a mass term m2 = M ,

M :=
∑
y

βxy = (eJ − 1)coord, (3.23)

where coord is the coordination number, i.e. the number of nearest neighbors. (The signs
are for J > 0, i.e. ferromagnetic couplings.) Then eq. (3.21) can be inverted,

Ỹ α
x = 1

M +∇2
β

Y α
x ≈

[
1
M

−
∇2
β

M2 + . . .

]
Y α
x . (3.24)

This gives

S[Y ] =
∑
x

{∑
α

1
2M (Y α

x )2 + 1
4M2

∑
α

∑
y

βxy
[
Y α
x − Y α

y

]2
− 1
Q

∑
α

Y α
x

+ 1
2

[
1
Q

∑
α

Y α
x

]2

− 1
2Q

∑
α

(Y α
x )2

− 1
3

[
1
Q

∑
α

Y α
x

]3

+ 1
2

[
1
Q

∑
α

(Y α
x )2

] [
1
Q

∑
α

Y α
x

]
− 1

6Q
∑
α

(Y α
x )3 +O(Y 4)

}
.

(3.25)

Note that the contribution from the determinant in the integration over Ỹ is independent
of Y , thus a constant which can be neglected.

3.6 Decomposition into scalar and traceless parts

The next step is to decompose Yα into irreducible representations of the symmetric group
(which exchanges the flavours of the Potts spin), see e.g. [31, 34, 35],

Y α
x = Φαx + Sx,

∑
α

Φαx = 0. (3.26)

Φα is the vector representation with Young tableau [Q− 1, 1] and dimension Q− 1, while S
is the scalar representation with Young tableau [Q] and dimension 1. Both are irreducible
for Q > 1. This gives for the action

S[S,Φ] =
∑
x

{∑
α

1
2M (Φαx)2 + 1

4M2

∑
α

∑
y

βxy
(
Φαx − Φαy

)2
+ Q

2MS2
x +

Q

4M2

∑
y

βxy
(
Sx − Sy

)2 − Sx

− 1
2Q

∑
α

(Φαx)2 − 1
6Q

∑
α

(Φαx)3 +O(Φ4
α)
}
. (3.27)

Note that the terms non-linear in Sx which come from
∑
α eY

α
x have all canceled. This

property is exact and holds to all orders. It can be traced back to

ln
(∑

α

eY α
x

)
= ln

(∑
α

eΦα
x +Sx

)
≡ ln

(
eSx

∑
α

eΦα
x

)
≡ Sx + ln

(∑
α

eΦα
x

)
. (3.28)
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Thus there are no non-linear terms in Sx from the vertex! The only terms of order larger
than two that may appear are from the quartic term

∑
xy

∑
α(βxyỸ α

x Ỹ
α
y )2 (or higher).

Let us write the action with these simplifications. The mode Sx is massive with squared
mass Q/M (second line of eq. (3.27)), and expectation

⟨Sx⟩ =
M

Q
. (3.29)

However Sx decouples in eq. (3.27). The remaining action for Φαx reads

S[Φ] =
∑
x

{∑
α

( 1
M

− 1
Q

) 1
2(Φ

α
x)2 + 1

4M2

∑
α

∑
y

βxy
(
Φαx −Φαy

)2 − 1
6Q

∑
α

(Φαx)3 +O(Φ4
α)
}
.

(3.30)
This is a cubic field theory, for any value of Q ̸= 0.

The modes Φα have a bare mass

m2
0 =

1
M

− 1
Q

=⇒ Φα is massless in the bare theory for M ≡
∑
y

βxy ≡ (eJ−1)coord=Q.

(3.31)

3.7 Local observables

A key information to know is which cluster site x belongs to. This can be achieved by dropping
the sum at site x. Formally, the operator which tells whether site x is in a cluster of color β is

Oβ
x := eY

β
x∑

α eY
α

x
. (3.32)

The denominator takes out the corresponding term from the action (3.13), and replaces it
by the same term without the sum. As constructed,∑

β

Oβ
x = 1. (3.33)

To access the probability that different sites are in the same cluster, we define its con-
nected part,

Ôβ
x := Oβ

x −
〈
Oβ
x

〉
= Oβ

x − 1
Q
. (3.34)

Expressed in terms of Φα and S, this reads

Ôβ
x =

eS+Φβ
x∑

α eS+Φα
x
− 1
Q

= eΦβ
x∑

α eΦα
x
− 1
Q

= Φβx
Q

+ 1
2Q

[
(Φβx)2− 1

Q

∑
α

(Φαx)2
]
+O(Φαx)3 (3.35)

The probability that n sites x1 . . . xn are in the same cluster is proportional to
〈
Ôβ
x1Ô

β
x2 . . . Ô

β
xn

〉
= 1
Qn

〈
Φβx1Φ

β
x2 . . .Φ

β
xn

〉
+ higher-order terms. (3.36)
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4 Renormalization: 6 − ϵ expansion

The renormalization group for the Q-state Potts model is usually performed in momentum
space. Here we present this standard calculation in position space. The advantage is that
the 3-point function encoding the structure function is then easily evaluated.

4.1 Relevant relations and normalizations

Using the definition of the Γ-function, one first shows that

1
|x|2a

=
∫ ∞

0

sa−1e−sx
2

Γ(a) ds. (4.1)

This allows us to Fourier transform power laws according to

∫
ddx eik⃗x⃗

|x|2a
= πd/2

∣∣∣∣k2
∣∣∣∣2a−d Γ

(
d
2 − a

)
Γ(a) . (4.2)

Eq. (4.2) for a = (d − 2)/2 implies

∫
ddx eik⃗x⃗

|x|d−2 = 1
|k|2

4πd/2

Γ
(
d−2

2

) = Sd(d− 2)
k2 . (4.3)

In order to reduce as much as possible geometric factors, we introduced the d-dimensional
volume element

Sd :=
2πd/2

Γ(d/2) . (4.4)

A useful relation is

1
Sd

∫
ddy 1

|y|2a|x− y|2b
=

Γ
(
d
2

)
Γ
(
d
2 − a

)
Γ
(
d
2 − b

)
Γ
(
a+ b− d

2

)
2Γ(a)Γ(b)Γ(d− a− b) |x|d−2(a+b). (4.5)

This is proven by going to momentum space w.r.t. to y and x − y, multiplying the two
momentum dependent functions, and transforming back.

Following CFT conventions, field theory is constructed with propagators normalized
such that

⟨Φα(x)Φβ(y)⟩ = |x− y|2−d
(
δαβ −

1
Q

)
. (4.6)

The bare Lagrangian in these normalizations is

L = 1
(d− 2)Sd

∑
α

1
2
[
∇Φ0

α(x)
]2

+ 1
Sd

g0
3!
∑
α

Φ0
α(x)3. (4.7)

The index α is the field index, while the index 0 refers to bare quantities.
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4.2 Renormalization scheme

Following the standard field-theoretic scheme [4, 5, 36, 37], renormalization is performed
by introducing RG-factors,

L = Z

(d− 2)Sd

∑
α

1
2 [∇Φα(x)]2 +

1
Sd

gZgL
− ϵ

2

3!
∑
α

Φα(x)3. (4.8)

Here all quantities are renormalized, contrary to eq. (4.7), where they are bare. The relation
between bare and renormalized quantities is

g0 = gZgZ
− 3

2L− ϵ
2 , (4.9)

Φ0
α =

√
ZΦα. (4.10)

This yields the β function βg(g), full field dimension ∆, and anomalous exponent η as

βg(g) = L∂Lg = ϵ

2
g

1 + g∂g ln(ZgZ−3/2)
, (4.11)

∆ = d− 2
2 + γϕ, (4.12)

η = 2γϕ = −L∂L ln(Z) = −βg(g)∂g ln(Z). (4.13)

4.3 Vertex renormalization

There are two types of correction at 1-loop-order. The first is a correction to Γ(3), the vertex.
Graphically, it can be written as

x y

z
= − 1

Q

[
+ +

]

+ 1
Q2

[
+ +

]
− 1
Q3

=
(
1− 3

Q

)∑
α

Φ3
α. (4.14)

A thick solid line signifies the term δαβ in the propagator, whereas the dashed line does
not force the indices to be equal; the accompanging factor of 1/Q is written explicitly. The
diagrams in the second line vanish due to

∑
α Φα = 0, and are not reported in the final result.

Including all combinatorial factors, the perturbative result for the cubic vertex Γ(3) is

Γ(3) = g0

[
1 + 1

3!

(
g0
3!

)2
× 33 × 4× 2×

(
1− 3

Q

)
ILϵ

]
= g0 + g3

0ILϵ
(
1− 3

Q

)
. (4.15)

The combinatorial factors are: 1/3! from the third-order expansion of the exponential function;
a factor of g0/3! for each additional vertex as written in the action (4.8); a factor of 3 per
vertex for choosing the uncontracted leg; a factor of 4 for contracting a first chosen leg; a
factor of 2 for the remaining contraction. The diagram having 3 propagators, one can for
each of them choose the contribution proportional to the δ-function for the indices, or in

– 13 –
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any of the three use the term without a δ-function, for a total of (1− 3/Q); using for two
or three propagators the term without the δ-function would break the connectedness of the
diagram. The final factor is the integral. Regularized at scale L it is

ILϵ = 1
S2
d

∫
x

∫
y
Θ(|x| < L)

(
|y||y − x||x|

)−2∆

=
Γ
(
d
2

)
Γ
(
d
2 −∆

)2
Γ
(
2∆− d

2

)
2Γ(∆)2Γ(d− 2∆)

1
Sd

∫
x
Θ(|x| < L)|x|d−6∆. (4.16)

We used eq. (4.5). Note that we could equivalently put a cutoff on both x and y, see [38–40].
The remaining integral gives

1
Sd

∫
x
Θ(|x| < L)|x|d−6∆ =

∫ L

0

dx
x
x2d−6∆ =

∫ L

0

dx
x
x6−d = Lϵ

ϵ
. (4.17)

Therefore with Γ(d/2) ≃ 2, and the remaining Γ’s evaluating to 1,

I = 1
ϵ
+O(ϵ0). (4.18)

This identifies

Zg = 1− g2

ϵ

(
1− 3

Q

)
+O(g4). (4.19)

4.4 Renormalization of the elastic term

The second contribution is the renormalization of Γ(2), the elastic term (wave-function
renormalization). Similarly to what has been done in eq. (4.14), the group-theoretical factor is

= − 2
Q

+ 1
Q2 . (4.20)

Due to
∑
αΦα = 0, the last term does not contribute. Therefore, this relation can be

simplified to

=
(
1− 2

Q

)
× . (4.21)

Writing explicitly the fields to keep track of the derivatives, the contribution to Γ(2) reads

δΓ(2) =−
(
g0
3!Sd

)2
× 1
2!×32×2×

(
1− 2

Q

)∫
y

∑
α

Φα(x)Φα(y)
1

|x−y|2(d−2)

=− g2
0
Sd

1
4

(
1− 2

Q

) 1
Sd

∫
y

∑
α

Φα(x)
{
Φα(x)+(y−x)∇Φα(x)+

1
2 [(y−x)∇]2Φα(x)+. . .

}
× 1
|x−y|2(d−2)

=− g2
0
Sd

1
4

(
1− 2

Q

) 1
Sd

∫
y
Φα(x)

{
Φα(x)+

1
2d(y−x)

2∇2Φα(x)+. . .
} 1
|x−y|2(d−2) .

(4.22)
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The first (−1) is due to the fact that we have e−
∫

L, the 1/2! is from the second order in
g0, then combinatorial factors, group factors, and the integral. In the third line we used
rotational invariance to discard the first-order term in ∇, and simplify the second term.
Regrouping and dropping the UV-relevant term gives

δΓ(2) = g2
0
Sd

× 1
4d ×

(
1− 2

Q

)∑
α

1
2 [∇Φα(x)]2

1
Sd

∫
y

|x− y|2

|x− y|2(d−2)

= g2
0
d− 2
4d

(
1− 2

Q

)
Lϵ

ϵ
× 1

2(d− 2)Sd

∑
α

[∇Φα(x)]2 +O(ϵ0). (4.23)

The last term is the free Lagrangian density, yielding the field renormalization factor (for
d → 6)

Z = 1− g2

6

(
1− 2

Q

)
. (4.24)

4.5 RG functions

The β-function as defined in eq. (4.11) is

βg(g) =
ϵ

2
g

1 + g∂g ln(ZgZ−3/2)
= ϵ

2g +
g3

2

[3
2 − 5

Q

]
+O(g5). (4.25)

The fixed point is at

g2
∗ = −ϵ

3
2 − 5

Q

. (4.26)

Note that for Q < 10/3 the fixed point is real, while for larger Q it is imaginary. The latter
situation contains the Lee-Yang class, to which our RG equations reduce in the limit of
Q → ∞. Intuitively this can be understood by remarking that for Q → ∞ the constraint∑
αΦα = 0 becomes negligible, and the Lagrangian (4.7) reduces to that of Q decoupled

Lee-Yang field theories.
The renormalization-group η function defined in eq. (4.13) reads

η(g) = g2

6

(
1− 2

Q

)
+O(g4). (4.27)

Evaluated at the fixed point (4.26), the exponent η becomes

η(g∗) ≡ 2γϕ = ϵ(Q− 2)
3(10− 3Q) +O(ϵ2) . (4.28)

This agrees with standard treatments [5, 8].

4.6 3-point function and structure factor C

We now consider the 3-point function which forces all external indices to be in the same cluster,
C

(|x1 − x2||x1 − x3||x2 − x3|)∆ = 1
Sd

∫
y

g∗

(|x1 − y||x2 − y||x3 − y|)2∆

≃ g∗
Γ
(
d
2

)
2

Γ
(

∆
2

)
Γ(∆)

3 ∣∣∣∣
|xi−xj |=1∀i ̸=j

, (4.29)
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where we used the star-triangle identity. The latter reads

1
Sd

∫ ddx4

x2∆1
14 x2∆2

24 x2∆3
34

= κ(∆1,∆2,∆3)
x

∆12,3
12 x

∆13,2
13 x

∆23,1
23

, (4.30)

κ(∆1,∆2,∆3)=
Γ
(
d
2

)
Γ
(

∆1+∆2−∆3
2

)
Γ
(

∆1+∆3−∆2
2

)
Γ
(

∆2+∆3−∆1
2

)
2Γ(∆1)Γ(∆2)Γ(∆3)

≃ 1 . (4.31)

It holds whenever
∑
i∆i = d. Since the integral is convergent in d = 6, we can evaluate it

there, ensuring that the latter relation is valid. This gives the leading term in ϵ = 6− d,

C = g∗ +O(ϵ3/2). (4.32)

Using eq. (4.26) yields

C =

√√√√ 6− d
5
Q − 3

2
+O(ϵ3/2). (4.33)

We give the three most interesting values

C
∣∣∣
Q=1

=
√

2
7(6− d) +O(ϵ3/2), (4.34)

C
∣∣∣
Q=2

=
√
6− d+O(ϵ3/2), (4.35)

C
∣∣∣
Lee−Yang

= C
∣∣∣
Q→∞

= i

√
2
3(6− d) +O(ϵ3/2). (4.36)

Note that for the Lee-Yang class, the definition involves an imaginary coupling, so this agrees
with [41]. In dimension d = 2 this question has been solved analytically by relating [42]
the structure constant to the so-called DOZZ formula of imaginary Liouville conformal field
theory [43], a result which has been checked numerically [44] and also generalised to a larger
class of operators [45]. The structure constant is expressed in terms of the Barnes double
gamma function, whose evaluations for integer Q read [44]

C(Q = 1) = 1.0220, C(Q = 2) = 1.0524, C(Q = 3) = 1.0923. (4.37)

Our result is astonishingly precise for percolation in d = 2. We will see that already for the
Ising model this expansion can no longer be used below dimension d = 4, see section 5.4.
Finally, it is curious that all known values of C lie close to C = 1, a value natural in
dimensions d = 0 and d = 1, see appendix B.

4.7 The upper boundary of the non-critical domain

The β-function up to 2-loop order [8, 46], divided by the coupling to exclude the Gaussian
fixed point, reads after some rewriting

B(u) := β(g)
g

∣∣∣
g2=u

= ϵ+
(3
2 − 5

Q

)
u+ Q(125Q− 794) + 1340

72Q2 u2 +O(u3) (4.38)
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1 2 3 4 5
Q

5.2

5.4

5.6

5.8

6.0
d

Figure 2. The critical line bounding the second-order phase at 2-loop order. In blue: λc > 0, in red
λc < 0. In the yellow region there is a pair of complex conjugate fixed-points λc = ℜ(λc)± iℑ(λc).

The necessary condition for having a non-Gaussian fixed point is B(u) = 0. As any quadratic
equation, it has two solutions, of the schematic form u1,2 = a±

√
b. The solution relevant

for us is the one which vanishes for ϵ → 0. As figure 2 shows, as a function of Q and d,
there is a domain with one real positive solution (in blue), a domain with one negative
real solution (in red), and a domain where no real solution exists, but a pair of complex
conjugate ones (in yellow). The boundary is given by the line where b vanishes. To leading
order in Q − Qc, this reads

dc = 6− 729
1480(Q−Qc)2 + . . . (4.39)

This is the green dashed line in figure 2.
To go beyond leading order, we need a more systematic procedure. Consider figure 3,

where for visualization we plotted B(u) = ϵ− u+ u2. The coefficients have the same signs as
in eq. (4.38), and the qualitative analysis for eq. (4.38) is the same. One sees that for ϵ small,
there is a perturbative solution u∗1 = O(ϵ), and a non-perturbative solution with u∗2 = O(1).
The minimum of B(u) is between these two solutions, and B(u) is negative there. Up to
ϵ = ϵc (ϵc = 1/4 in the plot), there is still a solution for which both B(u∗) = B′(u∗) = 0. For
larger values of ϵ > ϵc, no real solution exists, but a pair of complex conjugate solutions.

Our strategy to continue is clear: we demand that

B(u∗) = B′(u∗) = 0. (4.40)

It is convenient to first write the latter equation,

0 = B′(u) =
(3
2 − 5

Q

)
+ Q(125Q− 794) + 1340

36Q2 u+O(u2). (4.41)

This equation is independent of ϵ, i.e. dimension. It is solved by making for u∗ an ansatz as a
power series in Q−Qc. Asking that B(u∗) = 0 than gives dc as a function of Q− 10

3 . Using the
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B(u)

Figure 3. The function B(u) defined in eq. (4.38) for varying values of ϵ. For ϵ ≪ 1 there is a
perturbative attractive solution u∗

1 = O(ϵ), and a non-perturbative repulsive (tricritical) solution
u∗

2 = O(1) (blue). Increasing ϵ the two solutions approach (gray, dot dashed) until they merge at
ϵ = ϵc (red, dashed), and no solution exists for ϵ > ϵc (green, long dashes).

5-loop series of [46], partially given in [28, 29], to 3 loops in [8], and to 4 loops in [47]2 we get

dc = 6− 0.492568
(
Q− 10

3

)2
− 1.49158

(
Q− 10

3

)3
− 14.9483

(
Q− 10

3

)4

−184.253
(
Q− 10

3

)5
+O

(
Q− 10

3

)6
. (4.42)

This series is a perturbatively controlled series, and seemingly Borel-summable for Q < 10/3:
having Qc−Q ∼

√
ϵ makes the coupling u ∼

√
ϵ, and the terms dropped in eq. (4.38) of

order ϵ3/2. The results for the Borel summation of eq. (4.42) are given in figure 5 [48, 49].
For Q > Qc = 10/3, all terms of the series are negative, which indicates that a branch cut
singularity starts there. We come back to this question in our NPRG treatment in section 5.3.2.

We finally note that cubic theories were also proposed for SU(N) [47, 50, 51], O(N)
broken by an additional cubic interaction [52], or O(N) × O(m) [53]. A similar analysis
can be performed there.

It is interesting to see what happens to the RG flow in the complex plane. This is done
on figure 4. For small ϵ (here ϵ = 0.01, top left plot) the critical fixed point lies close to the
Gaussian one, while a tricritical (bi-unstable) fixed point is at u ≈ 0.9. Increasing ϵ (top
right), the critical and tricritical fixed points approach, until they merge at ϵ = ϵc = 0.0027
(lower left plot). Up to this value of ϵ, all fixed points lie on the real axes uy = 0. Increasing
ϵ further, a pair of complex-conjugate fixed points emerges. Since the critical fixed point
for smaller ϵ is globally attractive and the flow at large couplings is not rearranged, the
pair of complex-conjugate fixed points is also globally attractive, with the RG flow spiraling
in (complex eigenvalues).

2Due to undefined objects in the auxiliary file provided in [47] we were unable to check these results
against [46].
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Figure 4. The flow-diagram for the Q-state Potts model at 2-loop order in minimal subtraction at
Q = 3.1, ϵ = 0.01 (top left), ϵ = 0.0027 (top right), ϵ = 0.027613 (lower left) and ϵ = 0.028 (lower
right). In blue are RG trajectories starting close to the fixed points. On the first two graphs, the
leftmost Gaussian FP has two repulsive directions, the non-trivial critical fixed point in the middle has
two attractive directions, whereas the tricritical FP to the right has two repulsive directions. While
the Gaussian fixed point remains completely repulsive, the pair of complex-conjugate FPs have a
complex eigenvalue with positive real part. As a result, all trajectories spiral in, except for the real
axis (uy = 0), which runs to strong coupling u→ ∞.

5 Non-perturbative renormalization

5.1 Flow equations

Mapping out the full phase diagram is impossible by relying solely on controlled expansions.
Here we study the full phase diagram using the different non-perturbative RG schemes,
LPA, LPA′, LPA∗ and Wilson’s original approach. For the Potts model, this line of research
was pioneered in [25] (Wilson scheme), and continued in [16, 24] (LPA′). The idea is to
start from the action

S[Φ] =
∑
α

1
2 [∇Φα(x)]2 + 1

2U(Φ), (5.1)
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where3

U(Φ) =
Q∑
α=1

λ2(Φα)2 + λ3(Φα)3 + λ4(Φα)4 + λ5(Φα)5 + λ6(Φα)6 + . . .

+
Q∑
α=1

Q∑
β=1

λ22(Φα)2(Φβ)2 + λ23(Φα)2(Φβ)3 + λ24(Φα)2(Φβ)4 + λ33(Φα)3(Φβ)3 + . . .

+
Q∑
α=1

Q∑
β=1

Q∑
γ=1

λ222(Φα)2(Φβ)2(Φγ)2 + . . . (5.2)

The correction to the effective action in the Wilson scheme is obtained by integrating out the
largest wave-vector mode, here with Λ → 1. (The index structure is given later.)

δU(Φ)
2 = δS[Φ] = ln

(
S ′′[Φ]

)
+ const = ln

(S ′′[Φ]
S ′′[0]

)
= ln

(
1 + 1

2U
′′(Φ)

1 + 1
2U

′′(0)

)

= ln
(
1 +

1
2 [U

′′(Φ)− U ′′(0)]
1 + 1

2U
′′(0)

)
=

∞∑
n=1

(−1)n+1

n

(
U ′′(Φ)− U ′′(0)

2(1 + λ2)

)n
. (5.3)

This leads to

δU(Φ) =
∞∑
n=1

(
−1

2

)n−1

n

(
U ′′(Φ)− U ′′(0)

1 + λ2

)n
. (5.4)

In contrast, in NPRG one has
δU(Φ)

2 = δS[Φ] = −1
1 + 1

2U
′′(Φ)

= −1
[1 + 1

2U
′′(0)] + 1

2 [U ′′(Φ)− U ′′(0)]

=
∞∑
n=1

(
−1
2

)n [U ′′(Φ)− U ′′(0)]n

(1 + λ2)n+1 . (5.5)

This gives

δU(Φ) =
∞∑
n=1

(
−1
2

)n−1 [U ′′(Φ)− U ′′(0)]n

(1 + λ2)n+1 . (5.6)

Note the power of 1 + λ2 in the denominator, which is larger by one than in Wilson. The
difference in combinatorial factor can be rationalized as follows: the Wilson cutoff is a hard
cutoff, which allows one to integrate out the fastest mode, leading to ln(S ′′[Φ]). The cutoff
used for the LPA is a soft cutoff, the calculatorially easiest choice is the Litim cutoff [54]

Rk(p) = (k2 − p2)Θ(|p| < k). (5.7)

With this choice the IR flow reads

−k∂kS[Φ] = −1
2k∂k

∫
p
ln
(
p2 + 1

2U
′′(Φ) +Rk(p)

)
= −1

2

∫
p

k∂kRk(p)
p2 + 1

2U
′′(ϕ) +Rk(p)

= −k2
∫
p

Θ(|p| < k)
k2 + 1

2U
′′(ϕ)

= Sd
d(2π)d

−kd+2

k2 + 1
2U

′′(ϕ)
. (5.8)

Scaling k → 1 and absorbing the volume factor gives eq. (5.5).
3In most of the current literature [16, 24] the expansion is written in terms of the unconstrained basis, see

appendix A. This is much more tedious to implement than in the constrained basis used here.
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Figure 5. Left: the phase diagram of figure 1 as given by LPA∗
6 (yellow, with orange borders), almost

indistinguishable from LPA′
6 (olive), and compared to LPA6 (brown) and LPA′

4 (dark blue). The blue
dot-dashed line is the expansion (1.3); dark red dotted is for eq. (1.4). For the Wilson scheme we
show the boundary in the upper left quadrant (cyan). The green dashed line is the leading order of
eq. (4.42), while the red dashed line is a weighted average of Padé and Padé-Borel resummations of
the 5-loop result [48, 49]. The blue dots are results obtained by other methods, see figure 1. Right:
blow up of upper left quadrant.

Finally, we need to rescale U and Φ, and add indices. This leads to the NPRG equation
(IR flow)

∂ℓU(Φ) = dU(Φ)− d− 2 + η

2
∑
α

Φα
∂U(Φ)
∂ϕα

+
∞∑
n=1

Cnλ2

(
−1
2

)n−1
tr
( [U′′(Φ)−U′′(0)] · P

1 + λ2

)n
.

(5.9)
The first remark is that a global prefactor (the normalization of space) can be absorbed by a
rescaling of U , as this changes the rescaling terms which are linear in U(Φ), but not δU(Φ).

We have written explicitly the index structure of each term in the Potts model, with
the matrix U′′(Φ) and the projector P (with the same index structure as the propagator)
defined as (see appendix A)

U′′(Φ)αβ = ∂2U(Φ)
∂Φα∂Φβ

, Pαβ := e⃗α · e⃗β = δαβ −
1
Q
. (5.10)

The factor of Cnλ2
depends on the cutoff and λ2, and reads

Cnλ2 =


1

1+λ2
Litim-cutoff (LPA)

n−1 hard cutoff (Wilson)
(5.11)
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We added an anomalous dimension for the field, or exponent η. The latter is obtained from

η = Cη
2(1 + λ2)4 tr

(
∂U′′(Φ)
δΦα

· P · ∂U
′′(Φ)
δΦα

· P
) ∣∣∣∣

Φ=0
= 9Cηλ2

3
(1 + λ2)4

Q− 2
Q

. (5.12)

The global prefactor Cη is fixed s.t. for d → 6 the β-function vanishes at Q = 10/3,

Cη =

1 Litim-cutoff (LPA)
1
3 hard cutoff (Wilson)

(5.13)

This is equivalent4 to eq. (4.27) for η(g). When improving LPA, we call this scheme LPA∗,
when improving Wilson we call it Wilson∗. It is slightly different from what is used in the
NPRG literature [16], and termed LPA′: there is an additional factor of (1− η

d+2) multiplying
the r.h.s. of eq. (5.8). The reader may wonder about the denominator 1/(1+λ2)4 in eq. (5.12).
A heuristic way to derive this is to take one derivative w.r.t. the passing momentum p2,
which is similar to a variation of the squared mass λ2, increasing the number of factors
in the denominator by 1.

All these subtleties are unimportant close to the upper critical dimension 6, and for lower
dimensions everything we do here seems badly controlled: this is seen when comparing the
different approximation schemes in order to see how robust the results are. This is done later;
we will see that LPA′ and LPA∗ (at the same field order) are almost indistinguishable, but
that for small d the results strongly depend on the maximal number of fields allowed.

5.2 Implementation

We implement the above program by going up to order 6 in the fields, as suggested by
eq. (5.2). We then calculate the corrections to U(Φ) up to order U7. This perturbative
treatment, also used in [16, 24] properly accounts for the algebraic structure of the Potts
propagator.5 We do not know of a truly non-perturbative approach at non-integer Q, where
U ′′(Φ) as a function appears in the denominator.

We then start somewhere below dimension d = 6, propose an initial condition with
λ3 ̸= 0, and try to evolve to a fixed point of the β-function (5.9). We have several routines
to do so: the first tries to integrate the flow-equation itself, in which we have reversed the
flow for λ2, which is a relevant coupling: it has an RG eigenvalue close to 2. The other
algorithms we implemented are different routines to find a nearby minimum of |β| (steepest
descent, Newton iteration, Monte Carlo). Once we find a solution, we can walk in the {Q, d}
plane, following this solution under a change of Q or d, until we reach the critical line. What
happens there depends on where we start. Let us discuss the different sectors. If not stated
differently, we use the LPA∗ scheme where U is truncated at order Φ6, and which we denote
LPA∗

6. Results for LPA′
6 are almost indistinguishable.

4For the Wilson scheme and λ2 → 0 this reduces to eq. (4.27) noting that λ3 = g/3, and that there is an
additional explicit factor of 2 in eq. (5.4) as compared to the field theory.

5This is possible at fixed Q, when restricting to the spin degrees of freedom. As an example, for Q = 3, there
are two independent fields, and the theory can be written in terms of

∑
α

Φ2
α and

∑
α

Φ3
α. For non-integer Q

this is not possible.
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Figure 6. Left: real part of eigenvalues for the β-function in varying dimension d, for Q = 2.01.
The program starts in d = 5.99, where one sees the operator content of the free theory: one relevant
eigenvalue 2 for λ2, the marginal eigenvalue for λ3, two quartic operators of dimension −2, two
quintic operators of dimension −4, and four order-6 operators. Arriving in dimension d = 4.2975, one
eigenvalue becomes marginal and we loose the critical fixed point. When two lines meet, they form
a complex conjugate pair, and we only see a single line continuing. Right: the coupling constants.
Nothing special seems to happen at dc(Q).

5.3 Branches

5.3.1 Upper left sector (Q < 10/3, 4 < d < 6)

For 2 < Q < 10/3 fixed and d = 5.99, or d = 5.999 (close to Q = 10/3) we propose a
solution with λ3 = 0.2, and the remaining λi = 0. Using the β-function where the flow
of λ2 is reversed, these couplings converge to a critical point β⃗[λi] = 0 of the β-function.
Linearizing the β-function around this solution we find one relevant EV, while all remaining
EVs are irrelevant. We then decrease d, and follow the fixed point in question by again
minimizing the β-function. At some point, the second-largest EV becomes zero, at which
point it merges with a tricritical fixed point. Further decreasing d we loose this fixed point
and as a consequence run to strong coupling; in practice, our algorithm no longer succeeds to
finds a solution, and blows up. We identify this dimension as dc(Q). If we worked hard, we
should be able to find a tricritical point, which merges with the former fixed point at dc(Q).
One observes that close to dc(Q) this eigenvalue behaves as a constant times

√
d− dc(Q).

Close to d = 4, Q = 2 the curvature of this curve is close to what is expected within the
NPRG. We had expected to see the expansion of ref. [25] given in eq. (1.4) to agree with
our Wilson∗

6 approximation, but this is not the case. As we do not have the equations of [25]
to compare with, we cannot make this comparison quantitative.

Finally, we could try to follow the fixed points into the complex plane. We did not
pursue this approach here since we would have to double the number of couplings passed
to our routines.

5.3.2 Upper right sector (Q > 10/3, 4 < d < 6)

The scenario observed for Q < 10/3 is also observed for Q > 10/3, after multiplying the
odd couplings by a factor of i. However, close to Qc, we see a different behavior, for which
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Figure 7. Left: real part of eigenvalues for the β-function in varying dimension d, for Q = 3.45. The
program starts in d = 5.999, where one sees the operator content of the free theory. Then the program
descends to d = 5.95, well below the upper critical dimension, defined by the dimension where the
real part of the subleading EV becomes positive. On the right we show the real part (in blue) and the
imaginary part (in red) of the second-largest EV. The dashed line denotes the dimensions d1 where
the imaginary part starts to be non-vanishing, and d2 where the real part becomes positive.

an example at Q = 3.45 is shown in figure 7. What we observe is that at a dimension d1
the third-largest EV merges with the second largest one, and together they wander off in
the complex plane. Decreasing d further to d2, they both become relevant, albeit with a
non-vanishing imaginary part. Below the latter dimension, the RG equation runs to strong
coupling, so dc ≥ d2. We suspect, however, that the critical dimension is already reached
at d1; otherwise the critical dimension as a function of Q seemingly jumps at Q = 10/3,
which we have a hard time believing. On the other hand, up to 5-loop order the perturbative
series for dc(Q) has only positive terms for Q > Qc = 10/3, whereas the series alternates for
Q < Qc. This may signal a non-analytic behavior for d(Q) for Q > Qc. Our results indeed
show a roughly linear dependence of dc(Q), on Q − Qc.

It is equally possible that the approximations used, either in the NPRG or its imple-
mentation, are inadequate. There should not be a problem with the numerical evaluation
of the zeros of the β-function, which is done with 400 digits of precision (more than 10
times machine precision).

We finally note that within the NPRG in the limit of Q→ ∞ the Q copies not necessarily
decouple, as it is possible to have a fixed point with an inter-copy coupling (as λ23) persist
when taking Q → ∞, even though when starting with decoupled models at Q = ∞, these
inter-copy interactions are not generated. As a result, this limit may be as subtle as the
large-N limit for Random-Field [55, 56].

5.3.3 Lower branches

The lower left branch is more difficult to reach, as generically most initial conditions either
blow up when evolving them with the “improved” β-function, or converge to multiply unstable
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(tricritical or higher) fixed points. We also tried to walk down for Q < 2, which is possible,
but then we failed to cross the line Q = 2, where some of the operators decouple. Our
successful strategy was to generate random couplings 0 < λ3 < 1, −0.5 < λ4 < 0.5, and
−0.5 < λ22 < 0.5, with λi = 0 for the rest. We then used steepest descent for Q = 2.5 and
d = 2.2 towards a fixed point, and stop when this fixed point has one relevant direction.
The successful trial for LPA∗

6 converged to

λ2 =−0.331907, λ3 =0.139233, λ4 =0.0481672, λ22 =0.00200003, λ5 =0.0119803,
λ23 =−0.00104314, λ6 =0.00399691, λ24 =0.000456486, λ33 =−0.000520252,
λ222 =0.00010586. (5.14)

To proceed, we start at this point, and then walk in the (Q, d) plane until we hit the boundary
of the critical region. The result is shown in figure 5. It is reassuring to see that the various
LPA approximations all have the same parabolic shape around d = 4, Q = 2. Depending
on which approximation is used, the critical line follows this parabola further, or less. The
results of ref. [16] (green points with error bars closes to d = 3), which go up to order 9
in the field, are able to follow this parabola a little further than we do, without noticeably
deviating from it. When comparing the different schemes, one observes that all schemes
follow the critical parabola given in eq. (1.3) for d < 4, and that including more fields allows
one to follow this parabola further. Including η also increases the range for which this is
possible, i.e. before dc(Q) grows again. There is only a minimal difference between LPA′

and LPA∗. We were unable to find a value of the couplings to repeat this analysis in the
Wilson scheme. We conjecture that this parabola is close to the critical curve, and a slight
deformation to pass through d = 2, Q = 4 is a good approximation for the true critical
curve. This is the rational behind figure 1.

Going back to figure 5, we observe that the critical curve dc(Q) becomes horizontal for
large Q, and by walking down we find a second curve as indicated in figure 5. While this may
well be an artifact of the scheme, it leaves open the intriguing possibility that in dimension
d = 3 the Potts model has a window of values for Q for which it becomes critical again.

5.4 Ising (Q = 2)

We succeeded to walk down at Q = 2 from d = 6 to d = 0. The result is shown on the left of
figure 8, using LPA: since η ∼ Q− 2 = 0, the schemes are identical, i.e. LPA = LPA′ = LPA∗.
We can then project onto the Ising spin variables, by writing down U(Φ) in terms of Φ1

and Φ2, then setting Φ1 → ϕ, Φ2 → −ϕ. This gives the potential visible in the spin sector
of the Ising model.

U(Φ) → u(ϕ) = 2λ2ϕ
2 + 2 (λ4 + 2λ22)ϕ4 + 2 (λ6 + 2λ24 + 4λ222)ϕ6 + . . . (5.15)

As can be seen in figure 8, these couplings vanish in dimensions 4 ≤ d ≤ 6, even though
λ4 itself is non-vanishing there. This is the Gaussian fixed point for the spin-degrees of
freedom in dimension d > 4. Below dimension d = 4, the quartic coupling visible in the
spin theory, see eq. (5.15), becomes non-vanishing. Descending below d ≈ 3 also the sextic
couplings become visible, albeit small.
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Figure 8. Left: the couplings for the Ising model as a function of d. Right: the structure constant C
from the NPRG (red, solid), as compared to perturbation theory (blue dashed). The non-analytic
behavior at d = 4 is clearly visible, thus field theory in dimension d = 6 − ϵ will stop to work in
dimension d = 4.
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Figure 9. Eigenvalues of the NPRG β function for the Ising model. The largest eigenvalue is
1/ν, which equals 2 in dimensions 4 ≤ d ≤ 6, and has ϵ-expansion 1/ν = 2 − (4 − d)/3 below
dimension d = 4. The exponent ω is the second largest eigenvalue. For the cubic coupling it has
1-loop dimension −ω = d− 6 in ϵ = 6− d (gray dotted), while (d− 6)/2 (gray dot-dashed) seems to
be a decent approximation down to d = 2. The quartic coupling has 1-loop eigenvalue −ω = d− 4
(black dashed). The NPRG flow respects these expansions. The black dots in d = 3 show the location
of scalar even-spin operators (ϵ, ϵ′. . . ) in the numerical bootstrap, see table 2 of [57]. They do
not contain the eigenvalue for the cubic coupling. In d = 2 we use that the EVs = 2 − 2hr,s, with
hr,s = [(4r − 3s)2 − 1]/48, r = 2, s = 1 for ϵ, and r = 3, s = 1 for ϵ′; we also added r = 4, s = 1. We
conjecture that the leading odd operator with coupling λ3 evolves to the first irrelevant operator in
the magnetic series [58] 2− 2h1/2+n,0, n ∈ N0, which gives 2− 2h5/2,0 = −17/8, at n = 2 (red dot).
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Figure 10. Eigenvalues and couplings when walking down at Q = 1 from d = 5.99.

This plot leads to the conjecture that the structure constant C, at leading order pro-
portional to λ3, grows from dimension d = 6 to dimension d = 4, before descending again.
Assuming that the structure constant C is indeed proportional to λ3, and normalizing s.t. the ϵ-
expansion is matched, gives the plot on the right of figure 8. It shows clearly that the d = 6−ϵ
expansion for the structure constant given in section 4.6 will break down in dimension d = 4.

There are some interesting tests we can perform, see figure 9: the largest eigenvalue in
the stability matrix of the β-function is 1/ν, which equals 2 in dimensions 4 ≤ d ≤ 6, and
has ϵ-expansion 1/ν = 2 − (4 − d)/3 below dimension d = 4. This is well respected in the
NPRG, see the topmost curve on figure 9. The exponent ω is the second-largest eigenvalue.
For the cubic coupling it has 1-loop dimension −ω = d − 6 in ϵ = 6 − d (gray dotted in
figure 9) which is valid for 5 ≪ d < 6, while (d− 6)/2 (gray dot-dashed in figure 9) seems
to be a decent approximation down to d = 2. The quartic coupling has 1-loop eigenvalue
−ω = d− 4. The NPRG flow respects these expansions. The operator content seems rather
sparse in dimension d = 3, and misses higher scalar operators known in the bootstrap [57].
This should improve upon increasing the maximum field dimension in the NPRG.

5.5 Q < 2

We can also walk down from d = 6 for Q < 2. For Q = 3/2, this is possible down to dimension
d = 0. For Q = 1 the system of RG equations seem to become degenerate in dimension
d = 5.013, see figure 10. For Q = 1/2 this happens already in dimension d = 5.251. This may
be a sign for a first-order transition (which is unlikely given what we know about percolation),
or a technical problem. In the latter case it may indicate that the ϵ-expansion is valid only
down to dimension d ≈ 5. Another degeneracy is observed when trying to walk in dimension
d < 4 from Q < 2 to Q > 2. It would be interesting to analyze this further.

6 Discussion and conclusion

We showed that there are two distinct field theories for the Q-state Potts model, one for the
spin degrees of freedom, and one for the cluster degrees of freedom. The latter is exact on
any graph, and does not impose the representation of the Q states as a vector in RQ−1. As a
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consequence of these different representations, the Ising model has two distinct upper critical
dimensions, dc = 4 for spin observables, and dc = 6 for cluster properties. This allowed us to
derive an explicit prediction for the 3-point function, equivalent to the structure constant of
the underlying CFT. We hope that numerical simulations will soon verify this prediction.

An interesting question is how this extends to other values of Q. Our analysis shows
that for Q > 2 the Potts model has a second-order transition only outside a non-critical
region. Its boundary is perturbatively controlled close to d = 6, with a parabola, open to the
bottom in the (Q, d) plane, emanating from Q = 10/3, d = 6, see figure 1. Another bounding
parabola open to the right, emanates from d = 4, Q = 2, with a coefficient which can be
estimated within a non-perturbative approach. As discussed in the introduction, there is
ample numerical and analytical evidence that the lower bound of the non-critical region exits
as well, even though it is yet badly approximated by any RG scheme. We are working on a
d = 2 + ϵ expansion to remedy this. One should also be able to expand around the point
Qc = 4 and d = 2, similar to what was done in [59] (up to an unknown coefficient) for the
O(N) model (around N = d = 2), see also [60]. Going back to d ≈ 6 and Q = 10/3, we note
that a new critical theory emerges when rotating all odd couplings into the complex plane.
Taking Q → ∞ this connects to the well-known Young-Lee universality class.

Since the clusters of the FK expansion live inside the spin clusters (see section 3.2), spin
correlations cannot fall off faster than cluster correlations. Written for the field-dimension
∆ϕ, or the exponent η, this reads

∆spin
ϕ ≤ ∆cluster

ϕ ⇔ ηspin ≤ ηcluster. (6.1)

Eq. (4.28) shows that to 1-loop order, and for d < 6

ηcluster ≥ 0 for 2 < Q <
10
3 . (6.2)

This property persists to higher orders, and especially for d close to 4 (ϵ = 6− d ≈ 2). For
the Ising model ηcluster = ηspin = 0 for 4 ≤ d ≤ 6, and the bound is saturated.

Perturbative RG near dimension 6 gives a clear picture of what happens when we enter
the “first-order” domain: allowing the couplings to become complex, the critical and an
additional tricritical point merge, and then wander into the complex plane, forming a pair of
complex conjugate critical fixed points. This complex CFT inside the “first-order” regime
can be accessed by expanding around d = 6 and Q = 10/3 [49]. In contrast, when starting
with real couplings, the RG flow runs to strong coupling, a sign (but no proof) that the
phase transition in this domain is first order.

The pair of complex fixed points inside the “first-order” regime can be studied via
numerical simulations in d = 3, or via transfer matrix in d = 2. Such a complex CFT was
conjectured to exist in d = 2 for Q > 4 [61, 62], and realized in a lattice model [63]. The
resulting CFT has a complex central charge, and a complex spectrum, given by the proper
analytic continuation of the CFT data for Q < 4.
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A Algebraic objects

The construction for a basis of the Q-state Potts model works as follows: chose vectors
e⃗α ∈ Rn, with

n := Q− 1 , (A.1)

s.t.
e⃗α · e⃗β :=

∑
i

eiαe
i
β = δαβ −

1
Q
. (A.2)

We use a dot for scalar products in i-space (roman indices, dimension n = Q−1, unconstrained
basis); a circ “◦” denotes the scalar product in α-space (greek indices, dimension Q, constrained
basis). These vectors can be constructed recursively, see [3, 4], eq. (2). They satisfy∑

α

eαi = 0. (A.3)

Proof: ∑
i

(∑
α

eiα

)2

=
∑
αβi

eiαe
i
β =

∑
αβ

(
δαβ −

1
Q

)
= 0.

The inverse relation is

ei ◦ ej =
∑
α

eiαe
j
α = δij . (A.4)

Proof: since the ejβ form an over-complete basis, we can write an arbitrary vector as
Aj =

∑
β a

βejβ; applying the tensor in eq. (A.4) to Aj yields

∑
α

eiαe
j
αA

j =
∑
αjβ

eiαe
j
αa

βejβ =
∑
αβ

eiαa
β
(
δαβ −

1
Q

)
= Ai . (A.5)

To arrive at the last line we used eq. (A.3). This proves (A.4).

B The structure factor C in dimensions 0 and 1

It is instructive to consider 3-point properties for the two solvable cases d = 0 and d = 1.
In d = 0 there is only one cluster, so C becomes

Cd=0 = P (all 3 points in the same cluster)
P (2 points in the same cluster)3/2 = 1. (B.1)

We can also ask that all of them are in cluster say 1, then

P (all 3 points in cluster 1)
P (2 points in cluster 1)3/2 =

1
Q(

1
Q

)3/2 =
√
Q. (B.2)
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In d = 1 we can order the three points (1,2,3), with distances x = (1, 2) > 0 and y =
(2, 3) > 0. Then

⟨Φ1Φ2Φ3⟩√
⟨Φ1Φ2⟩ ⟨Φ2Φ3⟩ ⟨Φ1Φ3⟩

= P123√
P12P23P13

= p(x+ y)√
p(x)p(y)p(x+ y)

=
√
p(x+ y)
p(x)p(y) , (B.3)

where p(x) is the probability that two randomly chosen points at distance x are in the same
cluster. Now consider the cluster which contains point 1, and then advance to the right. The
probability that the next point is still in the same cluster is ρ ≤ 1, and so on, s.t. p(x) = ρx.
This Markovian property implies that

Cd=1 = ⟨Φ1Φ2Φ3⟩√
⟨Φ1Φ2⟩ ⟨Φ2Φ3⟩ ⟨Φ1Φ3⟩

= 1. (B.4)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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