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A B S T R A C T   

In this paper, we propose LUVI, Lightweight UWB-VIO relative positioning method for indoor localization. 
Recent designs of handheld and embedded devices feature various technologies which have the means to 
enhance localization performance in indoor environments. These include visual odometry based on cameras and 
augmented reality, and communication hardware such as UWB. Integration of such technologies to exploit their 
advantages allows us to compensate for each other’s errors in measurement. This improves the overall function 
of future services, such as visual representation of sensing information from sensors in areas that are not 
physically visible. However, existing work cannot fully exploit these technologies to high extent, often inducing 
high errors or wasted resources. LUVI is a novel localization method which estimates the location of a target 
object using relative coordinates of estimator devices without the aid of definitive coordinates. LUVI focuses on 
utilization of lightweight management of virtual anchors for localization, with functions that reduce the 
computing and communication complexity while maintaining the accuracy and improving energy efficiency of 
the localization. Our work has been fully implemented and tested in several indoor environments, showing 
robustness to NLOS while significantly reducing computational complexity, and up to 30% lower average error.   

1. Introduction 

Evolutions in portable devices introduce to us new technologies to 
enhance user experience and customer satisfaction, through communi-
cation, graphics, sensing, and processing improvements. One notable 
aspect, such as recent smartphone designs, is introducing modules which 
can be used to enable and enhance indoor localization capabilities. In 
particular, ultrawideband (UWB) technology is resurfacing among 
leading industries and manufacturers, and being exploited for location 
awareness and security. Several flagship mobile products, from iPhone 
11 Pro-and Galaxy Note 20 Ultra, supports UWB communication capa-
bilities, which can be utilized in the future for indoor location-based 
services such as smarter car keys [1], indoor navigation [2], and 
various augmented reality(AR) applications [3]. Every smartphone will 
be equipped with UWB as an essential feature in the near future, com-
plementing other communication technologies such as Bluetooth and 
Wi-Fi. 

One of the greatest potentials of UWB is that it can be used to provide 
relative positioning for indoor localization. Relative positioning is a 
method to estimate target device coordinates without requiring an 

infrastructure or pre-defined coordinates in the indoor environment, 
which can be used as a reference. Instead, two devices are required to 
provide relative positioning: (1) A device which obtains its own coor-
dinate system (by measuring displacement through embedded sensors 
such as camera or IMU) performs ranging using UWB wireless commu-
nication to measure relative distance, and (2) another device which 
usually has fixed position and provides data labeled with relative posi-
tion. This is important for many future indoor service and application 
aspects which cannot use infrastructure-based positioning, such as 
spontaneous creation of or dramatic changes in the indoor environment 
(e.g. disaster, tactical, or hazardous sites). Especially, IoT sensor data 
labeled with the centimeter level will be incredibly attractive for AR 
applications, but it presents challenges: We want our applications to 
operate with high efficiency without requiring any additional complex 
and expensive device such as pre-installed positioning infrastructure. 
Ultimately, we want to perform a device-to-device relative positioning 
that places the target device in the coordinate system of the mobile 
device. 

Since UWB technology only measures distance and cannot provide 
an actual reference point on the indoor environment, it is often used in 
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combination with visual inertial odometry (VIO) in augmented reality 
(AR) applications [3] and robotics [4,5]. Measurements must be made at 
multiple points while recording device displacement to estimate relative 
position as a point on the actual environment. VIO performs well for 
measuring device displacement and hence combining UWB’s ranging 
and VIO displacement capabilities allows the virtual anchor (VA) 
concept to be applied in such systems. VAs are virtual static points for a 
mobile device recorded on a coordinate whenever a ranging attempt is 
done. 

Fig. 1 shows that adding multiple device positions to the ranging 
record allows VA based relative positioning. A mobile device traverses 
around a tag (stationary smartphone, start tag, or IoT sensor) and ac-
cumulates VAs. The mobile device estimates tag’s location using a multi- 
lateration algorithm, such as time difference of arrival (TDoA), which is 
used for traditional indoor positioning. This VA based system is not only 
simple to configure and implement, but also robust against obstacles due 
to VA angle variety and density around the tag. 

Fig. 2 compares traditional UWB and VA based indoor positioning 
systems. The major difference is that the former estimates the mobile 
device position using a fixed number of references, whereas the latter 
makes the mobile move while acting as an anchor, creating a number of 
references (VA) to localize the tags. Although VA relative positioning 
provides great advantages, it also poses several challenging issues. First, 
computational complexity and energy efficiency should be carefully 
considered. It is more beneficial to increase VA sampling rate and 
generate more VAs to mitigate ranging error for high-accuracy estima-
tion, but this comes at the cost of additional complexity and energy 
consumption. This affects both the mobile device and stationary tag 
since the mobile device’s position estimation based on a large number of 

accumulated VAs slows the position estimation process and requires a 
number of communication, whereas tags are generally very energy 
constrained. Therefore, it is important to reduce VA generation while 
maintaining positioning accuracy. Second, Non-Line of Sight (NLOS) 
factors affect accuracy in indoor environments. VA records created in an 
NLOS environment are generally more erroneous, but cannot be easily 
distinguished. 

This paper proposes LUVI, a lightweight UWB-VIO based relative 
positioning method that maximizes UWB positioning usability by 
combining it with VIO to perform device-to-device positioning without 
requiring preinstalled infrastructure or pre-learning. 

LUVI incorporates various modules for intelligent VA generation 
control and calculation, maintaining overall system performance while 
reducing complexity. The main module is based on lightweight VA se-
lection. Our preliminary study analyzed various factors such as VA 
number and placement with respect position estimation accuracy [6]. 
We showed that eliminating certain VAs in the TDoA that contain 
redundant information does not affect accuracy but reduces calculation 
complexity. Note that, we named it as a VA selection algorithm based on 
position clustering. Although effective, the eventual system could 
benefit further from other factors, e.g. the VA selection algorithm was 
only beneficial for mobile devices, whereas energy consumption 
remained constant since tags continue to consume communication en-
ergy for VA creation. Therefore, in our LUVI, we introduce a new module 
for an adaptive ranging module which intelligently decides whether a 
ranging attempt should be made or not. The decision is made locally by 
the mobile device to temporarily halt ranging, e.g. if the current esti-
mation is already accurate and no further estimation is required, or an 

NLOS environment is detected and further estimation is a waste of 

Fig. 1. Virtual anchor based relative positioning system.  
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resource. LUVI was fully implemented and tested using an actual testbed 
and evaluated under several practical scenarios. Performance evaluation 
confirmed that LUVI was robust to NLOS and reduces average error by 
up to 30% while dramatically reducing computational complexity. 

The remainder of this paper is organized as follows. Section 2 de-
scribes three key technologies for the LUVI, and Section 3 describes LUVI 
and key components in detail. Section 4 discusses the virtual anchor 
selection scheme details to reduce its computing overhead. Section 5 
describes the adaptive ranging algorithm for reducing communication 
overhead and improving robustness in harsh indoor environments. 
Section 6 discusses experimental results with actual devices. Finally, 
Section 7 discuss some limitations and observations and concludes the 
paper. 

2. Background and related work 

2.1. Ultra-wideband technology 

UWB is attracting considerable attention for high-precision posi-
tioning. The Federal Communications Commission (FCC) [7] defines 
UWB as utilizing radios with signal bandwidths above 500 MHz. Pre-
viously, UWB communication technology has been focused on 
high-speed transmission, low power, and other research aspects. How-
ever, impulse radio ultra-wideband (IR-UWB) communication technol-
ogy has become another attractive option due to high-precision 
positioning advantages rather than data transmission. Since IR-UWB 
(which we reference generally as UWB in our context) uses a very 
short pulse signal, which has excellent distance resolution and signal to 
noise ratio (SNR) compared with other communication technologies [8]. 
Furthermore, significant progress has been made in recent years with the 
release of the 802.15.4z standard [9], which includes improvements in 
data speed, security, and power consumption [10]. 

Although UWB has excellent performance in ideal environments, it 
still has relatively unstable performance when there is an obstacle be-
tween the sender and receiver due to multipath problems, reflection, 
diffraction, and energy loss through the medium. 

Methods that can be used for location measurement in UWB are 
usually divided into Time-of-Arrival(ToF) and Angle-of-Arrial(AoA) 
methods. ToF estimates the time a signal travels between two devices. 
on the other hand, AoA estimates tag position by measuring the angle 
between the antenna and the device using two or more antennas, hence 
multiple samples from multiple tags are not required. However, since 
AoA only considers the angle between sender and receiver, ToF must be 
used at the same time to estimate the distance. Although AoA does not 
require time synchronization or complicated calculations, small direc-
tional antenna errors can greatly affect accuracy [11]. Current com-
mercial solutions, such as Samsung’s Smart Tag [12] and Apple’s Air Tag 
[13] adopt this method for device-to-device relative positioning to find 
the tag. 

Two way (TWR) or one way ranging (OWR) are commonly used for 
ranging between two devices using UWB’s ToF measurement. TWR is 

achieved by calculating the distance to each anchor by estimating ToF 
from the time that the target tag sends packets to the anchor and receives 
an acknowledgement message. Multiple ToFs acquired from multiple 
tags allow the device to calculate ultimate positioning using time-of- 
arrival (ToA) estimation. This does not require advanced device-to- 
device synchronization and easily implemented, but network overhead 
is relatively large due to repetitive communication.In contrast, OWR 
uses the time difference between when the packet arrives at each anchor 
when the tag signals the anchor. Since it is a one-way transmission 
without acknowledgement message, the total round-trip time is un-
known. Collecting time differences also allows the device to perform 
hyperbolic estimation to calculate Time Difference of Arrival(TDoA) and 
ultimately measure relative position. Various approaches have been 
proposed to solve these equations, such as LS method, Chan’s Algorithm, 
and Taylor Algorithm [14,15]. They are advantageous when multiple 
tags occur in the network due to less network overhead because only one 
signal is sent [16]. 

In all these methods, the factor that causes most errors in UWB 
localization is NLOS. The first path signal that goes straight to the 
receiver is clearly observed in line-of-sight communication, i.e., no ob-
stacles, but NLOS waveforms are unclear, which makes it difficult to 
determine the first path [17]. Identifying and correcting this error has 
great interest and various studies are currently in progress. 

An NLOS identification to statistically analyze ranging estimation 
was proposed decades ago [18,19], with more advanced methods being 
subsequently proposed based on channel impulse response (CIR) with 
more information becoming available. Yu et al. [20] extracted various 
statistical features from CIR and identify NLOS by learning trends for 
each feature in a particular environment. It is also possible to extract 
features and classify NLOS using deep learning [21–23]. 

The approaches discussed above achieve acceptable performance, 
but have limitations to operate on commercial mobile devices or 
resource constrained devices, as follows.  

1 Neural network based measurements consume considerable resource 
for each ranging moment;  

2 Feature extraction or pre-learning-based methods cannot be used in 
ad-hoc scenarios since they require preliminary learning on the 
space; and  

3 Although it should be driven in the application layer for versatility, it 
is difficult to obtain low-level features such as CIR on commercial 
terminals. 

This paper shows that NLOS identification using LUVI, a re-visiting 
statistic for relevant ranging estimations, can perform well in these 
systems while avoiding problems discussed above. 

2.2. Augmented reality and visual inertial odometry 

Augmented reality (AR) is defined as augmenting virtual information 
from the digital to physical realm. One key AR element in our context is 

Fig. 2. Ranging based position estimation for (a) traditional and (b) virtual anchor based positioning systems.  
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to display radio signal information in the correct location. Current AR 
applications depend on the device GPS tracking [24] to identify where to 
visually render data using markers such as QR codes [25] or neural 
network based object recognition [26]. However, GPS approaches are 
difficult to apply in indoor environments or when precise rendering is 
required. Although vision based approaches using markers or neural 
networks seems reasonable for AR, they cannot find objects behind 
obstacles or outside the camera field of view, and radio signals are not 
visible. Therefore, radio signal based positioning is suitable to comple-
ment current object tracking methods in AR. 

On the other hand, understanding of physical space in AR is built on 
the VO(Visual Odometry) [27]. It is a method of measuring camera 
position and pose relative to the starting position of the device. VO 
iteratively matches a set of key points in two consecutive images. This 
process estimates the movement of the camera between the two images. 
To improve the performance of VO, visual simultaneous localization and 
mapping (VSLAM) technology is applicable [28]. SLAM reconstructs the 
target space into two or three-dimensional information using a mono or 
stereo camera, Lidar, RGB-D camera, etc., and utilizes accumulated 
knowledge to tune previously measured position and pose. Additionally, 
the integration of IMU into VSLAM is called VIO or VISLAM [29]. The 
IMU compensates for the disadvantages of VSLAM. Even when the 
camera is not visible, the pose of the device can be estimated through the 
IMU and the movement measurement in the physical world’s metric 
scale can be obtained, which is not possible with only VSLAM. 

2.3. UWB and VIO fusion 

Only the distance between the two objects can be measured using 
UWB standalone systems, whereas odometry using VSLAM or IMU can 
estimate device displacement. However, these methods suffer from error 
accumulation and cannot take advantage of communicating with other 
devices. Research on the convergence of VIO and UWB is being con-
ducted in various ways. For example, Zheng et al. [30] proposed the 
convergence of VIO and UWB to estimate the relative position of mul-
tiple robots. Martel et al. [31] proposes another example, dealing with 
the positioning of UWB devices in an AR environment. In this study, a 
method similar to a virtual anchor was used to display sensor informa-
tion on a head-up display. To the best of our knowledge, LUVI is the first 
to address mainly how to computationally efficiently compute historical 
data (Virtual Anchors) for measurements in the VIO-UWB fusion prob-
lem. On the other hand, prior studies have corrected device position 
estimation through mutual complementation from two technologies 
[32] or using it for relative positioning (particularly for robotics and 
aerial drones) [2,4,5]. In particular, UWB can reduce SLAM drift and 

improve performance [33,34]. However, LUVI differs from current 
studies in that the positioning system not only corresponds to a harsh 
NLOS environment, but is also a lightweight system capable to operate 
on resourceconstrained mobile devices. 

3. Details of LUVI 

Fig. 3 shows the relative positioning system with LUVI designed to 
operate within a mobile device that performs position estimation using 
UWB tags already deployed in the target area, but without depending on 
any infrastructure or pre-learning. Thus, LUVI receives input from UWB 
ranging and VIO, and provides relative coordinates to the stationary 
tags. Calculated relative coordinates from LUVI are then used by loca-
tion services, e.g. rendering location labelled data on AR application. 
LUVI comprises five main modules: relative position estimator; VA 
generator, database manager, and selector; and adaptive ranging that 
includes NLOS identification. 

3.1. Virtual anchor generator 

The VA generator module creates a VA by recording the mobile de-
vice displacement from the VIO when obtaining the UWB ranging value. 
VAs in a 2D coordinate system M originating from where the VIO session 
started can be structured as 

V = {(t, x, y, ri)|(x, y) ∈ M, i ∈ Tags}, (1)  

where x and y are the device displacement in M at timestamp t. 
Measured distance ri at timestamp t is obtained by ranging with tag i. 

The system generates a VA at predetermined time periods and stores it in 
the database vector V . This sampling period can be adjusted for different 
network situations, which we discuss in more detail in the adaptive 
ranging algorithm. Errors that occur in VIO, such as drift, will affect the 
final estimation by causing drift in the position of the affected VAs. 
However, in this study, it is out of scope, but if error correction such as 
loop closing is applied in the VIO module itself, the position values of 
VAs can be corrected in LUVI as well. 

3.2. Virtual anchor database manager 

Generated VAs are stored in the VA database. The relative position 
estimator module can estimate the tag’s position (x,y) with 3 or more 
VAs in the database. If the position of tag j needs to be estimated, then Vj 
can be extracted from V as 

Fig. 3. A Diagram of LUVI.  
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Vj = {V ′

∈ V|i= j}, (2)  

which can be considered as a query result for tag j in the database. 
The proposed LUVI requires storing sufficiently large number of VAs 

to cope with errors that may occur in ranging. However, high VA sam-
pling rate can occupy too much memory, and increase computational 
complexity. 

VAs created a long time ago may also deteriorate positioning accu-
racy due to error accumulation in VIO [35]. Therefore, implementing 
the VA database as an appropriately sized circular buffer can not only 
limit the database size, but can also address the error accumulation 
problem. 

3.3. Virtual anchor selector 

The number of VAs stored in the database steadily increases as the 
system continues to operate. Using many VAs to estimate the position 
improves position estimation accuracy, but also increases computational 
complexity for relative position estimation because computational 
complexity for position estimator is O(n3), where n is the number of VAs 
in the database. This not only increases device’s energy consumption, 
but also affects real-time relative position calculation. The detailed 
empirical analysis for this issue from our preliminary work [6] showed 
that 100 VAs can cause 70–100 ms delay per calculation. Another insight 
from that earlier study was that accuracy increased with increasing VA 
count for the position estimator, benefits more if the VAs are situated at 
various angles around the tag to overcomes geometric dilution of pre-
cision (GDOP) [36]. Therefore, LUVI selects a limited number (k) VAs 
using a VA selector rather than passing the entire set to the position 
estimator, hence reducing computation while maintaining or increasing 
system accuracy. Thus, LUVI computational complexity for position 
estimation reduces to O(n), while improving positioning accuracy. 
Section 4 discusses the VA selection algorithm in detail. 

3.4. Relative position estimator 

We use a TDOA-based approach for relative position estimation. The 
mathematical model used in TDOA can be a hyperbolic equation, 
depending on the number of anchors and their position. In this context, 
the unknown parameters in the equation represent the tag’s position and 
can be estimated using optimization methods such as maximum likeli-
hood estimation (MLE). Chan’s Algorithm(CA) [15] is a widely used 
method for Time Difference of Arrival (TDOA) estimation. It uses MLE to 
perform TDOA estimation in an error prone environment. 

The position estimator module inputs k VAs and calculates the final 
relative tag position. Let (x,y) be the position for tag i at time t. The noise 
free value for {*} is {*}0 and za = [zT

p , r]
T is an unknown vector, where zp 

= [x,y]T . From CA, the error vector can be derived as 

ψ = h − Gaz0
a, (3)  

where 

h =
1
2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

(
r2,i − r1,i

)2
−
(
x2

2 − x2
1

)2
+
(
y2

1 − y2
1

)2

(
r3,i − r1,i

)2
−
(
x2

3 − x2
1

)2
+
(
y2

3 − y2
1

)2

⋯
(
rk,i − r1,i

)2
−
(
x2

k − x2
1

)2
+
(
y2

k − y2
1

)2
,

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4) 

And 

Ga = −

⎡

⎢
⎢
⎣

x2 − x1 y2 − y1 r2,i − r1,i
x3 − x1 y3 − y1 r3,i − r1,i

⋯
xk − x1 yk − y1 rk,i − r1,i

⎤

⎥
⎥
⎦ (5)  

where ψ is a Gaussian random vector in a covariance matrix, 

ψ = E
[
ψψT], (6)  

and (3) is a set of nonlinear equations for x and y. 
If there is no relationship between x, y, and r(1,i), then this problem 

can be solved using least squares, assuming the elements are 
independent, 

r2
(k,i) ≈ (xk − x)2

+ (yk − y)2 (7) 

The final location for tag i in M can be obtained by considering 
element za independent, 

za = argmin
{
(h − Gaza)

T
.Ψ− 1(h − Gaza)

}
. (8)  

3.5. Adaptive ranging manager 

The adaptive ranging manager (ARM) minimizes unnecessary 
ranging by adjusting the ranging period according to the surrounding 
environment and situation, i.e., it adaptively controls the system sam-
pling rate. The proposed LUVI can maintain estimated relative position 
in the system despite the lower sampling rate using VIO. The ARM is 
activated after the LUVI position estimator achieves a certain accuracy 
level. The adaptive ranging algorithm determines whether the position 
estimate converges from the NLOS identification and position estima-
tion, evaluates ranging quality through periodic NLOS identification 
after activation, and selectively stores the results in the VA database. 
Therefore, NLOS identification is a very important LUVI component. 
Advantages from implementing ARM includes reduced communication 
resource by reducing ranging, consequently reducing UWB battery 
consumption and improving operation time; and minimizing accuracy 
impacts from large error-causing obstacles such as concrete walls. 

Section 5 discusses the adaptive ranging algorithm in detail. 

4. Virtual anchor selection 

The objective of the main VA selection algorithm is to limit the 
number of VAs processed in the relative position estimator, and guar-
antee the selected VAs’ angular diversity for a tag to overcome GDOP. 
Therefore, Algorithm 1 shows that VA selection algorithm in the VA 
selector module attributes coordinates to UWB tags in the network. We 

Algorithm 1 
Virtual anchor selection.  

1 Function selectVirtualAnchorsForTagT (V, k)  
input: Constant k, set of virtual anchors V for tag T 
output: Set of selected k virtual anchors V′ for tag T 

2 if |Vi| < k then, 
3 |Vi| ← V 
4 else 
5 xmin ← {x′|x′ ≤ ∀x, v(x, y, r) ∈ V} 
6 xmax ← {x′|x′ ≥ ∀x, v(x, y, r) ∈ V} 
7 ymin ← {y′|y′ ≤ ∀x, v(x, y, r) ∈ V} 
8 ymax ← {y′|y′ ≥ ∀x, v(x, y, r) ∈ V} 
9 for i ← 0 to ⌊

̅̅̅
k

√
⌋ do 

10 for j ← 0 to ⌊
̅̅̅
k

√
⌋ do 

11 Vi,j ← {v(x, y, r)| 

xmin + i
(xmax − xmin)

̅̅̅
k

√ ≤ x ≤ xmin + (i + 1)
(xmax − xmin)

̅̅̅
k

√ , 

ymin + i
(ymax − ymin)

̅̅̅
k

√ ≤ y ≤ ymin + (i + 1)
(ymax − ymin)

̅̅̅
k

√ , 

v(x, y, r) ∈ V} 
12 V′ ← V′ + {v′(x′, y′ , r′)|r′ ≤ ∀r, v(x, y, r) ∈ Vi,j 

13 end 
14 end 
15 end 
16 if |V′| < k then 
17 V′ ← V′

+ selectVirtualAnchorsForTagT (V − V′, k − |V′|) 
18 end 
19 end  
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first assume a constant k, i.e., the number of VAs to be selected from VA 
database V . Constant k also represents the target number of clusters to 
be created in the map. Map size is defined as the VA minimum and 
maximum coordinates furthest from the tag, but within transmission 
distance. Therefore, we create a virtual rectangular map with the tag in 
its center, and then divide the map into k clusters. However, each cluster 
may not have the same number of VAs due to location estimator 
movement and VA placement. 

Several rules are required for the proposed clustering process,  

1 Clusters should be equal size, and  
2 Clusters should be uniformly distributed in the map; 

to ensure the selected VAs have uniform distribution among themselves, 
eliminating proximity or LOS redundancy. Once the clusters are 
correctly defined, each cluster is iterated to select the best VA. Various 
methods can be employed to select the best VA within a cluster, we 
simply select the VA with least closest physical distance to the tag. 
Although simple, this method can be efficient because UWB ranging, 
based on transmitted signal ToA within the tag and the estimator, 
generally has positive bias errors. Thus, errors are more likely to be 
overestimated, and hence selecting the closest VA guarantees the highest 
chance to mitigate overestimation. The selected VA from each cluster is 
stored as a subset (V′). 

However, one or more clusters may not have a single VA situated 
inside its area, causing |V′| < k from just one iteration of the algorithm. 
In this case, the algorithm makes another iteration to select one more VA 
from another cluster. If |V′| = k, the algorithm returns |V′|, which is used 
for hyperbolic estimation to calculate the coordinates. 

5. Adaptive ranging 

Adaptive ranging is based on results from the positioning estimator 
and NLOS identification. This section describes NLOS determination in 
LUVI, and then the adaptive ranging algorithm. LUVI determines NLOS 
based on measured ranging variance within a particular window size. 
The method is relatively lightweight compared to current NLOS iden-
tification methods, such as channel response analysis techniques using 
machine learning [20], and can be easily implemented in commercial 
devices where it is difficult to access low-level channel data. In partic-
ular, this approach can guarantee realtime performance compared with 
current approaches because it consumes less computing resources. 

LUVI evaluates measurement spread based on root mean square 
error (RMSE) for the most recently measured VA window W with size w 
of VA ranging records. Linear regression f can be fitted with w ranging 
values generated with same time interval as the x-axis. We used linear 
regression rather than averaging to consider mobile device movement 
relative to the VA window size w. Therefore, 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑ω

i=1(ri − r̂ i)
2

N

√

(9)  

where i is the index in W and r̂i is the estimated ranging value for index i 
with f. 

We normalize RMSE (NRMSE) as a metric for NLOS identification 
using the difference between maximum and minimum ranging values in 
the window, 

NRMSE =
RMSE

rmax − rmin
. (10) 

Thus, NLOS is determined by whether this result is greater than a 
predefined threshold. The threshold can be defined relative to the error 
rate guaranteed by UWB transceiver hardware ranging performance in 
the lineof-sight environment. 

Fig. 4 shows the adaptive ranging structure. When the LUVI session is 
initialized, it samples the VA by performing ranging. The system 

proceeds with NLOS identification every VA sampling period once the 
number of VAs in the system exceeds the window size. If it is not 
determined as an NLOS situation, the system evaluates whether the 
positioning result has high confidence using two conditions: first, the 
distance between the most recently measured ranging value and the 
relative position estimated on the existing relative coordinates must be 
less than the threshold; and second, we consider whether the estimation 
results are converging, i.e., when the current w VA variance (σ2

ω) is less 
than the threshold. The ARM orders the VA generator to sample VAs 
with longer period when the above conditions are met, creating less VAs. 

Although LUVI is running on a longer VA sampling rate, it continu-
ously compares the latest ranging results r and distance destimation by 
tracking relative coordinates. The system evaluates whether this result is 
due to the NLOS environment if these results exhibit significant differ-
ences. If the difference is deemed to be caused by NLOS, then the current 
sampling rate is maintained to reduce erroneous VAs from being created; 
whereas if the difference between measurement and tracing is not 
caused by NLOS, then this could be due to error accumulation in the 
VIO, or the tag was physically transferred. In this case, LUVI re- 
initializes the adaptive ranging algorithm and reverts to the original 
short ranging period. Short and long period ranging values can be 
empirically selected depending on the network environment or by the 
network manager to control energy efficiency. 

6. Implementation and performance evaluation 

The performance of LUVI is evaluated via testbed implementation 
through actual UWB devices, to acquire more accurate measuring from 

Fig. 4. Proposed adaptive ranging algorithm.  
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realistic environments. We believe that this is very important, especially 
compared to simulations and simple mathematical modeling, which 
may not take into account various external effects that may easily affect 
the performance of location estimation. The experimental scenario as-
sumes that a user walks indoors and LUVI displays an IoT tag location on 
an AR application. The purpose is to display the tag at the correct 
location in the AR application coordinate system, hence we define the 
VIO origin as the tag’s ground truth, and the estimated distance from the 
origin as error. 

We developed LUVI’s experiment application using the Samsung 
Galaxy Note 20 Ultra. The tag pair does the ranging, and the mobile 
device does the LUVI by synthesizing the VIO tracking values and 
ranging values from the ARCore and tag respectively. Our application is 
developed powered by ARCore [37], which is a popular AR platform by 
Google. It embeds VIO to track the motion of a device in the real world 
and estimate its pose. So, we utilized the VIO embedded in ARCore to 
implement LUVI. 

At the time of our research, there were no open APIs available to 
enable low-level UWB communication control on current commercial 
smartphones. Therefore, we built the testbed shown in Fig. 5 using 
Decawave’s DWM1001 module [38]. When the tags on each side are 
ranging, the mobile-device side tag send its ranging value to the mobile 
device over BLE in real time. Also, the mobile device can also turn 
ranging on and off or control the frequency of the ranging by BLE. 

Experiments were conducted in two different environments. The first 
environment (open space) was an indoor place free from obstacles, such 
as an auditorium, whereas the second environment (office) included 
obstacles that UWB can penetrate, such as partitions and furniture, and 
concrete walls that UWB cannot penetrate causes errors due to NLOS 
and reflections. Table 1 shows the parameters used in this experiment. 

Subsequent experiments defined positioning error on the VIO coor-
dinate system managed by the device itself. Therefore, error was the 
distance between tag position estimated by the system using the position 
estimator and the position pre-configured in device’s coordinate system. 

6.1. Position estimator comparison 

We used Chan’s algorithm (CA) [13] for the LUVI position estimator. 
This section explains why CA is suitable for calculating positions in a VA 
based environment. Another commonly used algorithm for solving 
multi- lateration problem is the Taylor series (TS) algorithm [39], which 
achieves good performance for small number of references is small but 
has heavy computational burden since it requires significant iterations 
for each reference to the approximate solution. Fig. 6 shows that TS error 

is smaller when the number of references is very small, but the difference 
between the two methods reduces as VA increases. Elapsed time was 
measured on the mobile device. 

Fig. 7 compares the average elapsed time from 10 experiments in 
office environment. TS consumes considerable computing resources 
compared with CA, hence CA is more suitable for LUVI, which requires a 
large number of VAs to estimate positions. 

6.2. Virtual anchor selection algorithm 

The VA selection algorithm was evaluated by analyzing the VA data 
collected in the experiments. We conducted 10 experiments with 
random mobility in both environments (open space and office). Then 
extracted k virtual anchors for accuracy and time complexity analysis, 

Fig. 5. LUVI testbed.  

Table 1 
Experiment parameters.  

Parameters Values 

Experiment time 120s 
Experiment size 100 m2 

Short period 100 ms 
Long period 5000 ms 
k (default) 10 
Window size w 10  

Fig. 6. Position estimation technique performances.  

Fig. 7. Position estimation technique burdens.  
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from LUVI database for each experiment, according to the VA selection 
and number. We also evaluated the random method, selecting k VAs in a 
completely random manner. 

Figs. 8 and 9 show the total number of VAs generated in one 
experiment, the VAs finally selected by the selection algorithm, and the 
estimated positions during an experiment. The VAs shown in the figure 
is generated on the trajectory of the mobile device, and LUVI’s VA se-
lection algorithm selects VAs in various locations. Since the number of 
VAs is small near the start of the experiment, the tag is estimated at a 
position slightly farther than the ground truth, but the error decreases as 
enough VAs accumulate over time. 

Figs. 10 and 11 show experimental results for the open space and 
office environments, respectively. All methods guarantee positioning 
error about 10 cm when k = 10 in the open space environment, which is 
close to the ranging error guaranteed by the hardware. Thus, open space 
accuracy did not change significantly as k increases. LUVI achieves 
lower error for all k compared with the other approaches in the office 
environment, verifying that LUVI can select VAs with better ranging 
quality in noisy environments. In particular, when k = 10, the average 
error decreases by 30%, from 23 cm with random selection to 16 cm 
with the VA selection algorithm. Error increases slightly with increasing 
k in the noisy office environment, due to forced additional inclusion of 
VAs, which may degrade the overall performance due to NLOS ranging. 

Fig. 12 shows computational complexity with respect to k. Calcula-
tion delay increases exponentially if the position estimator obtains a VA 
set without selection. However, random and LUVI selection algorithms 
exhibit no delay differences as k increases. LUVI guarantees similar or 
even better results compared with random, particularly in harsh 
environments. 

Finally, in order to analyze how the GDOP affects the localization 
results, we also analyzed the distribution angle of VA relative to the 
target tag as shown in Fig. 13. LUVI shows that as the angle gets smaller, 
the positioning error significantly increases due to the GDOP problem, 
but the error can be relatively reduced compared to random selection. 

6.3. Adaptive ranging algorithm 

We first analyze the effects of ranging period on accuracy to evaluate 
the performance of adaptive ranging algorithm. The scenario of the 
experiment is that the tag is placed in the center of the office and mobile 
devices moves randomly inside the office until about 70 s, then it goes 
out into a hallway separated by a concrete wall that the UWB cannot 
penetrate from 70 to 105 s, and then it returns to the office. Fig. 14 
shows error with respect to time moving along the same path in the 

office environment at 100, 500, and 1000 ms performance, respectively. 
Shorter ranging cycles approach the correct answer more quickly. Per-
formance for all ranging cycles exhibit no significant differences beyond 
80 s. 

Fig. 8. Trajectories of VAs and estimated position in the open space 
environment. 

Fig. 9. Trajectories of VAs and estimated position in the office environment.  

Fig. 10. Positioning error in the open space environment.  

Fig. 11. Positioning error in the office environment.  
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Fig. 15 shows position estimation accuracy over time using adaptive 
ranging. Initially there is no difference because adaptive ranging also 
functions with the short period (100 ms). Adaptive ranging changes into 
long period mode (1000 ms) after 37 s, which nevertheless guarantees 
the same level of accuracy. However, thwe mobile device exited the 
room into the hallway at 70 s, and the concrete wall blocks ranging from 
the tag. From this time until 85 s, when the signal is completely blocked, 
the ranging value with error passed to Multipath will increase the 
ranging error. On the other hand, adaptive ranging performs intelli-
gently, being aware of the situation, and ignores VAs created in the 
erroneous environment. The traditional ranging method, without 
adaptive ranging, induces errors which result from incorrect ranging 
measurements. 

Fig. 16 shows the number of virtual anchors created by LUVI. Similar 
to the case of position accuracy, creation of virtual anchor significantly 
reduces from about 37 s, while new anchors created from 70 s are also in 
lower numbers, due to reduced sampling for NLOS identification. 
Therefore, LUVI’s adaptive ranging can not only robustly adjust to harsh 
NLOS environments, but also reduce communication complexity and 
power resources. 

7. Conclusions 

This paper proposes LUVI, a lightweight relative positioning method 
for indoor positioning using integrated UWB and VIO environments. 
LUVI’s objective is to reduce resource consumption during ranging, 

Fig. 12. Elapsed time to calculate tag positions.  

Fig. 13. Positioning error according to the angle relative to the target.  

Fig. 14. Position estimation error by period.  

Fig. 15. Adaptive ranging effects on error.  

Fig. 16. Adaptive ranging effects on VA creation.  
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while providing robust performance in obstacle-induced noisy envi-
ronments. In particular, LUVI offers a practical implementation for 
future practical applications, thanks to recent flagship mobile devices 
equipped with UWB chips. 

Various current applications, such as Apple’s Find My with Air tag 
[11], estimate approximate target positions using AoA, which allows 
users to estimate measuring device angle simultaneously with ranging. 
In contrast, LUVI collects VA and uses the TDoA algorithm to estimate 
target angle and actual position. However, position estimation via AoA 
can be significantly degraded in NLOS environments, due to multipath 
propagation. Thus, LUVI and AoA based positioning can inter-operate, 
or AoA-based positioning can be augmented into the LUVI to further 
strengthen positioning accuracy and improve user experience, rather 
than being comparative counterparts. 

LUVI incorporates VA selection and adaptive ranging, which not only 
reduces computing complexity to linear order, but also dramatically 
reduces power consumption during wireless communication for 
ranging. This also helps to obtain better positioning accuracy and 
robustness against NLOS environments. Thus, the proposed technology 
can be applied with low cost and high efficiency in various fields, 
including disaster response, facility management, and indoor com-
merce. For future research, we will consider more complex mobile en-
vironments where multiple mobile devices may exist. In such cases, as 
each device maintains and calculates the location of tags in a local 
manner, each VA map is incompatible to each other. To solve this 
problem, intelligent real-time map merging algorithms are required 
through cloud or ad hoc networks. 
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