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Highlights

Hybridization of model-specific and model-agnostic methods for
interpretability of Neural network predictions: Application to a
power plant

Tina Danesh, Rachid Ouaret, Pascal Floquet, Stephane Negny

• Hybridizing model-specific and model-agnostic to enhance the inter-
pretability of ANN predictions.

• Reconciling the prediction accuracy and the interpretability for a global
approach to making systems more flexible

• Explaining the functionality of the model-specific (partial derivatives)
approach and model-agnostic (PDP, ICE, ALE) for interpretability
purposes.

• Understanding how variations (quantitatively and qualitatively) in in-
puts affect the predictions of an ANN for an engineering application.
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Abstract

Advanced computing performance and machine learning (ML) accuracy have
pushed engineers and researchers to consider more and more complex math-
ematical models. Methods such as Deep Neural Networks have become in-
creasingly ubiquitous. However, the problem of the interpretability of ma-
chine learning predictions in a decision process has been identified as a hot
topic in several engineering fields, leading to confusion in various commu-
nities. This paper discusses a methodological framework of hybrid inter-
pretability tools in neural network prediction for an engineering application.
These tools analyze a decision’s consequences under different circumstances
and situations. The aim is to reconcile the ML prediction accuracy and the
interpretability for a global approach to making systems more flexible. In this
study, the methods used to deal with the interpretability of neural network
predictions have been treated from two perspectives: (i) model-specific as
partial derivatives and (ii) model-agnostic methods. The latter tools could
be used for any ML model prediction. In order to visualize and explain
the inputs’ impacts on prediction results, Partial Dependence Plots (PDP),
Individual Conditional Expectation (ICE), and Accumulated Local Effects
(ALE) are used and compared. The prediction of the electrical power (PE)
output of a combined cycle power plant has been chosen to demonstrate
the feasibility of these methods under real operating conditions. The results
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show that the most influential input parameter among ambient temperature
(AT), atmospheric pressure (AP)), vacuum (V), and relative humidity (RH)
is AT. The visualization outputs allow us to identify the direction (positive
or negative) and the form (linear, nonlinear, random, stepwise) of the rela-
tionship between the input variables and the model’s output. The results of
the interpretation are coherent with the literature studies.

Keywords: Machine learning, Interpretability, Sensitivity analysis,
model-specific, Model-agnostic, Partial dependence plots, Individual
Conditional Expectation, Accumulated local effects
PACS: 0000, 1111
2000 MSC: 0000, 1111

1. Introduction

The discipline of process design and control has made tremendous ad-
vances in the last three decades with the advent of computer computation
capabilities of complex processes. These advances have made it possible to
analyze and predict the behaviors of several complex systems (Ramirez, 1997;
Bequette, 2003). There are mainly two different visions: equation-based
knowledge models, such as physical-chemical models known as ”white box”
models, and data-oriented approaches, which are primarily based on Machine
Learning (ML) algorithms known as ”black-box” models. The predictions
of equation-based methods are easy to understand and interpret since the
model’s assumptions and the relationships between different variables have
physical meanings. In addition, several studies have been performed on them,
so they are understandable and well-established by the community.

From the engineering perspective, the detailed description of the whole
system requires complex and often highly parameterized models. In addition,
numerous assumptions with many nonlinear equations should be made to
analyze and predict accurately, particularly for complex dynamical systems.
Hence, it is time-consuming and takes effort to analyze a real application. On
the other side, engineering problems have become complicated and consist of
more data to analyze, especially for a large system with nonlinear behavior.
Furthermore, features such as uncertainty, multi-scale, time lag, and large
variable space dimensions affect the model prediction and hence any model-
based inference for guiding policies in the real world. Data-oriented and
ML techniques would be helpful to deal with these barriers (Kesgin and
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Heperkan, 2005). In parallel, machine learning has been heavily researched
and widely used in many areas, such as process engineering application (Lee
et al., 2018; Agarwal et al., 2021), and optimization (Ning and You, 2019;
Xia et al., 2022; Qazani et al., 2022). Extensive literature attests to the
superiority of black-box ML algorithms in minimizing predictive errors, both
from a theoretical (Cybenko, 1989; Hornik, 1991; Park and Sandberg, 1991;
Leshno et al., 1993) and an applied perspective (Sahoo et al., 2017; Li et al.,
2019). The success of ML in many applications is grounded in its powerful
capability for prediction purposes with high accuracy. However, some of
them are still hard to interpret regarding the relationship between predictors
and model outcomes (Moradi and Samwald, 2021). At the same time, they
suffer from a lack of interpretability and explainability because they function
without process knowledge dependency.

ML techniques are applied mainly as alternatives to physical approaches,
considering the increasing volume of data in real-world situations, while
the model development process is laborious and time-consuming (Chen and
Zhang, 2014; Venkatasubramanian et al., 2003c,a,b; Bhakte et al., 2022).
These data-oriented models can be applied to extract useful information and
support decision-makers. One of the most popular ML algorithms for con-
tinuous output predictions is the Artificial Neural Network (ANN), thanks
to the universal approximation theorem (Hornik, 1991). Among ML tech-
niques, Deep Neural Networks (DNNs) have become popular for predictions
and control purposes (Amari, 1967; Schmidhuber, 2015).

The artificial neural network has some advantages that include providing
predictive benefits compared to other models, such as detecting complicated
nonlinear relationships between dependent and independent variables. Its
disadvantages include the complexity of neural networks, which makes it
hard to understand why it predicts successfully and when we can trust it.

A recent advanced research topic in ML methods, especially in neural
networks, is to find a way to obtain information and gain the ability to inter-
pret and explain how the input variables affect the output variable to help
decision-makers that is called interpretability. Therefore, interpretability in
the ML community and sensitivity analysis in the engineering community
are concerned with practically the same issues and target the same objec-
tives when one examines the literature of two disciplines, although they could
be considered as distinct concepts. Thus, we find practically the same vo-
cabulary evolving in two different environments:
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• The concept of sensitivity has been widely developed in the field of
mathematical applications in engineering (Sobol, 1998; Saltelli, 2002;
Saltelli et al., 2008, 2010). It refers to the study of how changes in
input variables affect the output or predictions of a model. It involves
systematically varying the values of input variables within a specified
range and observing the corresponding changes in the output. In addi-
tion, it helps rank the most influential input variables on the model’s
output. By conducting sensitivity analysis, one can gain insights into
how the model responds to changes in input variables and identify po-
tential sources of uncertainty or risk in the model’s predictions.

• Interest in ML was mainly focused on predictive performance, and it
is only recently that the problem of interpretability and explaining ML
prediction has been posed as a fundamental issue in the evaluation
of black-box models (Simonyan et al., 2013; Shrikumar et al., 2016;
Ribeiro et al., 2016a). The interpretability of prediction problems is
defined as the process of extracting relevant knowledge from a model
about the learned relationships between features and model outputs.
It is important in many real-world applications, where decision-makers
need to understand the reasons behind a model’s predictions to gain
trust, make informed decisions, and ensure compliance with regula-
tions. The tools that make the model interpretable have the same
goals as the sensitivity analysis; such as analyzing and prioritizing the
model’s parameters, recognizing the less effective parameters to de-
crease the dimension and simplify the problem, and minimizing the
variation of the most influential parameters to reduce the dispersion of
the model output.

In brief, there are advantages to both interpretability tools and sensi-
tivity analysis. Both methods are useful for comprehending and evaluating
machine learning models, and the choice of one over the other depends on
the analysis’s particular objectives, circumstances, and needs. These aspects
have been addressed by hybridization model-specific and model-agnostic for
neural network predictions.

This study is carried out on a Combined Cycle Power Plant (CCPP) as
a real-world application. A CCPP generates electrical power while having
relatively little gas emissions. In order to respond to PE demands and en-
hance the efficiency of the power plant, the decision-maker wants to know
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the most influential input variables and the impact of these variables. So
a dataset that contains 9568 data points was collected from a CCPP over
six years (2006-2011)(Tüfekci, 2014). Tüfekci tested and compared some
machine learning regression methods to extend a predictive model for an
electrical power output of the CCPP. The paper evaluated the prediction
accuracy by Mean Absolute Error (MAE) and Root Mean Squared Error
(RMSE) for continuous variables. A different ML method for prediction
is chosen as Tüfekci, as hyper-parameter analysis is performed for Multi-
Layer Perceptron (MLP), resulting in lower RMSEs compared to the best
ML method found in (Tüfekci, 2014). The Tüfekci’s paper does not focus on
the interpretability aspects of the applied ML methods.

The contributions of our paper include:

• Hybridizing model-specific and model-agnostic to enhance the inter-
pretability of ANN predictions. More precisely, it is a question of in-
tegrating sensitivity analyses based on the partial derivatives of neural
networks and the application of current interpretability methods.

• Explaining the functionality of the model-specific (partial derivatives)
approach and model-agnostic (PDP, ICE, ALE) for interpretability
purposes.

• Understanding how variations (quantitatively and qualitatively) in in-
puts affect the predictions of supervised ML predictions for a power
plant application. This part is fundamental because it would allow the
engineers to act on the most important variables and identify the in-
stability regimes in the studied system. Various ongoing changes in the
power system are impacting the need for power production.

The rest of this paper is organized as follows. Section 2 is about the
history of the interpretability concept. In Section 3, neural network sensi-
tivity and interpretation tools are presented, whereas the experimental and
simulation work is given in Section 4. Section 5 is dedicated to analyzing
and discussing the results. Finally, we conclude in Section 6.

2. Related work

Despite the impressive accuracy of ML models, it is not the only factor
that matters. A thorough and complete understanding of the model and
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the relationships between parameters is crucial for real-world applications.
The necessity of interpretability is apparent in sensitive fields like process
engineering where a proper understanding of ML is essential and obvious.

The quality of the product or the efficiency of the process could be en-
hanced by process monitoring, such as fault detection and diagnosis. During
the past decades, traditional multivariate statistical methods such as prin-
cipal component analysis (PCA) widely employed in fault detection and di-
agnosis (Venkatasubramanian et al., 2003b; Harmouche et al., 2014, 2015;
Gajjar and Palazoglu, 2016). When employing these linear approaches, the
process’ inherent non-linearity presents difficulties, and non-linear procedures
can offer more accuracy. To this purpose, advanced ML techniques, such as
neural networks, have significantly outperformed older ones and can depict
and recognize non-linearity present in the data.

In the recent past, artificial neural networks (ANNs) have drawn a lot
of interest in process engineering. The multi-layer perceptron (MLP), which
is straightforward and flexible in managing numerous inputs and multiple
outputs, is one of the default options for process engineering applications.
The ML techniques’ effectiveness stems from the complicated mathematical
changes they use, but this sacrifices interpretability and explainability. Due
to its inherent complexity, it is challenging to understand the reasoning be-
hind a certain trained model’s decision or prediction. For example, there are
different studies that choose the Tennessee Eastman process as a case study
and aim to enhance the interpretability and explainability of their model
(Agarwal et al., 2021; Bhakte et al., 2022). Lack of interpretability and ex-
plainability problem doesn’t only affect chemical engineering applications; it
also occurs whenever an ML algorithm’s output must be applied by a hu-
man. This problem gave rise to the concepts of model interpretability and
explainability.

As models might be simple to grasp in specific contexts but not in others,
interpretability is tricky to define. While numerous papers have discussed
interpretable models in different fields, the ML community lacks a common
framework to address what features make a model interpretable and what
we aim to gain with interpretable results. Such a framework is proposed
by Lipton et al. (2016) within which we may discuss and evaluate models’
interpretability. The authors describe both what we want to obtain from
interpretable machine learning systems and how interpretability may be at-
tained. Similar to this, Doshi-Velez and Kim (2017) present a methodological
framework for considering how interpretability techniques might be assessed.
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ML methods can be used in decision-making, although decision-makers
want to understand the reasons and explanations behind the predictions since
they do not blindly trust the ML models. Therefore, one of the driving fac-
tors of explainability is trust. Other driving factors include causality, trans-
ferability, informativeness (Lipton, 2018), fair and ethical decision-making
(Goodman and Flaxman, 2017), accountability (Freitas, 2014), making ad-
justments (Selvaraju et al., 2017) and proxy functionality (Doshi-Velez and
Kim, 2017).

Many alternative methods have been offered to explain ML predictions
(Molnar, 2019). Some attempt to explain the whole model or replace it with
an intrinsically intelligible model, such as a decision tree (Freitas, 2014).
There are other techniques that attempt to direct the model throughout the
learning process to a more interpretable state (Burkart et al., 2019; Schaaf
et al., 2019). Other techniques focus on only explaining particular predic-
tions, such as by highlighting important features (Ribeiro et al., 2016a) or
comparing different decisions (Wachter et al., 2017).

The interpretability could be handled by using model-specific (sensitiv-
ity measures) as a quantitative method and model-agnostic such as Partial
Dependence Plots (PDP) (Friedman, 2001), and Accumulated Local Effects
(ALE) (Apley and Zhu, 2020) as qualitative methods. Figure 1 shows the
machine learning interpretability procedure overview. Firstly, the goal is to
predict using a supervised ML model such as ANN. In order to give valu-
able information to the decision-maker, the interpretability tools attempt to
address the question of how the inputs impact the model’s predictive perfor-
mance.

One of the sensitivity analysis methods that could help gain helpful in-
formation from the neural networks is the partial derivatives method (White
and Racine, 2001). Analytically calculating the derivatives gives more ro-
bust diagnostic information since it depends on neural network prediction
efficiency. The derivatives will be the same and will not rely on the training
conditions and the network structure until the neural network predicts the
output variable with high accuracy (Beck, 2018).

As mentioned before, it is not simple to interpret some of the machine
learning models. The general interpretative framework depends on the mod-
els. For example, it is possible and straightforward in linear regression to
understand the how and the why given the statistical significance of the
weights, so the interpretation of the linear regression model can be assessed
by its coefficients. The linear regression coefficients (e.g. β1, β2, ..., βp)
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Figure 1: Overview of Machine Learning interpretability.

associated with continuous predictors x1, x2, ..., xp is the difference in the
predicted value of the response variable for each one-unit change in the pre-
dictor variable, assuming all other predictor variables are held constant. It
is difficult to extrapolate this process to non-linear models. That is why
they are called model-specific interpretations. These approaches have been
designed specifically for a given model. Recently, some tools have emerged in
ML that are supposed to remove this barrier to expressing the interpretation
of machine learning models, whatever the learning model used. These tools
are called model-agnostic tools.

The goal of model-agnostic is to create methods that can be used with
any machine learning model, regardless of its underlying architecture or algo-
rithms. Hence, rather than being limited to a particular model or framework,
the approaches created in this subject are intended to be generically usable
across a variety of models (Du et al., 2019).

When it is preferable to have the ability to employ a range of models to
solve a particular problem and when the choice of model is not predefined or
fixed, a model-agnostic approach is very beneficial. Researchers and practi-
tioners can generate more flexible and adaptive solutions to situations that
may call for many models or various methods throughout time by establish-
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ing procedures that are not dependent on any specific model. This method
also makes it easier to compare and assess several models based on how well
they function when applied to a particular situation, without the requirement
for method-specific expertise (Ribeiro et al., 2016b; Molnar, 2019).

Model-agnostic methods could effectively interpret supervised ML models
by separating the explanations from the machine learning model (Ribeiro
et al., 2016b). Model-agnostic methods are distinguished into local and global
methods. The Partial Dependance Plots (PDPs), Individual Conditional
Expectation (ICE) plots, and Accumulated Local Effects (ALE) Plots are
some model-agnostic techniques (Friedman, 2001; Apley and Zhu, 2020).

3. Neural Network Sensitivity and interpretability

Figure 2 summarizes the methodological scheme of the study. This method-
ology consists of three main parts: Prediction problem (A), Methodology (B),
and Result (C). Part A corresponds to the description of the prediction prob-
lem. In this part, the attempt is made to answer the following question: how
do predictor variables impact the predictions of neural network regression?
Specifically, there are 9568 data points of four predictor variables and one
output variable. The ANN is performed on the data to predict electrical
power output, though it lacks explainability and interpretability. Part B
corresponds to the methods included in this paper to solve the problem in
Part A. The results and comparisons from each method will be presented
in Part C. This section will explain Part B in detail. In the first step, the
hyper-parameter analysis is performed through partial derivatives and sen-
sitivity measures to choose the appropriate number of layers and neurons in
each layer. Then, by applying the visual aspects of model-agnostic tools, the
input’s impact on the variability of outputs will be investigated.

3.1. ANN sensitivity through partial derivatives

Sensitivity analysis could be performed on the neural networks using the
partial derivatives method. This method comprises calculating the deriva-
tive of the output according to the inputs of the neural network (Pizarroso
et al., 2020). These partial derivatives are considered sensitivity and can be
calculated using the following equation:

sin |xm =
∂zn
∂xi

(xm) (1)
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Figure 2: Overview of the methodology used in the study

Where sin|xm refers to the sensitivity of the nth neuron’s output in the output
layer according to the ith neuron’s input in the input layer that is calculated
in xm, and xm is the m sample of the dataset that the sensitivity analysis
is performed on. In order to compute the sensitivity of the inner layers, the
chain rule is applied to the partial derivatives. The related equations of the
partial derivatives of the inner layers are defined by: (i) the derivative of yln
regarding zl−1

i is ∂yln
∂zl−1

i

= wl
ni that represents the weight of the connection

between the nth neuron in the lth layer and the ith neuron in the (l − 1)th

layer, and (ii) the derivative of zln regarding yli is
∂zln
∂yli

∣∣∣zli = ∂AF l
n

∂yli

(
yli
)
that ∂AF l

n

∂yli

refers to the partial derivative of the activation function of the nth neuron in
the lth layer regarding the nth neuron’s input in the lth layer estimated for
the input yli of the ith neuron in the lth layer.

3.2. Sensitivity measures

After calculating the sensitivity for each variable and sample, different
measures could be applied to analyze and interpret the results. In the general
case, the following sensitivity measures are used: (i)Mean sensitivity of the
nth neuron’s output in the output layer regarding the ith input variable,
(ii)Standard deviation (σ) sensitivity of the nth neuron’s output in the output
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layer regarding the ith input variable. (iii)Mean squared sensitivity of the nth

neuron’s output in the output layer regarding the ith input variable (Yeh and
Cheng, 2010). The related measures are presented under two cases: Single
or Multi-target regression.

• Mean sensitivity

Single target regression:

Savg
in =

∑m
j=1 sin|xj

m
(2)

Multi-target regression:

Savg
i =

∑ml

n=1 S
avg
in

mL
(3)

• Standard deviation sensitivity

Single target regression:

Ssd
in = σ

(
sin|xj

)
; jϵ1, ...,m (4)

Multi-target regression:

Ssd
i =

√√√√∑ml

n=1

((
Ssd
in

)2
+ (Savg

in − Savg
i )2

)
mL

(5)

• Mean squared sensitivity

Single target regression:

Ssq
in =

√∑M
j=1

(
sin|xj

)2
m

(6)

Multi-target regression:

Ssq
i =

∑ml

n=1 S
sq
in

mL
(7)
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3.3. Partial Dependence Plots and Individual Conditional Expectation

Partial Dependence Plot (PDP) (Friedman, 2001) is an ideal graphical
tool to analyze the impact of some input variables on the dependent variable
when using nonlinear models such as an ANN, a random forest, or some
gradient boosting. This is why they are considered as a model-agnostic tool.
The PDP highlights the change in the average predicted value as the spec-
ified feature(s) vary over their marginal distribution. For individual data
instances, the plots are considered as Individual Conditional Expectation
(ICE) (Goldstein et al., 2015). The drawback of ICE plots is that they start
with various projections, so it can often be challenging to determine whether
the ICE curves differ across individuals. This issue can be overcome by
centering the curves at a particular feature point, and the difference in the
prediction at this point is all that will be shown. The centered ICE (c-ICE)
plot is the name of the resultant plot. In this study, the c-ICE plot is used,
which makes heterogeneity more obvious and emphasizes findings that differ
from the general pattern. For example, in terms of MLP learning, all that
is obtained is the importance of the weight. It is relatively simple to know
which node connections significantly influence the outcome; it is not good
that the direction of effect is unknown. The PDP and ICE are intuitive and
easy-to-understand visualizations of the effect of the inputs on the predicted
outcome.

Assume that g(x) is a black-box supervised learning model; here is a
neural network in our study. The fitted model is named ĝ(x). The upper
case X is used to identify random variables and the lower case to identify
specific values of the random variables.

The xf is the feature for which we want to know its effect on the prediction
for plotting the partial dependence plots, and X\f are the other features that
exist in our model except the xf , which are considered as random variables.
The combination of feature vectors xf and x\f is the total feature space X.

The partial dependence function is defined as:

ĝf,PDP (xf ) = EX\f

[
ĝ
(
xf , X\f

)]
=

∫
X\f

ĝ
(
xf , X\f

)
dP (X\f ) (8)

Where each subset of predictors f has its own partial dependence function
gf , which gives the average value of g when xf is fixed and X\f varies over
its marginal distribution dP (X\f ). The ĝf is the expectation of g over the
marginal distribution of all variables other than Xf .
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In practice, the estimation of Equation 8 is calculated by averaging over
the training data which is known as the Monte Carlo method:

ĝf (xf ) =
1

m

m∑
a=1

g(xf , x
(a)
\f ) (9)

Where x
(1)
\f , ..., x

(m)
\f represent the actual feature values that are observed in

the training data, and m is the number of instances in the dataset. In PDP,
it is assumed that the features in set \f are not correlated with the features
in set f ; if not, the average calculated for PDP may contain data points that
are very unlikely or even impossible. Friedman’s partial dependence plot
aims to visualize the marginal effect of a given predictor towards the model
outcome by plotting out the average model outcome in terms of different
values of the predictor (Friedman, 2001).

While PDP provides the average effect of a feature of the predictions over
the marginal distribution, ICE plots are a method to disaggregate these av-
erages. ICE plots visualize the functional relationship between the predicted
response and the feature separately for each instance. In other words, a PDP
averages the individual lines of an ICE plot. In some of our experiments, we
used normalized variables.

3.4. Accumulated Local Effects plots

Accumulated Local Effects (ALE) explain the average impact of features
on the prediction of an ML model (Apley and Zhu, 2020). They are a faster
option than partial dependence plots. ALE methods could work while the
features are dependent, although the biggest problem of PDPs is the assump-
tion of feature independence.

As mentioned before, for each f ∈ {1, ..., F}, let X\f illustrate the subset
of (F − 1) predictors excepting Xf . The ALE main effect of predictor xf is
defined as:

ĝf,ALE (xf ) =

∫ xf

LB0,f

E
[
ĝf

(
Xf , X\f

)
|Xf = LBf

]
dLBf − C (10)

Where, ĝf
(
Xf , X\f

)
= ∂ĝ(X1,...,XF )

∂Xf
(local effect of Xf on ĝf ) and LB0,f refers

to the approximation lower bound ofXf , and it affects the vertical translation
of the ALE plot. C is considered as a constant that aims to make the mean
of ĝf,ALE (xf ) equal to zero concerning the marginal distribution of Xf or to
center the plot vertically.
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There are some differences in the ALE formulation compared to the PDP
formulation, such as:

• ALE averages the predictions conditional on each grid value of the
interested feature, and PDP presumes the marginal distribution at each
grid value.

• The changes of predictions, not the predictions themselves, are aver-
aged, and the change is defined as the partial derivative.

• The equation has the additional integral over LB0,f that refers to an
approximate lower bound of Xf .

• The changes of predictions, not the predictions themselves, are aver-
aged, and the change is defined as the partial derivative.

In order to calculate the estimation of Equation 10, first, features are cate-
gorized into many intervals, and then the differences in the predictions are
calculated. This procedure could approximate the derivatives. This proce-
dure’s advantage is that it can work for models with no derivatives. The
estimated equation that are proposed by Apley and Zhu (2020) is as follows:
Estimation of ALE main effect:

ˆ̃gf,ALE (xf ) =

uf (x)∑
u=1

1

mf (u)

∑
t:xt,f∈Nf (u)

[
ĝ(LBu,f , xt,\f )− ĝ(LBu−1,f , xt,\f )

]
− C

(11)
Where for each u ∈ {1, 2, ..., U}, mf (u) refers to the number of training

observation that falls into uth interval Mf (u). For each f ∈ {1, 2, ..., F},
{Mf (u) = (LBu−1,f , LBu,f ];u = 1, 2, ..., U} refers to an enough good parti-
tion of the sample range of {xt,f : t = 1, 2, ...,m} into U intervals (U is an
input argument in the ALEPlot function, and generally is chosen around 100,
larger values we often get a better result). LBu,f is assumed as the u

U
quantile

of the empirical distribution of {xt,f : t = 1, 2, ...,m} that LB0,f is considered
below the smallest observation, and LBU,f is considered as the largest obser-
vation. The constant is chosen in order to have 1

m

∑m
t=1 ĝf,ALE (xt,f ) = 0. The

second-order ALE equations and estimation are explained in the appendix.

3.5. Example using simulated data

Using a simple simulation, in which the impact of each input on the
output of a deterministic model is known a priori. After a fitting step using
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ŷ

−2

−1

0

1

2

−2 −1 0 1 2

x4

ŷ
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Figure 3: Illustration of fitted and predicted values of the ANN model using 3 layers and
6 neurons in each layer for the simulated data.

The estimated PDP and ALE of each input capture the shape of the rela-
tionship: linear, quadratic, sigmoid, and random (no impact).

a supervised machine learning model, the goal of PDP and ALE is to be
able to capture the non-linear relationships between the inputs and outputs
of an estimated model. To do this, we have three independent deterministic
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variables (x1, x2, and x3) and one random variable with no impact on y. The
global model is described in the following Equation 12:

y = 2.5x1 + 1.4x2
2 + 15

(
exp (1 + 5x3)

exp (−1 + 5x3)

)
+ εi (12)

The three deterministic variables are simulated from a uniform distri-
bution on the interval [−3, 3] and the εi from a normal distribution, εi ∼
N (0, 1). From the model (12), n = 5000 observations are generated, and a
neural network (3 layers with 6 neurons in each layer) is trained with scaled
data for the training set that is considered 85% of the dataset (4250) and
them testing with 15% of the dataset (750). The fitted and predicted values
of the ANN are shown in Figure 3-(a) and 3-(b). These plots prove the ac-
curacy of the model. In parallel, we would like to point out that the original
and main focus of the paper is on the interpretability point of view. The PDP
and ALE are presented in Figures 3-(c) and 3-(d), respectively. Both PDP
(with ICE plots) and ALE main effects accurately capture the deterministic
(linear for x1, quadratic for x2, sigmoid for x3) and random (for εi) effects.
Note that the detection of interactions due to correlations between predictor
variables is not always efficient with PDP and ICE plots. This is why ALE’s
main effects are preferred in a real application.

4. Case Study and data sets

As a real-world application of a complex dynamical system, a Combined
Cycle Power Plant (CCPP) is considered. Generally, a CCPP contains gas
turbines (GT), steam turbines (ST), and heat recovery steam generators
(HRSG). The interactions between different parts of the system are complex.
Sensitivity analyses, such as those discussed in this article, are therefore
necessary for flexible power generation. Flexibility seeks the ability of the
system to adapt to variability and uncertainty in demand and generation.
Various ongoing changes in the power system are impacting the need for
power production.

In the CCPP application, the gas turbine is one of the most efficient de-
vices to convert gas fuels to mechanical and electrical power. Lately, the
efficiency of the simple cycle has increased, and natural gas prices have de-
creased. As a result, gas turbines have been more widely used for base-load
power generation, particularly in combined cycle mode, where waste heat is
recovered to produce additional electricity.
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Figure 4: The schematic of combined cycle power plant layout. It contains two gas tur-
bines, a steam turbine, and heat recovery steam generators. The figure shows the mea-
surement points of the input and output variables.

A CCPP produces high power outputs efficiently and releases relatively
low exhaust gases. Other types of power plants could generate only 33%
electricity and the remaining 67% waste. In comparison, CCPP generates
68% of electricity. Due to its advantages, CCPP is increasingly used to
satisfy the electricity demand. In order to adjust production to the variability
of electricity demand, an efficient predictive system is desired, along with
an understanding of the variables that need to be acted upon to increase
flexibility. Prediction can be provided by machine learning, but sensitivity
tools must be used to understand how input variables affect production.

Consequently, predicting and interpreting the prediction model of a power
plant has been investigated as a crucial real-world problem. Knowing the in-
fluential factors to accurately predict an electrical power output is essential
for a power plant’s efficiency. It is beneficial for maximizing the income from
the available megawatt hours (MWh). The reliability and sustainability of
a power plant are significantly related to predicting its power generation,
especially when there are some high efficiency and contractual liability con-
straints.

Figure 4 illustrates the CCPP and the sensors’ locations within the CCPP
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Figure 5: Overview of the result presentation. There are two steps to enhance inter-
pretability. The hybridization is based on two main sides: the first one is based on partial
derivatives methods of ANN (model-specific), which gives a quantitative description of sen-
sitivity, and the second one is based on model-agnostic (PDP, ICE, ALE), which provides
a qualitative description.

installation. The CCPP is affected by ambient conditions, mostly ambient
temperature (AT), atmospheric pressure (AP), and relative humidity (RH).
However, the steam turbine is affected by the exhaust steam pressure (or
vacuum, V). These parameters could be considered as input variables for
the two turbines. The electrical power, generated by both gas and steam
turbines, is considered as a target variable. All the input variables and the
target variable are average hourly data that are measured by the sensors
located in the measurement points in Figure 4. The measured data consists
of 9568 data points collected when the plant worked with a full load over 674
different days (Tüfekci, 2014).

The significant difference with Tüfekci’s paper is that we hybridize model-
specific and model-agnostic methods in the framework of supervised machine
learning approaches to understand and visualize the effects of the predictor
variables on the predicted response.

5. Results and discussion

Figure 5 shows the overview of the result section. The first part of our
analysis focuses on optimizing the ANN model’s hyper-parameters, namely
the number of layers and neurons in each layer. In that respect, the impact
of these parameters on the sensitivity measures was evaluated. After vali-
dating the accuracy of ANN’s predictions, sensitivity measures of the model
have been applied to assess the impact of input parameters on the output
variability (Section 5.1). This step could be considered a model-specific step
that gives us a quantitative description. After that, we perform PDP, c-ICE,
and ALE plots to visualize and describe the predictors’ effects with the ANN
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model with different architectures as a qualitative description. We use two
different architectures to study their impact on our results (Sections 5.2 and
5.3).

In the case study, there are four input parameters (a few numbers), so
the study is performed on all of them. But for systems with numerous vari-
ables, the permutation feature importance method could be applied first to
prioritize the variables. The idea is fairly simple: the increase in the model’s
prediction error is calculated after permuting a feature to determine how
important it is. If changing a feature’s values causes the model error to rise
and the feature was used by the model to make the prediction, the feature
is considered ”important.” If changing a feature’s values causes the model
error to remain constant, the feature was disregarded for the prediction, mak-
ing it ”unimportant” (Fisher et al., 2019). After that, other model-agnostic
methods could be applied to know how they affect the output and what the
relationship between them is (Molnar, 2019).

All the results, simulations, and plots are obtained from the R software
(Team et al., 2013). The ANN regressions and PDP results are obtained
thanks to pdp (Greenwell, 2017) and RSNNS (Bergmeir et al., 2012) R pack-
ages.

5.1. MLP Hyper-parameters analyses

Several tests of the MLP hyper-parameter have been applied to optimize
the network; the number of hidden layers from 2 to 7 and the number of
neurons from 2 to 10 for each layer were changed. The same number of
neurons is considered for all layers. Seven layers maximum is chosen because
the mean sensitivity values do not change remarkably after 6 or 7 layers,
and ten neurons maximum is chosen because adding more neurons would be
time-consuming.

The conclusions from each sensitivity measure were identical. The mean
sensitivity result is shown as an example. Figure 6 depicts the mean sen-
sitivity of the neural networks as a function of the number of neurons and
hidden layers. It seems that by increasing the number of layers, the mean
sensitivity tends to zero intensely at first and then almost keeps a constant
value as the number increases.

The foremost observation in Figure 6 is that three of our input parame-
ters (AT, V, and RH) have pretty similar behavior. However, atmospheric
pressure does not give the same result as others. From Figure 6, it can be
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Figure 6: The Mean sensitivities obtained on the MLP neural network’s output as a
function of the number of neurons and hidden layers. The lowest sensitivity shows the
adequate number of neurons and layers.

concluded that three hidden layers and six neurons would match low sen-
sitivity in the output (RMSE = 4.0662). Accordingly, these values for the
MLP’s hyper-parameters are considered.

5.2. PDP and ICE plots

Figures 7 and 8 show the PDP and c-ICE simultaneously for different
neural network architectures when the data are normalized. Figure 7 presents
PDP and c-ICE for an ANN prediction with one layer and fifty neurons, and
Figure 8 presents PDP and c-ICE for an MLP with three layers and six
neurons.

Some assumptions for PDP should be met to have the ability to show
the way an input impacts an outcome variable. More accurately, this plot
discovers the relationship between the predicted response and the selected
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Figure 7: Partial dependence plots (red) and centred individual conditional expectation
(c-ICE) plots (black) of a neural network (one layer and fifty neurons) for PE predictions.
The PDP and c-ICE are computed after the MLP learning for PE predictions. All variables
are standardized during the learning step and kept dimensionless in the PDP computations
step.

input variables (Molnar, 2019). The PDP shows the marginal effect of one
or two features on the predicted PE. It indicates whether the relationship
between the PE and input variables (AT, V, AP, and RH) is nonlinear,
monotonic, or more complex.

Figure 7 illustrates that the AT plot is the most complex figure among
these four inputs. It is divided into three parts. It is partly linear in the
first and third parts. In the middle, there is a complex variation. The curve
shape of AT reminds us of the inverse sigmoidal function (PE = α

1+βγ−AT for

0 < γ < 1) which is consistent with the earlier research (Arrieta and Lora,
2005). The AP plot is divided into two parts: the first part is almost linear,
and in the second part, it could be seen more complex values. The RH and
V plots are similar and partly linear.

In general, there are smoother results in Figure 7 than in Figure 8 for
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Figure 9: The 2D PDP of variables combination of ANN predictions (50 neurons and one
layer) for the CCPP data values. The gradient legend shows the sensitivity of the neural

network output P̂E (yhat) to the variability of two variables, with a uniform color bar.

c-ICE plots. For example, the sinusoidal turbulence on top of RH plots can
be seen. However, the same trend for PDPs is observed approximately. Con-
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Figure 10: The 2D PDP of variables combination of MLP neural network predictions (3
layers and 6 neurons) for the CCPP data values. The gradient legend shows the sensitivity

of the neural network output P̂E (yhat) to the variability of two variables, with a uniform
color bar.

sequently, PDP and c-ICE are MLP architecture-independent, i.e., changing
the hyper-parameters (neither hidden layer nor neurons) impacts the predic-
tion response behavior.

Figures 9 and 10 show the sensitivity of the output based on the vari-
ability of two input variables for both neural networks with one layer and
fifty neurons and three layers and six neurons, respectively. They are more
useful in comparing the effects and relations between two variables. These
figures illustrate which areas have a more or less high and homogeneous PE.
They show us that the output does not vary linearly with the simultaneous
variability of two variables and how high PE values can be achieved.

In the subplots of Figure 9 with the variability of AT and other input
variables (V, AP, and RH), the relation between PE and the variability of
two inputs is almost linear; increasing inputs makes PE decrease. The max-
imum values of PE could be reached when the temperature is lower than
15◦C. Furthermore, the same results for the variability of AT and other in-
put variables are obtained approximately (when the variables are low, we get
a higher PE). It could be concluded that AT is the most effective parameter
in our case. In the subplot with the variability of vacuum and atmospheric
pressure, PE is high when the atmospheric pressure is high. In the subplot
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with the vacuum and relative humidity variability, PE could obtain its max-
imum values when the vacuum is between 35 and 45 cm Hg and the relative
humidity is less than 30% or between 50% and 65%. The relation between
PE and the variability of atmospheric pressure and relative humidity is not
linear. We get a lower PE when AP is more than 1025 mbar. PE is nearly
independent of RH.

In the subplots of Figure 10 with the variability of ambient temperature
and other input variables (V, AP, and RH), the same result as in Figure 9 is
nearly achieved. The relation between PE and the variability of two inputs
is almost the same, and lower PE is obtained when the inputs are increased.
The maximum values of PE could be reached when the temperature is lower
than 10◦C. In the subplot with ambient temperature and relative humid-
ity variability, for RH less than 50%, PE is nearly independent of RH. In
the subplot with the variability of vacuum and atmospheric pressure, the
lowest part is observed when the highest value of input variables is present,
and the highest part is observed when the lowest value of input variables is
present. Variability in vacuum and relative humidity could affect the output
almost linearly. The subplot with the variability of relative humidity and
atmospheric pressure shows that the variation of these two variables does
not have too much effect on PE.

5.3. ALE plot

Figure 11 shows the ALE main-effect plot of MLP architecture. It reveals
the main effect of the input variables. The AT’s main effect has inverse
sigmoidal behavior. Increasing the AT makes PE decrease, which is coherent
with the previous studies (Arrieta and Lora, 2005). The RH main effect
behaves quadratically.

Figure 12 is the ALE second-order effect plot without the main effect of
each input variable. It reveals the interaction between input variables for an
MLP neural network with three layers and six neurons (for one layer and 50
neurons, see Figure B.14 in the appendix). The numbers on the contours
show the function values. The darker the chart color, the higher the function
value.

In Figure 12, there is lower interaction compared to Figure B.14, although
the critical and sensitive points remain the same. For example, in both
Figures 12 and B.14, the crucial point in the subplot AT-V is when AT is
around -1.5 and V is around +1 for normalized data. It can be concluded
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Figure 11: ALE main-effect plots for MLP neural network with 3 layers and 6 neurons for
scaled data
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that AT and V have the most interaction, and AP and RH have the most
negligible interaction, based on both Figures 12 and B.14.

6. Conclusion

The present study was designed to hybridize model-specific and model-
agnostic methods, which would allow reconciling the prediction accuracy and
the interpretability level and prove that these methods can be applied to any
engineering application. Two basic approaches have been tested: sensitivity
analysis through partial derivatives of ANN predictions as model-specific
to optimize the hyper-parameters of the ANN and PDP, ICE, and ALE as
model-agnostic methods for visualization and description aspects. The curves
exhibit the interaction shape between input and output variables and reveal
the most important input variables. Concerning the overall methodology,
one can ask: what if the process is applied with an alternative permutation,
i.e. the use of a model-agnostic for the selection of hyperparameters and a
model specific for the explanations? An experimental design will be needed
to cover all simulations. It will also require substantial computing resources
to run these simulations.

These techniques were applied to a full-load combined cycle power plant
to make systems more flexible. In the CCPP application, flexibility using
ML interpretability tools is designed as the ability to adapt to variability
and uncertainty in demand and production.

The functional relationship provided by these tools is an important model
for diagnostic techniques. However, there are still some deficiencies in the
PDP. It is not trustable in complex systems and data because its computation
requires averaging predictions of unrealistic artificial data instances if features
of a machine learning model are statistically not independent. ALE plots are
faster to compute than PDPs, but the equivalent of ICE curves presented for
the PD plots do not appear in ALE plots.

A further research objective will include the comparison of model-agnostic
methods for different temporal neural network architectures. For example,
Recurrent neural net (RNN) and Long short-term memory (LSTM) are used
in the field of deep learning for time series. Moreover, other model-agnostic
methods could be applied and compared, such as global surrogate models,
local interpretable model-agnostic explanations, and permutation feature im-
portance. Additionally, the interpretability of other machine learning meth-
ods, such as random forest and support vector machine, could be examined.
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Nomenclature

n Number of neurons

l Number of layers

m Number of sample

f, h Number of predictors or features

F Total number of predictors or features

u, v Number of interval

U, V Total number of interval

g(x) A black-box supervised learning model; here is a neural network

ĝ(x) The fitted neural network model

LB0,f The approximate lower bounds of Xf

LB0,h The approximate lower bounds of Xh

LBU,f The largest observation

X Random variables

x Specific values of the random variables

Savg Mean sensitivity

Ssd Standard deviation sensitivity

Ssq Mean squared sensitivity

AT Ambient Temperature in degrees Celsius

AP Atmospheric Pressure in mbar

V Vacuum in cm Hg

RH Relative Humidity in percentage

PE Electrical Power output in megawatts
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CCPP Combined Cycle Power Plant

P̂E Electrical Power output predictions using ANN

PDP Partial Dependence Plots

ICE Individual Conditional Expectation

c-ICE Centered Individual Conditional Expectation

ALE Accumulated Local Effects

Appendix A. ALE second-order formulation

To define the ALE second-order effects, for each pair of indices {f, h} ⊆
{1, ..., F}, let X\f,h illustrate the subset of (F − 2) predictors excepting
{Xf , Xh}. The ALE second-order effect of predictors {Xf , Xh} is defined
by the following equation:

ĝ{f,h},ALE (xf , xh) =∫ xh

LB0,h

∫ xf

LB0,f

E

[
∂2ĝ(X1, ..., XF )

∂Xf∂Xh

|Xf = LBf , Xh = LBh

]
dLBfdLBh

−ff (xf )− fh(xh)− C

(A.1)

Where, LB0,f and LB0,h refer to approximate lower bounds of Xf and
Xh, respectively. The functions of single variables Xf and Xh (ff (xf ) and
fh(xh)) and the constant aims to centralized ĝ{f,h},ALE (xf , xh) or has the
mean of equal to zero concerning the marginal distribution of Xf and Xh.

Estimation of ALE second-order effects for {Xf , Xh} at any (xf , xh) ∈
(LB0,f , LBU,f ]× (LB0,h, LBU,h]:

ˆ̃g{f,h},ALE (xf , xh) =

uf (xf )∑
u=1

vh(xh)∑
v=1

1

m{f,h}(u,v)∑
t:xt,{f,h}∈M{f,h}(u,v)

[ĝ(LBu,f , LBv,h, xt,\{f,h})− ĝ(LBu−1,f , LBv,h, xt,\{f,h})]−[
ĝ(LBu,f , LBv−1,h, xt,\{f,h})− ĝ(LBu−1,f , LBv−1,h, xt,\{f,h})

]
− C

(A.2)

28



𝐿𝐵0,𝑓 𝐿𝐵1,𝑓 𝐿𝐵U,𝑓𝐿𝐵U−1,𝑓…
𝐿𝐵0,ℎ

𝐿𝐵1,ℎ

𝐿𝐵V−1,ℎ

𝐿𝐵V,ℎ

…

𝑀𝑓(1) 𝑀𝑓(2)

…

… 𝑀𝑓(U − 1) 𝑀𝑓(U)

𝑀𝑙(1)

𝑀𝑙(2)

𝑀𝑙(V − 1)

𝑀𝑙(V)

𝑥𝑓

𝑥ℎ

𝑀 𝑓,ℎ (U − 1,2)

Figure A.13: Clarification of the notations utilized in estimating ALE second-order effects
adopted from (Apley and Zhu, 2020). Each of {Xf , Xh} are split up into U and V intervals
respectively, and rectangular cells of the grid come from their cross product.

Where the {Xf , Xh} space is split up into a grid of U×V rectangular cells
{Mf,h(u, v) = Mf (u)×Mh(v);u = 1, 2, ..., U ; v = 1, 2, ..., V } shown in Figure
A.13. For each u ∈ {1, 2, ..., U} and v ∈ {1, 2, ..., V }, mf,h(u, v) refers to the
number of training observation that falls into cell Mf,h(u, v). The constant
is chosen in order to center the ALE second-order effects estimation in two
directions.

Appendix B. More result

Figure B.14 reveals the interaction between input variables for a neural
network with fifty neurons. The interactions between AT and V since the
contour values change over a range of 2.5 units (from -2 to +0.5), which
is almost as large as the range for the main effect of AT (for scaled data).
Figure B.14 shows almost moderate interaction in subplots AT-AP and V-
AP. It demonstrates negligible interaction between other input variables.
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Figure B.14: ALE second-order effect plots for neural network with 50 neurons and scaled
data. The numbers on the contours represents the function values. The darker the chart
color, the higher the function value. All variables are scaled before MLP learning step.
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Tüfekci, P., 2014. Prediction of full load electrical power output of a base
load operated combined cycle power plant using machine learning methods.
International Journal of Electrical Power & Energy Systems 60, 126–140.

Venkatasubramanian, V., Rengaswamy, R., Kavuri, S.N., 2003a. A review
of process fault detection and diagnosis: Part ii: Qualitative models and
search strategies. Computers & chemical engineering 27, 313–326.

Venkatasubramanian, V., Rengaswamy, R., Kavuri, S.N., Yin, K., 2003b. A
review of process fault detection and diagnosis: Part iii: Process history
based methods. Computers & chemical engineering 27, 327–346.

Venkatasubramanian, V., Rengaswamy, R., Yin, K., Kavuri, S.N., 2003c.
A review of process fault detection and diagnosis: Part i: Quantitative
model-based methods. Computers & chemical engineering 27, 293–311.

Wachter, S., Mittelstadt, B., Russell, C., 2017. Counterfactual explanations
without opening the black box: Automated decisions and the gdpr. Harv.
JL & Tech. 31, 841.

White, H., Racine, J., 2001. Statistical inference, the bootstrap, and neural-
network modeling with application to foreign exchange rates. IEEE Trans-
actions on Neural Networks 12, 657–673.

Xia, Y., Yi, W., Zhang, D., 2022. Coupled extreme learning machine and par-
ticle swarm optimization variant for projectile aerodynamic identification.
Engineering Applications of Artificial Intelligence 114, 105100.

35



Yeh, I.C., Cheng, W.L., 2010. First and second order sensitivity analysis of
mlp. Neurocomputing 73, 2225–2233.

36


	Introduction
	Related work
	Neural Network Sensitivity and interpretability
	ANN sensitivity through partial derivatives
	Sensitivity measures
	Partial Dependence Plots and Individual Conditional Expectation
	Accumulated Local Effects plots
	Example using simulated data

	Case Study and data sets
	Results and discussion
	MLP Hyper-parameters analyses
	PDP and ICE plots
	ALE plot

	Conclusion
	ALE second-order formulation
	More result

