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Abstract

We study involutions in complex projective geometry. In particular, we construct a
geometry on pairs of points in involution.

1 Introduction

We show that Möbius involutions are fundamental for many questions with respect to complex
numbers and geometric transformations. In sections 2 and 3 we give an introduction to those
questions proving already some results without using Möbius involutions. In sections 4 and 5 we
introduce direct and indirect Möbius involutions making all previous results clearer. In section
6 we construct a geometry on pairs of points exchanged by a Möbius involution.

2 Direct and Indirect Similarities

It is classical in two dimensional real Euclidean geometry that an isometry (i.e. a transformation
preserving all distances) with three unaligned fixed points A,B,C is already the identity denoted
by id. If there are only two fixed points A,B, then it could also be the reflection through the line
AB, because any unaligned point C is either fixed or has to be reflected through AB. If there is
just one fixed point A, then any other point B is sent to some point B′ such that |AB| = |AB′|.
This could also be achieved with the help of a reflection through the perpendicular bisector
of BB′ creating an isometry with two fixed points. Since this is either the identity or a line
reflection, any isometry with one fixed point is the composition of at most two line reflections. If
there is no fixed point at all, we can create one with the help of a single line reflection. Therefore,
any isometry is the composition of at most three line reflections.

Any composition of an odd number of line reflections changes the orientation (of every
triangle) and is called an indirect or opposite isometry, whereas any composition of an even
number of line reflections conserves the orientation and is called a direct isometry. As we have
shown already, any direct isometry is the composition of two reflections through lines. Therefore
it is either a translation (if those two lines are parallel) or a rotation (about the intersection
point of those two lines). In particular, two reflections through lines commute if and only
if the lines are identical or perpendicular. In the second case, we get a rotation of 180◦ about
the intersection point also called point reflection (line reflections are indirect involutions whereas
point reflections are direct involutions). Finally, the composition of the reflections through three
lines is a line reflection if and only if those three lines are parallel or concurrent. Otherwise, it
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is a glide reflection, i.e. the composition of a reflection through a line with a translation in the
direction of this line (the composition of the reflections through three lines forming a triangle
is a glide reflection through one of the sides of its orthic triangle, the perimeter of which is the
distance of the translation).

A geometric transformation multiplying all distances by the same dilation factor k > 0 is
called a similarity. For k = 1, it is an isometry, and for k ̸= 1, it has a unique fixed point F .
The most classical example is a homothety with center F : it sends any point P to P ′ such

that
−−→
FP ′ = k ·

−−→
FP . Therefore any similarity (which is not an isometry) is the composition of a

homothety with center F and an isometry with fixed point F . As we have shown already, this
isometry is either a reflection through a line containing F providing an indirect similarity, or a
rotation about F providing a direct similarity called spiral similarity. In particular, all direct
similarities are either spiral similarities with fixed point F or translations. Spiral similarities
with angle 180◦ can also be considered as homtheties with negative dilation factor k.

Let us identify our two dimensional real Euclidean space with the complex numbers C (i.e. a
one dimensional affine space over C) by distinguishing two special points 0 (necessary and suffi-
cient for defining the addition) and 1 (necessary and sufficient for defining the multiplication),
C\{0} = C∗. Then for any fixed a ∈ C∗, the linear transformation x 7→ y = ax is a spiral
similarity (the identity if a = 1) with fixed point 0, dilation factor |a| and angle arg(a). For any
fixed b ∈ C, x 7→ y = x+ b is a translation (the identity if b = 0), and for any fixed a ∈ C\{0, 1},
the general affine transformation x 7→ y = ax+ b is a spiral similarity with fixed point F ∈ C :

F = aF + b ⇔ F =
b

1− a
, (2.1)

dilation factor |a| and angle arg(a), which we denote by

SF ;a = SF ;|a|,arg(a). (2.2)

Indeed,
y = ax+ b ⇔ y − F = a(x− F ). (2.3)

In particular, if we choose F to be the special point 0, then our spiral similarity becomes just a
linear transformation.

The reflection through the real axis is just complex conjugation and denoted by x 7→ y = x.
Therefore indirect similarities are given by x 7→ y = ax+ b.

For three points or complex numbers A,B,C we define

rA,B,C :=
A− C

B − C
, |rA,B,C | =

|AC|
|BC|

, arg(rA,B,C) = ∠BCA. (2.4)

Then triangles ABC and A′B′C ′ are directly similar if and only if rA,B,C = rA′,B′,C′ , and
indirectly similar if and only if rA,B,C = rA′,B′,C′ . In particular, ABC is degenerated, i.e. A, B,
C are collinear, if and only if rA,B,C is a real number, positive if C is outside the segment AB
and negative if it is inside. Degenerated triangles can also be similar (or not similar), but it is
unsufficient to know their angles in order to decide it. The following proposition is evident but
useful.
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Proposition 1. For any three points A, B, C we have

rA,B,C · rB,A,C = 1, rA,B,C + rA,C,B = 1. (2.5)

In particular, if two of the three points A,B,C are fixed, then the third one is determined uniquely
by rA,B,C .

More precisely, for fixed points A ̸= B, we can use the following proposition in order to
determine the point C.

Proposition 2. We have

rA,B,C = k ⇔ C =
kB −A

k − 1
, (2.6)

and C can be considered as a one dimensional barycenter of A and B with complex homogeneous
coordinates (−1 : k) = (1 : −k).

Proof. We have

A− C

B − C
= k ⇔ A− C = k(B − C) ⇔ C(k − 1) = kB −A. (2.7)

If A and B are different from F , then there is a unique spiral similarity with fixed point F
sending A to B. We denote it by

SF ;A 7→B = SF ;rB,A,F
. (2.8)

More generally, for two pairs of points (A,B) and (A′, B′) there is a unique direct similarity
sending A to A′ and B to B′. Its fixed point F has to satisfy one of the following equivalent
equations :

A′ − F

A− F
=

B′ − F

B − F
⇔ B − F

A− F
=

B′ − F

A′ − F
⇔ (2.9)

(A′ − F )(B − F ) = (A− F )(B′ − F ) ⇔ F · [(B′ −B)− (A′ −A)] = AB′ −A′B (2.10)

having a unique solution for F if and only if ABB′A′ is not a parallelogram. If ABB′A′ is a
parallelogram, then there is a unique translation sending A to A′ and B to B′, and also another
unique translation sending A to B and A′ to B′. If ABB′A′ is not a parallelogram, however,
then there is a unique spiral similarity with fixed point

F =
AB′ −A′B

(B′ −B)− (A′ −A)
(2.11)

sending A to A′ and B to B′, namely

SF ;rA′,A,F
= SF ;rB′,B,F

, (2.12)

and also another unique spiral similarity with fixed point F sending A to B and A′ to B′, namely

SF ;rB,A,F
= SF ;rB′,A′,F . (2.13)
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Let us suppose that the lines AB and A′B′ intersect in C, whereas AA′ and BB′ intersect in
C ′. Then the angle of our first spiral similarity, namely ∠AFA′ = ∠BFB′, is equal to the angle
between the lines AB and A′B′. Therefore F lies on the circumcircles of the triangles AA′C
and BB′C. Similarly, the angle of our second spiral similarity, namely ∠AFB = ∠A′FB′, is
equal to the angle between the lines AA′ and BB′. Therefore F lies on the circumcircles of the
triangles ABC ′ and A′B′C ′. In other words, F is the Miquel point of the quadrilateral defined
by the four lines AB, A′B′, AA′, BB′.

A

B

A′

B′

C

C′

F

F coincides with C if and only if the spiral similarity sending A to B and A′ to B′ is a
homothety, i.e if and only if the lines AA′ and BB′ are parallel. Similarly, F coincides with C ′

if and only if the spiral similarity sending A to A′ and B to B′ is a homothety, i.e if and only
if the lines AB and A′B′ are parallel. F can also be found on four Apollonius circles using the
facts that

FA′

FA
=

FB′

FB
=

A′B′

AB
and

FB

FA
=

FB′

FA′ =
BB′

AA′ . (2.14)

For two triangles ABC and A′B′C ′, there is a direct similarity sending the first to the second
if and only if they are directly similar, and there is an indirect similarity sending the first to the
second if and only if they are indirectly similar.

3 The Composition of Spiral Similarities

Of course, if we compose several spiral similarities (even with different fixed points), then their
dilation factors multiply and their angles add. In particular, if we first apply the spiral similarity
SF1;a1 and after that SF2;a2 , then we get

SF2;a2 ◦ SF1;a1 = SF3;a1a2 , (3.1)

where the fixed point F3 is uniquely determined by F1, F2, a1 and a2. When reading the beautiful
books [5, 6, 7] (also available in English [8, 9, 10, 11, 12]) some 35 years ago, we found, however,
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that the dependencies between F1, F2, F3, a1, a2 and a3 = a1a2 were not sufficiently studied,
and discovered the following results.

Lemma 1. For any six points A, B, C, A′, B′, C ′ we have

SB′;C 7→A ◦ SA′;B 7→C ◦ SC′;A 7→B = id ⇔ rA,C,B′ · rC,B,A′ · rB,A,C′ = 1. (3.2)

Proof. First of all,

SC′;A 7→B = SC′;rB,A,C′ , SA′;B 7→C = SA′;rC,B,A′ , SB′;C 7→A = SB′;rA,C,B′ . (3.3)

Since the composition of those spiral similarities has A as fixed point, we know that

SB′;C 7→A ◦ SA′;B 7→C ◦ SC′;A 7→B = SA;rA,C,B′ ·rC,B,A′ ·rB,A,C′ , (3.4)

and this is the identity if and only if

rA,C,B′ · rC,B,A′ · rB,A,C′ = 1. (3.5)

Corollary 1. For any six points A, B, C, A′, B′, C ′ we have

SB′;C 7→A ◦ SA′;B 7→C ◦ SC′;A7→B = id ⇔ (3.6)

SC′;A 7→B ◦ SB′;C 7→A ◦ SA′;B 7→C = id ⇔ (3.7)

SA′;B 7→C ◦ SC′;A 7→B ◦ SB′;C 7→A = id. (3.8)

Corollary 2. For any six points A, B, C, A′, B′, C ′ we have

SB′;C 7→A ◦ SA′;B 7→C ◦ SC′;A 7→B = id ⇔ (3.9)

SB;C′ 7→A′ ◦ SA;B′ 7→C′ ◦ SC;A′ 7→B′ = id (3.10)

Proof. According to our preceding lemma, it is necessary and sufficient to prove that

A−B′

C −B′ ·
C −A′

B −A′ ·
B − C ′

A− C ′ = 1 ⇔ (3.11)

A′ −B

C ′ −B
· C

′ −A

B′ −A
· B

′ − C

A′ − C
= 1, (3.12)

but this equivalence is evident.

If the triples (A,B,C) and (A′, B′, C ′) are related as in the preceding lemma and corollaries,
we used to call them ”in friendship” (in our next section, we will see a better characterization of
friendship). Our preceding corollary shows that friendship is invariant under the simultaneous
exchanges A ↔ A′, B ↔ B′ and C ↔ C ′. In the following theorem we will see that it is even
invariant if we perform just some of those exchanges, for example the exchange A ↔ A′ or the
additional exchange B ↔ B′.
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Theorem 1. For any six points A, B, C, A′, B′, C ′ we have

SB′;C 7→A ◦ SA′;B 7→C ◦ SC′;A 7→B = id ⇔ (3.13)

SB′;C 7→A′ ◦ SA;B 7→C ◦ SC′;A′ 7→B = id ⇔ (3.14)

SB;C 7→A′ ◦ SA;B′ 7→C ◦ SC′;A′ 7→B′ = id. (3.15)

More generally, those identities are invariant under any of the exchanges A ↔ A′, B ↔ B′,
C ↔ C ′.

Proof. According to our preceding lemma, it is necessary and sufficient to show that the identity

rA,C,B′ · rC,B,A′ · rB,A,C′ = 1 (3.16)

is invariant under any of the exchanges A ↔ A′, B ↔ B′, C ↔ C ′. But it is equivalent to

A−B′

C −B′ ·
C −A′

B −A′ ·
B − C ′

A− C ′ = 1 ⇔ (3.17)

(A−B′)(C −A′)(B − C ′) = (C −B′)(B −A′)(A− C ′) ⇔ (3.18)

AA′(C + C ′ −B −B′) +BB′(A+A′ − C − C ′) + CC ′(B +B′ −A−A′) = 0. (3.19)

Corollary 3. Let A, B, C, A′, B′, C ′ be six points such that

AB′

CB′ ·
CA′

BA′ ·
BC ′

AC ′ = 1 (3.20)

and
∠CB′A+ ∠BA′C + ∠AC ′B = 0◦ (mod 360◦), (3.21)

then

∠B′C ′A′ = ∠B′AC + ∠CBA′ (mod 360◦), (3.22)

∠C ′A′B′ = ∠C ′BA+ ∠ACB′ (mod 360◦), (3.23)

∠A′B′C ′ = ∠A′CB + ∠BAC ′ (mod 360◦). (3.24)

Proof. According to our preceding lemma, the first two relations of our corollary are equivalent
to

SB′;C 7→A ◦ SA′;B 7→C ◦ SC′;A7→B = id. (3.25)

According to our preceding theorem, this identity is equivalent to

SB;C 7→A′ ◦ SA;B′ 7→C ◦ SC′;A′ 7→B′ = id ⇔ (3.26)

rA′,C,B · rC,B′,A · rB′,A′,C′ = 1. (3.27)

If we look at the arguments in the last equation, then we get

∠CBA′ + ∠B′AC + ∠A′C ′B′ = 0◦ (mod 360◦), (3.28)

proving the first identity of our corollary. The other two identities are obtained in the same
way.
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Example. Let x, y, z be three (oriented) angles such that x + y + z = 90◦. If they appear
in the triangles C ′AB, A′BC, B′CA at the vertices A,B,C as in the following figures, then
our preceding corollary allows us to calculate the angles of A′B′C ′ with the help of x, y, z only,
without knowing the angles of ABC.

A

C B

x x

z

z

y

y

C′

A′

B′

y + z

z + x x+ y

A

C

B
x

x

z

z

y

y

C′

B′

A′

z + x

y + z

x+ y

A

C
B

A

C

B

x

x

z z

y
y

B′ C′

A′

y + z y + z

2x

x x

z

z
y

y

B′

C′

A′

2x

2z

2y

Indeed, the law of sines allows us to calculate each of the quotients AB′

CB′ ,
CA′

BA′ ,
BC′

AC′ showing that
their product is equal to 1. Moreover, ∠CB′A+∠BA′C+∠AC ′B = 3·180◦−2(x+y+z) = 360◦.

4 Direct Projective Involutions

We have already seen that among the similarities, line reflections are the only indirect involutions
whereas point reflections are the only direct involutions. Of course, z 7→ f(z) = 1

z is also an
involution (since f(f(z)) = z), but not a similarity since

r 1
A
, 1
B
, 1
C

=
1
A − 1

C
1
B − 1

C

=
BC

AC
· C −A

C −B
=

B

A
· rA,B,C (4.1)
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is neither conserved nor conjugated, because the factor B
A is disturbing. This factor, however,

disappears as soon as we consider cyclic products such as

rA,C,B′ · rC,B,A′ · rB,A,C′ (4.2)

widely used in our preceding section, or the more classical cross-ratio, which we can define as a
cyclic product of two factors instead of three ones :

bA,B;C,D := rABC · rBAD. (4.3)

Therefore those cyclic products are invariant under the involution z 7→ f(z) = 1
z , which means

that this involution is a direct projective transformation. Actually, we have the identity

rA,C,B′ · rC,B,A′ · rB,A,C′ = bA,C;B′,A′ · bA,B;A′,C′ (4.4)

represented by the following figure showing its multiplications and divisions.

A

B

C

C′

A′

B′

Our projective involution z 7→ f(z) = 1
z has 1 and −1 as fixed points. Any other z is distinct

from 1
z and exchanged with it. This is even true for 0, exchanged with a unique point at infinity,

added to the complex numbers C and denoted by ∞. For fixed points A ̸= B, we have

rA,B,C = 1 ⇔ C = ∞. (4.5)

We have arg(bA,B;C,D) = ∠BCA + ∠ADB (mod 360◦). Therefore bA,B;C,D is a positive real
number if and only if ∠ADB = ∠ACB (mod 360◦), i.e. if and only if either A, B, C, D are
concyclic and the segments AB and CD do not intersect, or A, B, C, D are collinear and C,
D are either both inside or both outside the segment AB. Similarly, bA,B;C,D is a negative real
number if and only if ∠BCA+∠ADB = 180◦ (mod 360◦), i.e. if and only if either A, B, C, D
are concyclic and the segments AB and CD do intersect, or A, B, C, D are collinear and one
of C, D is inside and the other outside the segment AB.

Proposition 3. For any four points A, B, C, D we have

bA,B;C,D = bB,A;D,C = bC,D;A,B = bD,C;B,A, (4.6)

bA,B;C,D · bB,A;C,D = bA,B;C,D · bA,B;D,C = 1, bA,B;C,D + bA,C;B,D = 1. (4.7)

In particular, if three of the four points A,B,C,D are fixed, then the fourth one is determined
uniquely by bA,B;C,D.
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Proof. Only the very last equation is not directly evident from the definition bA,B;C,D = rABC ·
rBAD. In can be proven by a direct calculation, but it is easier to use a translation in order
to get D = 0 and then our direct projective involution z 7→ f(z) = 1

z in order to get D = ∞
and bA,B;C,D = rABC . Since this leaves bA,B;C,D invariant, the very last equation follows from
(2.5).

Remark. Our preceding proposition shows that for distinct A, B, C, D, bA,B;C,D ∈ {0, 1,∞}
is not possible. The identity bA,B;C,D + bA,C;B,D = 1 has two important corollaries. On the one
hand, bA,B;C,D is real if and only if bA,C;B,D is real, i.e. ∠ADB = ∠ACB (mod 180◦) if and
only if ∠ADC = ∠ABC (mod 180◦), which is classical for cyclic quadrilaterals. On the other
hand, the triangle inequality tells us

|bA,B;C,D|+ |bA,C;B,D| ≥ 1 ⇔ AC ·BD +AB · CD ≥ AD ·BC (4.8)

with equality if and only if bA,B;C,D and bA,C;B,D are real and positive, i.e. if and only if ABCD
is a cyclic quadrilateral and the segments AD and BC intersect, or A, B, C, D are collinear
and exactly one of the points B,C lies on the segment AD. This is Ptolemy’s inequality.

It is natural to consider lines as circles containing the point ∞. Then bA,B;C,D is real if and
only if A, B, C, D are concyclic, and this property is preserved by our involution z 7→ f(z) = 1

z .
More precisely, we can say that lines passing through 0 remain lines through 0, lines avoiding
0 are exchanged with circles passing through 0, and all other circles remain circles. Since
f ′(z) = −z−2 exists, f acts locally as a spiral similarity. In particular, angles between circles or
lines are preserved.

These properties immediately carry over to general direct projective transformations (also
called Möbius transformations) defined for fixed a, b, c, d ∈ C such that ad ̸= bc by

z 7→ f(z) =
az + b

cz + d
=

a

c
+

b− ad
c

cz + d
(4.9)

because those transformations can be written as the composition of a direct similarity z 7→ cz+d
with our favorite involution and another direct similarity, namely the multiplication by b − ad

c
and the addition of a

c (if c = 0, then f is already a direct similarity).
For any three points A, B, C and any other three points A′, B′, C ′, there is a general

direct projective transformation sending A to A′, B to B′ and C to C ′. For any forth point D,
however, its image D′ is then uniquely determined by bA,B;C,D = bA′,B′;C′,D′ . Of course, every
direct projective transformation has two fixed points : the solutions of the quadratic equation
f(z) = z.

For arbitrary points A, B and C we can choose 0 and 1 in such a way that A = −1, B = 1,
C = z (for some z ∈ C), and M = 0 is the midpoint of the segment AB. Then there is a
unique point D = 1/z, for which we have bA,B;C,D = bA,B;D,C because our favorite involution
conserves the cross-ratio and exchanges C withD while A and B remain fixed. But our preceding
proposition tells us that we always have bA,B;D,C = 1/bA,B;C,D. Therefore b2A,B;C,D = 1. Since
bA,B;C,D = 1 is impossible for distinct points, it follows that bA,B;C,D = −1. By definition, this
means that A,B;C,D are four harmonic points. In other words, for any three points A,B;C
there is a unique point D such that A,B;C,D are harmonic, and we can suppose then that
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A = −1, B = 1, C = z and D = 1/z (we could also suppose that C = −1, D = 1, A = z and
B = 1/z).

Since −1 is a (negative) real number, four harmonic points A,B;C,D are concyclic or
collinear, and |bA,B;C,D| = 1 implies AC/BC = AD/BD. Moreover, we have

C −M

B −M
=

B −M

D −M
=

C −A

D −A
= z,

C −M

A−M
=

A−M

D −M
=

C −B

D −B
= −z. (4.10)

Therefore the three triangles CMB, BMD, CAD are similar, and the three triangles CMA,
AMD, CBD are also similar. In particular, it follows that

A− C

D − C
=

M − C

B − C
,

A− C

M − C
=

D − C

B − C
,

A−D

C −D
=

M −D

B −D
,

A−D

M −D
=

C −D

B −D
. (4.11)

We have proven the following proposition.

Proposition 4. Let A,B;C,D be four harmonic points, i.e. bA,B;C,D = −1, and let M be the
midpoint of the segment AB. Then we have the following identities of Newton

(C −M)(D −M) = (B −M)2 = (A−M)2, (4.12)

and MacLaurin

(A− C)(B − C) = (M − C)(D − C), (A−D)(B −D) = (M −D)(C −D). (4.13)

Similar identities hold for the midpoint of the segment CD. If K is the center of the circum-
scribed circle of ABCD, then

∠DKC = 2 · ∠DAC = ∠DMB + ∠BMC = ∠DMC, (4.14)

such that CDMK is a cyclic quadrilateral. Moreover, AB and MK are perpendicular bisectors
of ∠DMC.

A = −1 B = 1

C = zK

M = 0

D = 1
z

γ

γ

γ

δ
δ

δ γ + δ

γ + δ

2(γ + δ)
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If M , C and D are arbitrary points, then there always exists a direct projective involution
with center M (i.e. exchanging M and ∞) which exchanges C and D. Indeed, it is natural to
put first M = 0, and then C ·D = A2 = B2 in order to find its fixed points B and A = −B as
unique solutions of this equation. After that we can put A = −1 and B = 1, and our favorite
involution does what we want it to do. Of course, the involution exchanging M and ∞ as well
as C and D is unique, because any direct projective transformation defined on three points is
already unique. For given M , C and D, we can first construct the perpendicular bisectors of
∠DMC, then according to our preceding proposition K using the fact that CDMK is a cyclic
quadrilateral (or that K lies on the perpendicular bisector of CD) and finally the fixed points
A and B.

Similarly, if A and B are arbitrary points, then there exists a unique direct projective in-
volution having them as fixed points. Indeed, if C and D are exchanged in it, then bA,B;C,D =
bA,B;D,C meaning that bA,B;C,D = −1 and A,B;C,D are harmonic : for every C there is a
unique D exchanged with it.

Remark. The equation C ·D = A2 = B2 cannot be solved in real numbers if C ·D is negative.
Therefore direct complex projective involutions (exchanging ∞ with some point M ̸= ∞) are
always of the form z 7→ f(z) = 1

z , but direct real projective involutions can also be of the form
z 7→ f(z) = −1

z having no fixed points. If ∞ is a fixed point, however, we have a direct affine
involution, i.e. a point reflection which can be written in the form z 7→ f(z) = −z. In any case,
a direct complex projective (or affine) involution always has two distinct fixed points.

More generally, for any four points A, A′, B, B′ there is a (unique) direct projective (or
affine) involution exchanging A with A′ and B with B′. On the one hand, this follows from
the fact that we always have bA,A′;B,B′ = bA′,A;B′,B by (4.6). On the other hand, we can find
the center M of this involution (i.e. the point exchanged with ∞) by solving the equation
(A′ −M)(A −M) = (B′ −M)(B −M). But we have already solved this equation (2.10) and
found the Miquel point of the quadrilateral defined by the four lines AB, AB′, A′B, A′B′ as
solution if ABA′B′ is not a parallelogram

B

A

A′

B′

C′

C

M

γ γ

γ

α

α

α

α

(if ABA′B′ is a parallelogram, the reflection through the common midpoint of AA′ and BB′ is an
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affine involution exchanging A with A′ and B with B′). If AB ∩A′B′ = C ′ and AB′∩A′B = C,
then we find the same Miquel point M as center of the involution exchanging B with B′ and
C with C ′. Therefore there exists a direct projective involution with center M exchanging
simultaneously A with A′, B with B′ and C with C ′.

In general, if there exists a direct projective involution exchanging simultaneously A with
A′, B with B′ and C with C ′, then the invariance of the cross-ratio implies for example

bA,C;B′,A′ = bA′,C′;B,A. (4.15)

This relation is actually equivalent to the existence of a direct projective involution exchanging
simultaneously A with A′, B with B′ and C with C ′. Indeed, there is a unique direct projective
involution exchanging simultaneously A with A′ and B with B′, but then, for every C, this
involution determines uniquely C ′, for which our relation (4.15) is satisfied. Our relation (4.15),
however, also determines uniquely C ′, because C ′ appears only once in bA′,C′;B,A and not at all
in bA,C;B′,A′ .

If we use the relations (4.6) and (4.7), then we see that our condition (4.15) is equivalent to
the identity

bA,C;B′,A′ · bA,B;A′,C′ = 1. (4.16)

Using (4.4), it follows that a direct projective involution exchanging simultaneously A with A′,
B with B′ and C with C ′ exists if and only if

rA,C,B′ · rC,B,A′ · rB,A,C′ = 1, (4.17)

see [2]. (For the points of the preceding figure, this identity is Menelaus’s theorem.) Therefore
(3.2) and (3.15) prove the following theorem.

Theorem 2. For any six points A, A′, B, B′, C, C ′, a direct projective involution exchanging
simultaneously A with A′, B with B′ and C with C ′ exists if and only if

SB′;C 7→A ◦ SA′;B 7→C ◦ SC′;A 7→B = id. (4.18)

A direct projective involution defines a perfect matching on all points (including ∞) except
two distinct fixed points. Therefore two direct projective involutions define a partition of all
points into even cycles and paths (possibly with 0 edges or an infinite number of edges) starting
and ending at the fixed points. They commute if and only if all cycles are of length 2 or 4, and
all path contain 0 or 1 edge, where a path with 1 edge joins the two fixed points from the same
involution, and a path without edges joins two fixed points from different involutions. If there
is a path without edges (i.e. a common fixed point of the two involutions), then there cannot
be a path with one edge. Therefore we have two paths without edges in that case. This means
that our involutions have the same fixed points and coincide for this reason. We have proven
the first part of the following theorem.

Theorem 3. If we compose two different commuting direct projective involutions, we get a third
one commuting with both of them. They partition all points (including ∞) into blocks of size four
(on which they represent all three possible perfect matchings) and three blocks of size two (on
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which two of them represent the matching and the third one its two fixed points). In particular,
each of our three pairwise commuting direct projective involutions exchanges the fixed points of
the other two.

On the other hand, two commuting direct projective involutions can be uniquely defined by
two perfect matchings on a block of size four. Moreover, a direct projective involution commutes
with another one if and only if it exchanges its fixed points.

Proof. Any direct projective involution can be defined uniquely by a perfect matching on a block
of size four, and if the commutation relation of two projective transformations is valid on three
points, then it is valid everywhere by the invariance of the cross-ratio.

If a direct projective involution with fixed points A and B exchanges the fixed points C and
D of another one, then A,B;C,D are four harmonic points. Therefore our direct projective
involution with fixed points C and D exchanges A and B. But since our two direct projective
involutions commute on the four element set {A,B,C,D}, they commute everywhere.

If we have three pairwise commuting direct projective involutions for which the point ∞
belongs to a block of size two, then we can consider that two of our involutions exchange it
with a point which we call 0, whereas the third one has 0 and ∞ as its fixed points : it is the
involution z 7→ −z. If we call 1 and −1 the fixed points of one of the other two involutions, then
it becomes z 7→ 1

z , so that the third involution is z 7→ −1
z , with fixed points i and −i.

If we have three pairwise commuting direct projective involutions for which the point ∞
belongs to a block of size four, however, then our three involutions exchange it with three points
A, B, C. The involution with center A (exchanging A and ∞ as well as B and C) has two
fixed points A1 and A2 on the bisector of ∠BAC such that AB ·AC = AA2

1 = AA2
2. Analogous

relations hold for the fixed points B1, B2, C1, C2. All other points are on blocks of size four
PQRS, and a reflection through the line A1A2 exchanges AP , AQ, AR, AS in pairs. Analogous
results hold for the reflections through the lines B1B2 and C1C2 :
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A

B C

IB

IC

IA

I

A2

A1

B2

B1

C1

C2

P

Q

R

S

When constructing the angle bisectors of ABC we find its incenter and excenters {I, IA, IB, IC}
forming an orthocentric system (each of them is the orthocenter of the other three). The circle
having any two of them as diameter always contains two of the points {A,B,C}, and there are
many similar triangles showing in particular that our involution A ↔ ∞, B ↔ C also exchanges
I ↔ IA and IB ↔ IC : one of our many blocks of size four is {I, IA, IB, IC}. The midpoint of
IBIC is the center of the circumcircle of IBICBC, and it lies on the perpendicular bisector of BC
and on the circumcircle of ABC, the Euler circle of any triangle formed by three points among
{I, IA, IB, IC}. This confirms our constructions of the fixed points (harmonic points) of the
involution A ↔ ∞, B ↔ C, which are A1, A2 lying on the circle of diameter IBIC . Finally, we get
AA2

1 = AA2
2 = AIB ·AIC = AI ·AIA = AB ·AC = AB1 ·AB2 = AC1 ·AC2 = AP ·AQ = AR ·AS,

and A1A2 is the common bisector for all those pairs of points (forming harmonic points with
them). In particular, the lines AQ, BS and CR pass through the isogonal conjugate of P .

Remark. A Miquel point is often associated to four points P,Q,R, S, but in reality, it must be
associated to four lines and lies on the circumcircles of the four triangles defined by any three
of them. On four points P,Q,R, S we can define three commuting direct projective involutions,
namely P ↔ Q, R ↔ S (we call its center A), P ↔ S, Q ↔ R (we call its center B) and P ↔ R,
Q ↔ S (we call its center C). P,Q,R, S define six lines, and A is the Miquel point of the four
ones different from PQ,RS, whereas B and C are the Miquel points of the four ones different
from PS,QR or PR,QS, respectively. As we have seen earlier, if we define A′ := PQ ∩ RS,
B′ := PS ∩QR, C ′ := PR∩QS, then our commuting involutions with center A, B, C exchange
B′ ↔ C ′, C ′ ↔ A′, A′ ↔ B′, respectively. In particular, A′, B′, C ′ belong to the same block of
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size four.

5 Indirect Projective Involutions

There is an involution much more famous than our direct projective involution z 7→ f(z) = 1
z ,

namely the classical inversion with respect to the unit circle z 7→ f(z) = 1
z . It does not preserve

the cross-ratio, but it just conjugates it. It can be considered as our direct projective involution
composed with a line reflection through the real axis, and therefore it preserves the set of circles
and lines in the same way. The orientation of angles, however, is inversed. In particular, a
circle remains fixed under the classical inversion if and only if it is the unit circle or a circle
perpendicular to it :

O 1

P

P ′

By calculating the power of O we also see that a circle is fixed if and only if it passes through
two points P ↔ P ′ exchanged in our inversion, i.e. O, P and P ′ are collinear and OP ·OP ′ = 1.
On the other hand, we can construct the partner P ′ of P by constructing circles perpendicular
to the unit circle and passing through P . This shows the following important lemma.

Lemma 2. The property of points being exchanged by an inversion remains invariant under
inversions of the whole figure.

Let us recall some classical facts about pencils of circles in two dimensional real (or complex
projective geometry). For two fixed points, which we can consider to be (−1; 0) and (1; 0), the set
of circles passing through them is called an elliptic pencil of circles. The centers of those circles
lie on the axis x = 0 and are given by (x; y) = (0; c). Their equations are x2 + (y− c)2 = c2 +1.
The radical axis of any two of those circles is y = 0 : it is considered to be part of the elliptic
pencil of circles. A point on this axis is given by (x; y) = (d; 0), and its common power with
respect to all circles of our elliptic pencil is given by (d− 1)(d+ 1) = d2 − 1. Therefore a circle
with center (d; 0) and equation (x−d)2+y2 = d2−1 is perpendicular to all circles of our elliptic
pencil, and it passes through the two complex fixed points (0; i) and (0;−i). The set of all those
circles is called a hyperbolic pencil of circles. The radical axis of any two of them is x = 0 (the
common power of (0; c) is c2 + 1) : it is considered to be part of the hyperbolic pencil.

Remark. There exists a two dimensional complex projective involution exchanging the points
(0; i) and (0;−i) with the so called cyclic points (circular points at infinity in the complex
projective plane that are contained in the complexification of every real circle). It fixes the real
plane and defines on it a two dimensional projective involution conserving all lines and all circles
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belonging to our hyperbolic pencil, while exchanging their common radical axis with the line at
infinity.

Finally, all circles passing through (0; 0) and tangent to the line y = 0 form a parabolic
pencil; and all circles passing through (0; 0) and tangent to the line x = 0 form the perpendicular
parabolic pencil.

An inversion with center (−1; 0) transforms our elliptic pencil of circles into a pencil of
concurrent lines, whereas its perpendicular hyperbolic pencil becomes a pencil of concentric
circles. Two perpendicular parabolic pencils of circles can be transformed into two perpendicular
pencils of parallel lines. An inversion with respect to a circle defines an involution on all circles
of its pencil whereas all circles of its perpendicular pencil remain fixed.

Any point of the plane (different from the 0, 1 or 2 special ones) belongs to a unique circle
of a pencil of circles, and to a unique circle of its perpendicular pencil. Any two circles belong
to a unique pencil of circles : elliptic if they are intersecting, hyperbolic if they are disjoint and
parabolic if they are tangent. In particular, an inversion allows us to transform two intersecting
circles into two intersecting lines, two disjoint circles into two concentric ones, and two tangent
circles into two parallel lines. If a circle is perpendicular to two circles of a pencil, then it belongs
to the perpendicular pencil.

Remark. Usually, one proves that three circles belong to the same pencil by showing that
there are two points having the same power with respect to all of them. For example, if the
lines p, q, r, s form a quadrilateral with vertices A := s ∩ p, A′ := q ∩ r, B := r ∩ s, B′ := p ∩ q,
C := p ∩ r, C ′ := q ∩ s, then the circles of diameter AA′, BB′, CC ′ belong to the same pencil
because the orthocenters of {p, q, r}, {p, q, s}, {p, r, s}, {q, r, s} all have the same power with
respect to them.

Lemma 3. The inversions with respect to two different circles or lines K and K ′ commute with
each other if and only if K and K ′ are perpendicular.

Proof. By our preceding lemma, we can suppose that K and K ′ are either concentric or two
lines. But in those cases, the proof is evident.

If two perpendicular circles K and K ′ have centers B and C and intersect in A1 and A2,
then the composition of the inversions with respect to K and K ′ is equal to the composition
of the reflections with respect to the line A1A2 and the perpendicular circle of diameter A1A2.
Indeed, it is sufficient to proof this after an inversion sending A2 to ∞, but then it becomes
evident : the composition of the reflections through two perpendicular lines always is a point
reflection.

The inversion with respect to K fixes A1 and A2 while exchanging B ↔ ∞ and C ↔ A′,
where A′ := A1A2 ∩ BC. The inversion with respect to K ′ fixes A1 and A2 while exchanging
C ↔ ∞ and B ↔ A′. Their composition is a direct projective involution with fixed points A1

and A2 exchanging B ↔ C and A′ ↔ ∞. This confirms the classical identities following from
similar triangles : BA′ ·BC = BA2

1, CA′ · CB = CA2
1 and A′B ·A′C = A′A2

1.
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A1

B CA′

A2

Let ABC be an arbitrary acute triangle with vertices ABC, orthocenterH and orthic triangle
A′B′C ′. Let us suppose that the circle of diameter BC intersects AA′ in A1 and A2. The points
B1, B2 and C1, C2 are defined similarly. Then we have the classical identities BB′ · BH =
BC ′ ·BA = BA′ ·BC = BA2

1 = BA2
2 = BC2

1 = BC2
2 and A′B′ ·A′C ′ = A′A ·A′H = A′B ·A′C =

A′A2
1 = A′A2

2, etc. Therefore the inversion with center B and radius BA1 = BA2 = BC1 = BC2

exchanges B ↔ ∞, B′ ↔ H, C ′ ↔ A, A′ ↔ C and commutes with the analogous inversions with
center A or C. The composition of our inversions with center B and C gives a direct projective
involution with fixed points A1 and A2 exchanging A′ ↔ ∞, B′ ↔ C ′, A ↔ H, B ↔ C. It can
be represented as the composition of an inversion with center A′ and radius A′A1 = A′A2 with
a reflection through AA′.

Since our circle with center A (and radius AB1 = AB2 = AC1 = AC2) is perpendicular to our
circles with center B and C, it must belong to the perpendicular pencil and is also perpendicular
to the circle with diameter A1A2 intersecting it in two points A3, A4. Since H has the same
power with respect to our circles with center A,B,C and also with diameter A1A2, it lies on
A3A4. Therefore the composition of an inversion with center A′ and radius A′A1 = A′A2 with a
reflection through AA′ and our inversion with center A can be simplified as the composition of
an inversion with center H and radius HA3 = HA4 and line reflections through A1A2 and A3A4.
Finally, the composition of our three pairwise commuting inversions with center A,B,C is an
inversion with center H (their radical center) and radius HA3 = HA4 composed with a point
reflection with center H. This is also called an inversion with negative radius and exchanges
H ↔ ∞, A′ ↔ A, B′ ↔ B, C ′ ↔ C (the identity HA′ ·HA = HB′ ·HB = HC ′ ·HC is classical).
Those pairwise commuting inversions are the last theorem of [1].

Finally, we have three inversions with center A,B,C, three direct projective involutions
with center A′, B′, C ′ and axis AA′, BB′, CC ′, respectively, and one inversion with center H and
negative radius. Any two of them commute, and their composition gives the one with a collinear
center, if we consider that A′, B′, C ′ are also collinear. Actually, we have seen at the end of
the previous section that three pairwise commuting direct projective involutions are naturally
embedded in this picture.
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As mentioned at the beginning of this section, the fixed circles of the inversion z 7→ f(z) = 1
z

are the unit circle and all circles perpendicular to it.
The fixed circles of the inversion with negative radius z 7→ f(z) = −1

z are the unit circle and
all circles intersecting it in two opposite vertices with respect to O. Indeed, a fixed circle must
contain both interior and exterior points of the unit circle. Therefore it has to intersect it in
two points, and two opposite points are then necessary and sufficient.

Finally, the fixed circles of our direct projective involution z 7→ f(z) = 1
z are the unit circle,

the pencil of all circles passing through the fixed points −1 and 1, and its perpendicular pencil.

For any four points P,Q,R, S, there exists a direct projective involution exchanging P ↔ Q,
R ↔ S because bP,Q,R,S = bQ,P,S,R. An indirect projective involution, however, exists if and only
if P,Q,R, S are collinear or concyclic, because the cross-ratio is conjugated, and invariant if and
only if it is real. If P,Q,R, S are concyclic in that order, then we have an inversion with center
B := PQ∩RS exchanging P ↔ Q, R ↔ S, an inversion with center C := QR∩SP exchanging
Q ↔ R, S ↔ P , an inversion with negative radius and centerH := PR∩QS exchanging P ↔ R,
Q ↔ S, and an inversion with center A (the center of the circumscribed circle of PQRS) fixing
P,Q,R, S. Those transformations commute pairwise, because the commutation relation holds
on the set {P,Q,R, S} and then (cross-ratio) everywhere. Therefore we get exactly our previous
picture : H is the orthocenter of ABC and A′, B′, C ′ are the three Miquel points of P,Q,R, S,
see the end of our previous section.
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Actually, the triangle BCH is autopolar. In total, we have seven commuting involutions (with
center A,B,C,H,A′, B′, C ′) and we know their actions on A,B,C,H,A′, B′, C ′, P,Q,R, S per-
fectly. In particular, every line not passing through the center of an involution becomes a circle.
Therefore we can find many additional circles in the figure.

Lemma 4. A pencil of circles and its perpendicular pencil define two commuting projective
involutions on any fixed circle or line K not belonging to any of the two pencils.

Proof. If a circle of our pencil intersects K in A and A′, then we have to show that the exchange
A ↔ A′ is a projective transformation (it is of course an involution), and that this transformation
commutes with the one obtained from the perpendicular pencil. But those affirmations become
evident if we transform our perpendicular pencils by an inversion into pencils of concurrent lines
and concentric circles.

For any two lines or slopes a and b, it is classical to define (a, b) as the angle, defined modulo
180◦, we have to turn a counterclockwise so that it becomes parallel to b. Of course, for any
three lines or slopes a, b, c we have (a, b) + (b, c) = (a, c) (mod 180◦) : Chasles’s relation well
known for vectors. Therefore, it is natural to fix some line o as ”origin” and to define a := (o, a),
b := (o, b), etc. Then the relation (o, a) + (a, b) = (o, b) (mod 180◦) can be rewritten as

(a, b) = b− a (mod 180◦). (5.1)

In this context, expressions like a+ b do depend on the choice of o, but barycentric expressions
such as a+b

2 do not : it is defined modulo 90◦ and provides the slopes of the two perpendicular
bisectors of the slopes a and b.

19



It is classical that ABCD is a cyclic quadrilateral if and only if we have for its slopes modulo
180◦ one of the following equivalent relations :

(AC,BC) = (AD,BD) ⇔ BC −AC = BD−AD ⇔ AD+BC = AC +BD. (5.2)

Therefore the more symmetrical relation is actually

AD +BC

2
=

AC +BD

2
=

AB + CD

2
(mod 90◦) (5.3)

showing that the slopes of the bisectors of two opposite sides of a cyclic quadrilateral do not
depend on the choice of those opposite sides :

A

B

C

D

E

F

G

In fact, a reflection through any of the two perpendicular slopes of our bisectors exchanges the
slopes of AD ↔ BC, AC ↔ BD, AB ↔ CD. It is Desargues’s involution on the line at infinity,
see [4].

Two pairs of lines {a, a′} and {b, b′} define a unique quadrilateral with vertices Pab := a∩ b,
Pab′ := a ∩ b′, Pa′b := a′ ∩ b, Pa′b′ := a′ ∩ b′. It is cyclic if and only if a+a′

2 = b+b′

2 (mod 90◦).
If {c, c′} is a third pair of lines, then {a, a′} and {c, c′} also define a unique quadrilateral with
vertices Pac := a ∩ c, Pac′ := a ∩ c′, Pa′c := a′ ∩ c, Pa′c′ := a′ ∩ c′. It is cyclic if and only if
a+a′

2 = c+c′

2 (mod 90◦). But in this case we also have b+b′

2 = c+c′

2 (mod 90◦). Therefore the
quadrilateral with vertices Pbc := b ∩ c, Pbc′ := b ∩ c′, Pb′c := b′ ∩ c, Pb′c′ := b′ ∩ c′ is also cyclic.
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c′
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Lemma 5. Let {a, a′}, {b, b′} and {c, c′} be three pairs of lines such that

a+ a′

2
=

b+ b′

2
=

c+ c′

2
(mod 90◦). (5.4)

Then the pairs {a, a′} and {b, b′} define a cyclic quadrilateral with circumscribed circle Kc.
Similarly, the pairs {a, a′} and {c, c′} define Kb, whereas {b, b′} and {c, c′} define Ka. Then Ka,
Kb and Kc belong to the same pencil of circles.

Proof. Let K ′
a be the unique circle which passes through Pbc and belongs to the pencil defined

by Kb and Kc. Then K ′
a, Kb and Kc define a projective involution on the line c, and the pencil

of conics passing through the four points Pab, Pab′ , Pa′b, Pa′b′ also defines a projective involution
on the line c. This second pencil contains Kc but also the two degenerated conics formed by
the two lines {a, a′} or {b, b′}. Therefore our two involutions defined on c both exchange the
intersection points of c with Kc (which can be complex) as well as Pac ↔ Pa′c. But since those
two involutions coincide on two pairs of points, they coincide everywhere, and in particular, K ′

a

must pass through Pb′c, exchanged with Pbc.
Similarly, K ′

a, Kb and Kc and the pencil of conics passing through Pac, Pac′ , Pa′c, Pa′c′

define the same involution on b proving that K ′
a also passes through Pbc′ . Therefore K ′

a and Ka

coincide. This concludes our proof.

Let p, q, r and s be four lines defining a quadrilateral with vertices A := s ∩ p, A′ := q ∩ r,
B := r ∩ s, B′ := p ∩ q, C := p ∩ r, C ′ := q ∩ s. We orient p, q, r, s as in the following figure in
order to be able to calculate with their slopes modulo 360◦.
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F ′
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+ 90◦
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2
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In particular, the Miquel point M of {p, q, r, s} does not only lie on the circumcircles of {p, q, r},
{p, q, s}, {p, r, s}, {q, r, s} : it is also the center of many spiral similarities allowing us to calculate
the following angles at M .

Lemma 6. Modulo 360◦ we have

∠AMA′ = q + r − s− p, ∠BMB′ = p+ q − r − s, ∠CMC ′ = s+ q − p− r. (5.5)

But M is also the center of the direct projective involution exchanging A ↔ A′, B ↔ B′,
C ↔ C ′. Its fixed points {F, F ′} lie on the common bisector of ∠AMA′, ∠BMB′, ∠CMC ′ and
form harmonic points with {A,A′}, {B,B′} and {C,C ′}.

Lemma 7. Modulo 180◦ we have

(FA,FA′) = (F ′A,F ′A′) =
q + r

2
− s+ p

2
, (5.6)

(FB,FB′) = (F ′B,F ′B′) =
p+ q

2
− r + s

2
, (5.7)

(FC,FC ′) = (F ′C,F ′C ′) =
s+ q

2
− p+ r

2
. (5.8)

The bisector at B′ with slope p+q
2 and the bisector at B with slope r+s

2 intersect in a point
which we denote B1, whereas the perpendicular bisectors at B

′ and B intersect in B′
1. We denote

B2 and B′
2 the other two intersection points of our bisectors at B′ and B, see the preceding figure.

Since

(B1B,B1B
′) = (B′

1B,B′
1B

′) =
p+ q

2
− r + s

2
(mod 180◦), (5.9)
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the circumcircle of BB′B1B
′
1 belongs to the elliptic pencil of circles passing through F and F ′.

Therefore it is fixed under the direct projective involution A ↔ A′, B ↔ B′, C ↔ C ′.
Since the circumcircle of BB′B2B

′
2 is perpendicular to the circumcircle of BB′B1B

′
1 and

passes through B,B′ (exchanged in our involution), it is also fixed in our involution. Therefore
it belongs to the perpendicular pencil of circles.

If the points A1, A
′
1, A2, A

′
2, C1, C

′
1, C2, C

′
2 are defined in the same way, then we get the

following proposition.

Proposition 5. The circumcircles of AA′A1A
′
1, BB′B1B

′
1 and CC ′C1C

′
1 belong to the elliptic

pencil of circles passing through F and F ′, whereas the circumcircles of AA′A2A
′
2, BB′B2B

′
2

and CC ′C2C
′
2 belong to the perpendicular hyperbolic pencil of circles. All six circles are fixed

under the direct projective involution A ↔ A′, B ↔ B′, C ↔ C ′, M ↔ ∞ with fixed points F
and F ′.

The triangle defined by its sides {p, q, r} usually has one incenter and three excenters, but
since its sides are oriented, it is natural to consider that it has a unique incenter denoted Is, see
the following figure. Similarly, Ip, Iq, Ir are the unique incenters of the triangles with oriented
sides {q, r, s}, {r, s, p}, {s, p, q}, respectively. If we change the orientation of p and r (or of q
and s) simultaneously, then those unique incenters become I ′p, I

′
q, I

′
r, I

′
s. We have

I ′pI
′
r + I ′qI

′
s

2
=

IpIq + IrIs
2

=
I ′pI

′
q + I ′rI

′
s

2
=

p+ q + r + s

4
(mod 90◦) (5.10)

showing that IpIqIrIs, I
′
pI

′
qI

′
rI

′
s and BB′B2B

′
2 are cyclic quadrilaterals the circumcircles of which

belong to the same pencil. Similarly,

I ′pI
′
r + I ′qI

′
s

2
=

IsIp + IqIr
2

=
I ′sI

′
p + I ′qI

′
r

2
=

p+ q + r + s

4
(mod 90◦) (5.11)

show that IpIqIrIs, I
′
pI

′
qI

′
rI

′
s and AA′A2A

′
2 are cyclic quadrilaterals the circumcircles of which

belong to the same pencil. Those two pencils, however, coincide because they have two circles in
common defining a pencil uniquely. Therefore the circumcircles of IpIqIrIs and I ′pI

′
qI

′
rI

′
s belong

to the hyperbolic pencil we have already seen in the preceding proposition.
This argument can be applied for all kinds of reorientations of the sides of {p, q, r, s} and

proves the following theorem.
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Theorem 4. Let {p, q, r, s} be a quadrilateral with oriented sides as in our figures, and let F, F ′

be the fixed points of the direct projective involution exchanging its opposite vertices pairwise,
and its Miquel point with ∞. If we reorient an odd number of sides of {p, q, r, s}, then the
circumcircle of IpIqIrIs belongs to the elliptic pencil of circles passing through F and F ′. If we
reorient an even number of sides of {p, q, r, s}, then the circumcircle of IpIqIrIs belongs to the
perpendicular hyperbolic pencil of circles. In both cases, the circumcircles are fixed under our
direct projective involution.

Remark. The preceding theorem was conjectured by Auguste Ramondou because it provides
an easy proof for problem 6 of the IMO 2011, solved by only 6 students during the competition.

6 Geometry on Pairs of Points in Involution

We have already seen that for any four fixed points A, A′, B, B′ there is a unique direct projective
involution exchanging A ↔ A′ and B ↔ B′. Let us denote our pairs of points in involution by
{A,A′} = Ȧ and {B,B′} = Ḃ. We suppose that our involution is not affine. Therefore we can
choose 0 and 1 in such a way that AA′ = BB′ = 1. Motivated by (2.6) we define for any point
C

rȦ,Ḃ,C := rA,B,C · rA′,B′,C =
(A− C)(A′ − C)

(B − C)(B′ − C)
. (6.1)
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Replacing A′ by 1
A and B′ by 1

B we get the following equivalence :

rȦ,Ḃ,C = k ⇔ (A− C)(
1

A
− C) = k(B − C)(

1

B
− C)

⇔
[
k(B +

1

B
)− (A+

1

A
)

]
· C = (k − 1)(C2 + 1)

⇔ C2 −
k(B + 1

B )− (A+ 1
A)

k − 1
· C + 1 = 0. (6.2)

This is a quadratic equation in C having two solutions (which we call C and C ′) uniquely
determined by Vieta’s formulas :

C · C ′ = 1,
C + C ′

2
=

k
B+ 1

B
2 − A+ 1

A
2

k − 1
. (6.3)

Therefore our direct projective involution exchanging A ↔ A′ and B ↔ B′ also exchanges
C ↔ C ′. If we define {C,C ′} = Ċ,

rȦ,Ḃ,Ċ := rȦ,Ḃ,C = rȦ,Ḃ,C′ , (6.4)

and

Â :=
A+A′

2
, B̂ :=

B +B′

2
, Ĉ :=

C + C ′

2
, (6.5)

(the midpoints of AA′, BB′, CC ′), then we get an equivalence as in (2.6) :

rȦ,Ḃ,Ċ = k ⇔ Ĉ =
kB̂ − Â

k − 1
⇔ rÂ,B̂,Ĉ = k. (6.6)

We have proven the following theorem.

Theorem 5. If a direct projective involution exchanges A ↔ A′, B ↔ B′ and C ↔ C ′, then

rȦ,Ḃ,Ċ = rȦ,Ḃ,C = rȦ,Ḃ,C′ = rÂ,B̂,Ĉ . (6.7)

In particular,

∠B̂ĈÂ = ∠BCA+ ∠B′CA′ = ∠BCA′ + ∠B′CA

= ∠BC ′A+ ∠B′C ′A′ = ∠BC ′A′ + ∠B′C ′A (mod 360◦). (6.8)

If Ȧ and Ḃ are given, then for every complex number k there is a unique pair of points Ċ =
{C,C ′} exchanged in the same involution as Ȧ and Ḃ and such that rȦ,Ḃ,Ċ = k. It can be found
by Vieta’s relations or by solving a quadratic equation.

Example. Let x, y, z be three (oriented) angles such that x+y+ z = 90◦. If they appear in the
triangles C ′AB, A′BC, B′CA at the vertices A,B,C as in the following figures (already seen
earlier), then our preceding theorem allows us to calculate the angles of ÂB̂Ĉ with the help of
x, y, z only, without knowing the angles of ABC.
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If A∗, B∗, C∗ are the midpoints of BC,CA,AB, respectively, then the following triangles are
similar : ABC ′ ∼ B∗A∗Ĉ, BCA′ ∼ C∗B∗Â, CAB′ ∼ A∗C∗B̂, and Serge Bidallier remarked
that the identity

SB̂;C∗ 7→A∗ ◦ SÂ;B∗ 7→C∗ ◦ SĈ;A∗ 7→B∗ = id. (6.9)

can be used in order to calculate the angles of ÂB̂Ĉ. This identity, however, is equivalent to the
existence of a direct projective involution exchanging Â ↔ A∗, B̂ ↔ B∗, Ĉ ↔ C∗, which follows
directly from our involution A ↔ A′, B ↔ B′, C ↔ C ′, invariant under all permutations within
the pairs Ȧ, Ḃ or Ċ. This proves the following theorem.

Theorem 6. Let A ↔ A′, B ↔ B′, C ↔ C ′ be a direct projective involution, and let us
choose A′′ ∈ {A,A′}, B′′ ∈ {B,B′} and C ′′ ∈ {C,C ′}. If A∗, B∗, C∗ are the midpoints of
B′′C ′′, C ′′A′′, A′′B′′, respectively, and Â, B̂, Ĉ are the midpoints of AA′, BB′, CC ′, respectively,
then there exists a direct projective involution Â ↔ A∗, B̂ ↔ B∗, Ĉ ↔ C∗.

For our pairs of points in involution Ȧ = {A,A′}, Ḃ = {B,B′} and Ċ = {C,C ′} we have
already shown that rȦ,Ḃ,Ċ is equal to the more classical rÂ,B̂,Ĉ . This directly implies the following
corollary.
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Corollary 4. We have

rȦ,Ḃ,Ċ · rḂ,Ȧ,Ċ = 1, rȦ,Ḃ,Ċ + rȦ,Ċ,Ḃ = 1. (6.10)

In particular, rȦ,Ḃ,Ċ is real if and only if rȦ,Ċ,Ḃ is real.

The complex number rȦ,Ḃ,C = (A−C)(A′−C)
(B−C)(B′−C) is real if and only if the slopes of CA, CA′, CB,

CB′ satisfy

CA+ CA′ − CB − CB′ = 0◦ (mod 180◦) ⇔ CA+ CA′

2
=

CB + CB′

2
(mod 90◦), (6.11)

that is if and only if there is a line reflection exchanging simultaneously the slopes CA ↔ CA′

and CB ↔ CB′.

Corollary 5. If Ȧ = {A,A′}, Ḃ = {B,B′} and Ċ = {C,C ′} are three pairs of points in
involution, then their midpoints Â, B̂ and Ĉ are collinear if and only if rȦ,Ḃ,Ċ is real, and this
happens if and only if there is a line reflection exchanging simultaneously the slopes CA ↔ CA′

and CB ↔ CB′. In that case we also call Ȧ, Ḃ and Ċ collinear.

A more classical formulation in this context is the following :

Corollary 6. Let ABA′B′ be a convex quadrilateral and C a point in its interior. Then C has
an isogonal conjugate if and only if ∠ACB + ∠A′CB′ = 180◦.

Proof. First of all, identifying CA,CA′, CB,CB′ with their slopes, we get

∠ACB + ∠A′CB′ = 180◦ ⇔ (CB − CA) + (CB′ − CA′) = 0◦ (mod 180◦)

⇔ CA+ CA′

2
=

CB + CB′

2
(mod 90◦)

⇔ rȦ,Ḃ,C ∈ R. (6.12)

If this condition is satisfied, then the unique direct projective involution A ↔ A′, B ↔ B′

exchanges C with some point C ′. It is the isogonal conjugate of C by the results of our preceding
corollary.

On the other hand, if C has an isogonal conjugate C ′, then we can consider the unique direct
projective involution B ↔ B′, C ↔ C ′. If it exchanges A with some point A′′, then C and C ′

are isogonal conjugates in B′ABA′′ because rḂ,Ċ,A ∈ R. But this implies A′′ = A′ and finishes
our proof.

C

110◦

70◦

B′

B

A′

A

C′
Ĉ B̂

Â
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Remark. I proposed the preceding corollary as an exercice for an Animath test in 2009. The
students found two proofs : One based on the fact that the condition ∠ACB +∠A′CB′ = 180◦

(or the condition for isogonal conjugation) holds if and only if the composition of the line
reflections through CA, CB, CA′ and CB′ is the identity; and another based on the fact that
the projections of C to the sides of the convex quadrilateral are concyclic.

In the particular cas C = C ′ our preceding corollary implies the following one.

Corollary 7. If ABA′B′ is a circumscribed quadrilateral with incenter I, then there exists a
direct projective involution with fixed point I exchanging A ↔ A′ and B ↔ B′. In particular,
the midpoints of AA′ and BB′ are collinear with I.

We have already seen that there is a direct projective involution exchanging the opposite
vertices of a complete quadrilateral A ↔ A′, B ↔ B′, C ↔ C ′. Moreover Ȧ, Ḃ and Ċ are
collinear, because rȦ,Ḃ,C is a real number. Therefore the midpoints of AA′, BB′ and CC ′ are
collinear (a well-known classical fact).

Last but not least, if Ȧ = {A,A′}, Ḃ = {B,B′}, Ċ = {C,C ′} and Ḋ = {D,D′} are four
pairs of points in involution, then we can define

bȦ,Ḃ,Ċ,Ḋ := rȦ,Ḃ,Ċ · rḂ,Ȧ,Ḋ, (6.13)

which is invariant under projective transformations. Once again, we get

bȦ,Ḃ,Ċ,Ḋ = bÂ,B̂,Ĉ,D̂, (6.14)

where Â, B̂, Ĉ, D̂ are the respective midpoints of AA′, BB′, CC ′, DD′. We can define that
Ȧ, Ḃ, Ċ, Ḋ are concyclic if and only if bȦ,Ḃ,Ċ,Ḋ is a real number. But in order to calculate
bȦ,Ḃ,Ċ,Ḋ we only need to know one of the points C,C ′ and one of the points D,D′. In other
words, the whole classical geometry can be developed for pairs of points in involution instead of
just points.
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